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Universitat Politècnica de Catalunya
Barcelona
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Abstract

For a strongly connected digraph D the restricted arc-connectivity
λ′(D) is defined as the minimum cardinality of an arc-cut over
all arc-cuts S satisfying that D − S has a non trivial strong
component D1 such that D − V (D1) contains an arc. Let S be
a subset of vertices of D. We denote by ω+(S) the set of arcs
uv with u ∈ S and v 
∈ S, and by ω−(S) the set of arcs uv with
u 
∈ S and v ∈ S. A digraph D = (V,A) is said to be λ′-optimal
if λ′(D) = ξ′(D), where ξ′(D) is the minimum arc-degree of
D defined as ξ(D) = min{ξ′(xy) : xy ∈ A}, and ξ′(xy) =
min{|ω+({x, y})|, |ω−({x, y})|, |ω+(x)∪ω−(y)|, |ω−(x)∪ω+(y)|}.
In this paper a sufficient condition for a s-geodetic strongly con-
nected digraph D to be λ′-optimal is given in terms of its di-
ameter. Further we see that the h-iterated line digraph Lh(D)
of a s-geodetic digraph is λ′-optimal for certain iteration h.

1 Introduction

We consider finite digraphs without loops and multiple edges. Let D =
(V,A) be a strongly connected digraph, with vertex set V = V (D) and arc
set A = A(D). For any pair F , F ′ of proper vertex subsets of a digraph D,
we define [F,F ′] = {xy ∈ A : x ∈ F, y ∈ F ′}. If F ′ = F = V \ F , we write
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ω+(F ) or ω−(F ) instead of [F,F ]. When F = {x} we abbreviate ω+({x})
and ω−({x}) to ω+(x) and ω−(x), respectively. Clearly, d+(x) = |ω+(x)|
and d−(x) = |ω−(x)|.

A subset S ⊆ A of arcs is an arc-cut if D−S is not strongly connected.
Each minimum arc-cut has the form ω+(F ), where F is a proper subset of
V . Thus, the arc-connectivity of a digraph D can be defined as

λ(D) = min{|ω+(F )| : F ⊂ V, F 
= ∅, F 
= V }.

It is well-known that for any digraph D, λ(D) ≤ δ(D) [10]. Hence, D is
said to be maximally arc-connected if λ(D) = δ(D). Following Hamidoune
[12, 13], a subset F of vertices of a strongly connected digraph D with arc-
connectivity λ is a positive α-fragment if |ω+(F )| = λ and, similarly, F is a
negative α-fragment if |ω−(F )| = λ. Note that F is a positive α-fragment
if an only if F = V (D) \ F is a negative α-fragment.

When the underlying topology of an interconnection network is modeled
by a connected graph or a strongly connected digraph D, where V (D) is
the set of processors and A(D) is the set of communication links, the edge-
connectivity or arc-connectivity of D are important measurements for fault
tolerance of the network. However, one might be interested in more refined
indices of reliability. Even two graphs or digraphs with the same edge/arc-
connectivity λ may be considered to have different reliabilities, since the
number or type of minimum arc-cuts is different.

The study of fault-tolerance of networks modeled by an undirected
graph has been intense in recent years. By restricting the forbidden fault
set to be the sets of neighboring edges of any spanning subgraph with no
more than k-vertices in the faulty networks, Fàbrega and Fiol [9, 8] in-
troduced the k-extra-edge-connectivity of interconnection networks (where
k is a positive integer) as follows. Given a graph G and a non-negative
integer k, the k-extra-edge-connectivity λk(G) of G is the minimum car-
dinality of a set of edges of G, if any, whose deletion disconnects G and
every remaining component contains at least k vertices. More information
and results on the k-extra-edge-connectivity can be found [3, 6]. The re-
stricted edge-connectivity λ′(G), introduced by Esfahanian and Hakimi [7]
for a graph G, corresponds to the 2-extra-edge-connectivity and it is the
minimum cardinality over all restricted edge-cuts S, i.e., those such that
there are no isolated vertices in G− S. A restricted edge-cut S is called a
λ′-cut if |S| = λ′(G). Obviously for any λ′-cut S, the graph G−S consists
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of exactly two components. A connected graph G is called λ′-connected
if λ′(G) exists. Esfahanian and Hakimi [7] showed that each connected
graph G of order n(G) ≥ 4 except a star, is λ′-connected and satisfies
λ′(G) ≤ ξ(G), where ξ(G) denotes the minimum edge-degree of G defined
as ξ(G) = min{d(u) + d(v)− 2 : uv ∈ E(G)}. More information and recent
results on restricted edge-connectivity of graphs can be found in the survey
by Hellwig and Volkmann, [15]. All these concepts of the extraconnectivity
and restricted connectivity were inspired by the definition of conditional
connectivity introduced by Harary [14] who asked for the minimum cardi-
nality of a set of edges of G, if any, whose deletion disconnects G such that
every remaining component satisfies some prescribed property.

Volkmann [17] extended the notion of restricted edge-connectivity to
digraphs. Given a strongly connected digraph D, an arc set S of D is a
restricted arc-cut of D if D−S has a non-trivial strong component D1 such
that D−V (D1) contains an arc. The restricted arc-connectivity λ′(D) is de-
fined as the minimum cardinality over all restricted arc-cuts S. A strongly
connected digraph D is called λ′-connected if λ′(D) exists. A restricted
arc-cut S is called a λ′-cut if |S| = λ′(D). In the same paper, Volkmann
proved that each strong digraph D of order n ≥ 4 and girth g = 2 or
g = 3 except some families of digraphs is λ′-connected and satisfies λ(D) ≤
λ′(D) ≤ ξ(D), where ξ(D) is defined as follows. If Cg = u1u2 . . . ugu1 is
a shortest cycle of D, then ξ(Cg) = min{|ω+(Cg)|, |ω−(Cg)|}, and ξ(D) =
min{ξ(Cg) : Cg is a shortest cycle of D}.

More recently, Wang and Lin [18] have focused in studying the λ′-
optimal digraphs by considering the notion of arc-degree. For any arc
xy ∈ A(D), the arc-degree of xy is defined as

ξ′(xy) = min{|ω+({x, y})|, |ω−({x, y})|, |ω+(x) ∪ ω−(y)|, |ω−(x) ∪ ω+(y)|}.

The minimum arc-degree of D is ξ′(D) = min{ξ′(xy) : xy ∈ A(D)}. Similar
to the definition of λ′-optimal graphs, in [18] a λ′-connected digraph D is
called λ′-optimal if λ′(D) = ξ′(D). In the aforementioned paper [18], Wang
and Lin proved the following useful theorem.

Theorem A [18] Let D be a strongly connected digraph with δ+(D) ≥ 3 or
δ−(D) ≥ 3. Then D is λ′-connected and λ′(D) ≤ ξ′(D).

Starting from this result, Wang and Lin introduced the notion of λ′-
optimality to denote the digraphs D for which λ′(D) = ξ′(D). Then, they
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provided an example of a digraph having a λ′-cut which can not be written
as ω+(F ) for any proper subset F ⊂ V (D). And further in the same paper
they proved that if D has no minimum restricted arc-cut of the form ω+(F )
where F is a proper subset of V (D), then D is λ′-optimal.

In this paper we prove that every λ′-cut S of a λ′-connected digraph
D with cardinality |S| < ξ′(D) is necessarily of the form S = ω+(F ).
Furthermore, both induced subdigraphs D[F ] and D[F ] of D are shown to
have an arc. These structural results allows us to give a sufficient condition
for a s-geodetic digraph to have λ′(D) = ξ′(D), i.e. to be λ′-optimal. A
digraph D with diameter diam(D) is said to be s-geodetic if for any two
(not necessarily different) vertices x, y ∈ V , there exists at most one x→ y
path of length at most s. Obviously, if d(x, y) ≤ s then there exists exactly
one such path. Note that 1 ≤ s ≤ g − 1 ≤ diam(D), where g ≥ 2 is
the girth of D. Our interest is in the maximum integer s for which D is
s-geodetic. If s = diam(D), the digraph D is called strongly geodetic [16].
In this reference it was proved that all strongly geodetic digraphs are either
complete digraphs or cycles.

Sufficient conditions for a s-geodetic digraph with minimum degree δ
to be maximally arc connected have been given in terms of its diameter
diam(D) and the parameter s. In this regard, the following result is con-
tained in [4]:

λ = δ if diam(D) ≤ 2s.

The k-extra-connectivity was studied for s-geodetic digraphs in [2]. In this
work we prove that λ′(D) = ξ′(D) if diam(D) ≤ 2s − 1, and we also
show that D is λ′-optimal if diam(D) = 2s when D satisfies an additional
hypothesis. Furthermore, we see that the h-iterated line digraph Lh(D) of
a s-geodetic digraph is λ′-optimal for certain iteration h.

2 Results

Following the book by Harary (see [11], pg. 199), each vertex of a digraph
is in exactly one strong component and an arc lies in one strong compo-
nent depending on whether or not it is in some cycle. It follows from the
maximality of strong components that the strong components of a digraph
D can be labeled D1, . . . ,Dk such that there is no arc from Dj to Di unless
j < i. Such an ordering is called an acyclic ordering of the strong com-
ponents of D. In order to obtain our main result we require the following
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lemma.

Lemma 1 Let D = (V,A) be a λ′-connected digraph and S a λ′-cut of D
such that |S| < ξ′(D). Then the set V can be partitioned into two subsets,
F , F such that S = ω+(F ) = ω−(F ) and both induced subdigraphs D[F ]
and D[F ] of D contain an arc.

Proof: Let S be a λ′-cut of D and let D1, . . . ,Dk, k ≥ 2, be an acyclic
ordering of the strong components of D−S. Since S is a restricted arc-cut
some strong component Dj of D − S must be non trivial, i.e. |V (Dj)| ≥ 2
and D− V (Dj) contains an arc. Suppose that Dj is the unique non-trivial
strong component of D − S. As D − V (Dj) contains an arc yz, then
k ≥ 3. If j = 1 then by considering F = ∪k

i=2V (Di) and F = V (D1), it
follows that ω+(F ) is a restricted arc-cut of D. Since ω+(F ) ⊆ S and S
is a λ′-cut, then ω+(F ) = S and clearly both induced subdigraphs D[F ]
and D[F ] of D contain an arc. The prof is analogous if j = k, hence,
assume that 2 ≤ j ≤ k − 1. If {y, z} ⊆ ∪j−1

i=1V (Di) then it is enough

to consider F = ∪k
i=jV (Di) and F = ∪j−1

i=1V (Di) and clearly S = ω+(F )

and both induced subdigraphs D[F ] and D[F ] of D contain an arc. The
prof is also analogous if {y, z} ⊆ ∪k

i=j+1V (Di). Thus, we may assume that

y ∈ ∪j−1
i=1V (Di) and z ∈ ∪k

i=j+1V (Di), yielding that ω+(z) ∪ ω−(y) ⊆ S or
is there the previous situation for another arc. Clearly ω+(z) ∪ ω−(y) is a
restricted arc-cut of D because Dj is a strong component of D − (ω+(z) ∪
ω−(y)) and the arc yz belongs to D −Dj . Then ω+(z) ∪ ω−(y) = S and
hence ξ′(D) ≤ |ω+(z) ∪ ω−(y)| = |S| which is a contradiction with the
hypothesis. Therefore D − S has at least two distinct non-trivial strong
components Dt and Dj , meaning that D[∪j−1

i=1V (Di)] contains an arc or
D[∪k

i=j+1V (Di)] contains an arc. In the former case let F = ∪k
i=jV (Di)

and F = ∪j−1
i=1V (Di). Since there is no arc from F to F in D − S, then

ω+(F ) = S and we are done because clearly both D[F ] and D[F ] contain an
arc. Similarly if D[∪k

i=j+1V (Di)] contains an arc, then F = ∪k
i=j+1V (Di)

and F = ∪j
i=1V (Di) satisfy the lemma. �

We will henceforth denote the set of arcs ω+(F ) by [X,X ], where X ⊆ F
and X ⊆ F are, respectively, the sets of out and in vertices of the arcs of
ω+(F ).

The following remark is immediate from the definition of s-geodetic
digraphs.
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If uv is an arc of a s-geodetic digraph D with s ≥ 2, then N+
i (u) ∩

N+
i (v) = ∅ and N+

i+1(u) ∩N+
i (v) = ∅ for all i = 1, . . . , s− 1.

Some properties on the s-geodetic digraphs not being λ′-optimal are
provided in the following results.

Lemma 2 Let D be a λ′-connected s-geodetic digraph and ω+(F ) = [X,X ]
a λ′-cut. If λ′(D) < ξ′(D) then there exists some vertex u ∈ F such that
d(u,X) ≥ s−1 and there exists some vertex u ∈ F such that d(X,u) ≥ s−1.

Proof: When s = 1 the assertion is obvious, hence assume s ≥ 2. Let us
denote by μ = max{d(u,X) : u ∈ F}. We reason by way of contradiction
by supposing μ ≤ s− 2. First assume that μ = 0. This implies that every
vertex of F is an initial of some arc of [X,X ], that is F = X. By Lemma 1,
we can consider an arc uv in D[F ] and since N+(u) ∩N+(v) = ∅ because
s ≥ 2, then

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |[{u, v},X ]|+
∣∣[(N+(u)− v) ∩X,X ]

∣∣
+

∣∣[(N+(v) − u) ∩X,X ]
∣∣

≥ |N+(u)− v|+ |N+(v)− u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

which is a contradiction. Hence, assume that 1 ≤ μ ≤ s− 2, which means
that s ≥ 3.

Case 1: There exists an arc uv in D[F ] such that d(u,X) = d(v,X) = μ.

Let us denote by Au = (N+(u) − v) ∩ N−
μ (X), Av = (N+(v) − u) ∩

N−
μ (X), Bu = N+(u)∩N−

μ−1(X) and Bv = N+(v)∩N−
μ−1(X) and observe

that N+(u) − v = Au ∪ Bu and N+(v) − u = Av ∪ Bv. It is clear by
Remark 1 that N+(u) ∩N+(v) = ∅ because s ≥ 3, and therefore, the sets
Au, Av, Bu, Bv are pairwise disjoint. Let us see that the sets N+

μ (Au)∩X,
N+

μ (Av) ∩X, N+
μ (u) ∩X and N+

μ (v) ∩X are pairwise disjoint. Note that
every vertex x belonging to any of the previous sets is at distance at most
μ + 2 ≤ s from u. Hence, the existence of some vertex x belonging to two
of these sets implies the existence of two paths u → x of length at most s,
which contradicts the hypothesis that D is s-geodetic. The same argument
justifies that |N+

μ (Au) ∩X| ≥ |Au|, |N+
μ (Av) ∩X| ≥ |Av|, |N+

μ (u) ∩X| ≥
|N+(u) ∩N−

μ−1(X)| = |Bu| and |N+
μ (v) ∩X| ≥ |N+(v) ∩N−

μ−1(X)| = |Bv|,
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since D is s-geodetic. Hence,

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |X| ≥ |N+
μ (Au) ∩X|+ |N+

μ (Av) ∩X|

+|N+
μ (u) ∩X|+ |N+

μ (v) ∩X|

≥ |Au|+ |Av|+ |Bu|+ |Bv|

= |N+(u)− v|+ |N+(v)− u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

against the fact that λ′(D) < ξ′(D).

Case 2: There is no arc uv in D[F ] such that d(u,X) = d(v,X) = μ.

Let u ∈ N−
μ (X) and take any v ∈ N+(u) ∩N−

μ−1(X). Let us denote by

A = (N+(v)−u)∩N−
μ (X), B = N+(v)∩N−

μ−1(X) and C = (N+(A)− v)∩
N−

μ−1(X). As s ≥ 3 the girth of D is at least 4, and thus it is clear by
Remark 1 that the sets N+(u), B, C are pairwise disjoint. Since s ≥ 3 and
the induced subdigraph D[N−

μ (X)∩F ] contains no arc, then |C| ≥ |A|. Let

us see that the sets N+
μ−1 (N+(u))∩X, N+

μ−1 (B)∩X and N+
μ−1 (C)∩X are

pairwise disjoint. Note that every vertex x belonging to any of these sets is
at distance at most μ+2 ≤ s from u. Hence, the existence of some vertex x
belonging to two of these sets implies the existence of two paths of length at
most s from u to x, which contradicts the hypothesis that D is s-geodetic.
The same argument justifies that |[N+

μ−1(N
+(u))∩X,X ]| ≥ |N+(u)− v|+

(|N+(v)− u| − |B| − |A|), |[N+
μ−1(B) ∩X,X ]| ≥ |N+

μ−1(B) ∩X| ≥ |B| and

|[N+
μ−1(C) ∩ X,X ]| ≥ |N+

μ−1(C) ∩ X| ≥ |C| ≥ |A|, since D is s-geodetic.
Hence,

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |[N+
μ−1(N

+(u)) ∩X,X ]|+ |[N+
μ−1(B) ∩X,X ]|

+|[N+
μ−1(C) ∩X,X ]|

≥ |N+(u)− v|+ (|N+(v)− u| − |B| − |A|) + |B|+ |A|

= |N+(u)− v|+ |N+(v) − u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

against the fact that λ′(D) < ξ′(D).
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Thus, μ ≥ s−1. The prof of μ ≥ s−1, being μ = max{d(X,u) : u ∈ F}
is analogous. So the result holds. �

Lemma 3 Let D = (V,A) be a λ′-connected s-geodetic digraph and ω+(F ) =
[X,X ] a λ′-cut such that max{d(u,X) : u ∈ F} = s− 1 and max{d(X,u) :
u ∈ F} = s− 1. If λ′(D) < ξ′(D) then the following assertions hold:

(i) The induced subdigraphs D[N−
s−1(X)∩F ] and D[N+

s−1(X)∩F ] contain
some arc.

(ii) There exist u0 ∈ N−
s−1(X)∩F , u0 ∈ N+

s−1(X)∩F such that |[N+
s−1(u0)∩

X,X ]| = 1 and |[X,N−
s−1(u0) ∩X ]| = 1.

Proof: (i) Clearly, the result holds if s = 1, because of Lemma 1. There-
fore, assume that s ≥ 2 and reason by way of contradiction supposing that
D[N−

s−1(X) ∩ F ] has no arc. Then every vertex u ∈ N−
s−1(X) ∩ F satis-

fies that N+(u) ∩ N−
s−1(X) = ∅ which means that d(u,X) = s − 1, and

|N+
s−1(u) ∩X| ≥ d+(u) because D is s-geodetic. Let us consider a vertex

u ∈ N−
s−1(X) ∩ F such that d+(u) ≤ d+(u′) for all u′ ∈ N−

s−1(X) ∩ F .
Take any vertex v ∈ N+(u) and let us consider the subsets of F , A =
(N+(v) − u) ∩ N−

s−1(X), B = N+(v) ∩ N−
s−2(X). It is clear by Remark

1 and due to s ≥ 2 that the sets N+(u) − v, A, B are pairwise disjoint.
Moreover, since 2 ≤ s ≤ g−1 where g is the girth of D, then there is no sym-
metric arc in D, yielding that v 
∈ N+(a) for all a ∈ A. As d+(a) ≥ d+(u)
and D[N−

s−1(X) ∩ F ] has no arc, then |(N+(a) \ N+(u)) ∩ N−
s−2(X)| ≥ 1

for all a ∈ A, hence the set C = (N+ (A) \N+(u))∩N−
s−2(X) satisfies that

|C| ≥ |A|. Let us see that the sets N+
s−2 (N+(u)− v) ∩X, N+

s−2 (B) ∩X,
N+

s−2 (C) ∩X and N+
s−2(v) ∩X are pairwise disjoint. Note that every ver-

tex x belonging to any of these sets is at distance at most s − 2 + 2 = s
from v. Hence, if some vertex x belongs to two of these sets, then two
distinct directed paths of length at most s from v to x exist, which con-
tradicts the hypothesis that D is s-geodetic. The same argument justifies
that |[N+

s−2(N
+(u) − v) ∩ X,X ]| ≥ |N+(u) − v|, |[N+

s−2(B) ∩ X,X ]| ≥
|N+

s−2(B)∩X| ≥ |B|, |[N+
s−2(C)∩X,X ]| ≥ |N+

s−2(C)∩X| ≥ |C| ≥ |A| and

|[N+
s−2(v) ∩X,X ]| ≥ |N+

s−2(v) ∩X| ≥ |N+(v) − u| − |A| − |B|, since D is
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s-geodetic. Hence,

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |[N+
s−2(N

+(u)− v) ∩X,X ]|+ |[N+
s−2(B) ∩X,X ]|

+|[N+
s−2(C) ∩X,X ]|+ |[N+

s−2(v) ∩X,X ]|

≥ |N+(u)− v|+ |B|+ |A|+ |N+(v)− u| − |A| − |B|

= |N+(u)− v|+ |N+(v) − u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

against the fact that λ′(D) < ξ′(D). Thus, D[N−
s−1(X) ∩ F ] must contain

some arc. Analogously it is proved that D[N+
s−1(X)∩F ] contains some arc.

(ii) First assume that s = 1, which means that F = X. Let uv be an
arc of D[F ] and suppose that |[{z},X ]| ≥ 2 for all z ∈ X. Then

λ′(D) = |[X,X ]|
≥ |[{u},X ]|+ |[{v},X ]|+ |[((N+(u) ∪N+(v)) \ {u, v}) ∩X,X ]|
≥ |[{u},X ]|+ |[{v},X ]|+ 2| ((N+(u) ∪N+(v)) \ {u, v}) ∩X|
≥ |[{u},X ]|+ |[{v},X ]|+ |(N+(u)− v) ∩X|

+ |(N+(v) − u) ∩X|
≥ ξ′(uv) ≥ ξ′(D),

which is a contradiction. Hence assume that s ≥ 2. Let u ∈ F ∩(N−
s−1(X)∪

N−
s−2(X)) be such that |N+(u)∩N−

s−1(X)| ≥ 1 is maximum in F∩(N−
s−1(X)∪

N−
s−2(X)). Two cases need to be distinguished:

Case 1. Assume that u ∈ N−
s−1(X)∩F . Take any v ∈ N+(u)∩N−

s−2(X)
and denote by U = N+(u) ∩N−

s−1(X) and W = (N+(v) − u) ∩ N−
s−1(X).

Since 2 ≤ s ≤ g − 1 then D has no symmetric arc, hence W = N+(v) ∩
N−

s−1(X). Observe that |U | ≥ |W | because the way that vertex u has been

selected. Further notice that |U | + |W | ≥ 1 for if not, λ′(D) = |[X,X ]| ≥
|X| ≥ |N+

s−1(u)∩X|+|N+
s−1(v)∩X| ≥ |N+(u)−v|+|N+(v)−u| ≥ ξ′(uv) ≥

ξ′(D) and this is a contradiction.

Suppose that |[N+
s−1(z) ∩ X,X ]| ≥ 2 for all z ∈ U ∪ W . Since D is

s-geodetic, then the sets N+
s−1(u) ∩X, N+

s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X and

N+
s−1(U) ∩X are pairwise disjoint. Furthermore, the inequalities
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|[N+
s−1(u) ∩X,X ]| ≥ |N+

s−1(u) ∩X|

= |N+
s−2(N

+(u)− v) ∩X|+ |N+
s−2(v) ∩X|

≥ |N+(u)− v| − |U |+ |N+(v)− u|

−|N+(v) ∩N−
s−2(X)| − |W |,

|[N+
s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X,X ]| ≥ |N+

s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X|

≥ |N+(v) ∩N−
s−2(X)|

and
|[N+

s−1(U) ∩X,X ]| ≥ 2|U | ≥ |U |+ |W |
hold. Hence,

λ′(D) ≥ |X|

≥ |[N+
s−1(u) ∩X,X ]|+ |[N+

s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X,X ]|

+|[N+
s−1(U) ∩X,X ]|

≥ |N+(u)− v| − |U |+ |N+(v)− u| − |N+(v) ∩N−
s−2(X)| − |W |

+|N+(v) ∩N−
s−2(X)| + |U |+ |W |

= |N+(u)− v|+ |N+(v) − u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

a contradiction. Then there must exists a vertex u0 ∈ U ∪ W such that
|[N+

s−1(u0) ∩X,X ]| = 1.
Case 2. Assume that u ∈ N−

s−2(X)∩F . Note that |N+(u)∩N−
s−1(X)| ≥

|N+(v) ∩N−
s−1(X)| + 1 for all v ∈ N−

s−1(X) ∩ F may be assumed because
if for some v ∈ N−

s−1(X) ∩ F , |N+(u) ∩ N−
s−1(X)| = |N+(v) ∩ N−

s−1(X)|
the result follows from Case 1. Take any v ∈ N+(u)∩N−

s−1(X) and denote
by U = (N+(u) − v) ∩ N−

s−1(X) and W = N+(v) ∩N−
s−1(X) and observe

that u 
∈ W because u ∈ N−
s−2(X) ∩F . Observe that |U | = |(N+(u)− v)∩

N−
s−1(X)| = |N+(u) ∩ N−

s−1(X)| − 1 ≥ |W | because the way that vertex
u has been selected. Further notice that |U | + |W | ≥ 1 because otherwise
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|N+(u)∩N−
s−1(X)| = 1 and |N+(v)∩N−

s−1(X)| = 0 for all v ∈ N−
s−1(X)∩F

yielding that the subdigraph D[N−
s−1(X)∩F ] has no arc, which contradicts

item (i).

As in the above case suppose that |[N+
s−1(z) ∩ X,X ]| ≥ 2 for all z ∈

U ∪W . The sets N+
s−2(u)∩X, N+

s−2

(
N+(u) ∩N−

s−2(X)
)
∩X, N+

s−1(U)∩X
and N+

s−1(v)∩X are pairwise disjoint, since D is s-geodetic. Furthermore,
the inequalities

|[N+
s−2(u)∩X,X ]| ≥ |N+

s−2(u)∩X| ≥ |N+(u)−v|−|U |−|N+(u)∩N−
s−2(X)|,

|[N+
s−2

(
N+(u) ∩N−

s−2(X)
)
∩X,X ]| ≥ |N+

s−2

(
N+(u) ∩N−

s−2(X)
)
∩X|

≥ |N+(u) ∩N−
s−2(X)|,

|[N+
s−1(U) ∩X,X ]| ≥ 2|U | ≥ |U |+ |W |

and

|[N+
s−1(v) ∩X,X ]| ≥ |N+

s−1(v) ∩X| ≥ |N+(v)− u| − |W |

hold. Hence,

λ′(D) ≥ |X| ≥ |[N+
s−2(u) ∩X,X ]|

+|[N+
s−2

(
N+(u) ∩N−

s−2(X)
)
∩X,X ]|

+|[N+
s−1(U) ∩X,X ]|+ |[N+

s−1(v) ∩X,X ]|

≥ |N+(u)− v| − |U | − |N+(u) ∩N−
s−2(X)|

+|N+(u) ∩N−
s−2(X)|+ |U |+ |W |+ |N+(v)− u| − |W |

= |N+(u)− v|+ |N+(v)− u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

again a contradiction. Then there must exists a vertex u0 ∈ U ∪W such
that |[N+

s−1(u0) ∩X,X ]| = 1.

The prof of the existence of a vertex u0 ∈ F such that |[X,N−
s−1(u) ∩

X]| = 1 is analogous. �

As a consequence of all the above previous result, a sufficient condition
for a s-geodetic digraph to be λ′-optimal is given in the following theorem.
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Theorem 4 Let D be a strongly connected s-geodetic digraph with δ+(D) ≥
3 or δ−(D) ≥ 3. Then D is λ′-optimal if the diameter is diam(D) ≤ 2s−1.

Proof: From Theorem A it follows that D is λ′-connected and λ′(D) ≤
ξ′(D). Suppose that D is non λ′-optimal and let S be a λ′-cut. Then from
Lemma 1 it follows that S = ω+(F ) = [X,X ]. Moreover, from Lemma
2 there is a vertex u0 ∈ F such that d(u0,X) ≥ s − 1 and there is a
vertex u0 ∈ F such that d(X,u0) ≥ s−1. Hence diam(D) ≥ d(u0,X)+1+
d(X,u0) ≥ 2s−1, which is a contradiction unless diam(D) = 2s−1. In this
case, all the former inequalities become equalities, that is, max{d(u,X) :
u ∈ F} = max{d(X,u) : u ∈ F} = s − 1. Then by Lemma 3 we may
assume that |[N+

s−1(u0) ∩X,X ]| = 1 and |[X,N−
s−1(u0) ∩X ]| = 1. Let us

denote by [N+
s−1(u0) ∩X,X ] = [x0, x0], for some x0 ∈ X, x0 ∈ X; and let

us denote by [X,N−
s−1(u0) ∩X ] = [y0, y0], for some y0 ∈ X, y0 ∈ X .

From d(u0, u0) = 2s − 1, it follows that x0 = y0 and x0 = y0. Notice
also that |N+(u0)∩N−

s−1(X)| ≥ d+(u0)− 1 because |N+(u0)∩N−
s−2(X)| ≤

|N+
s−1(u0) ∩X| = 1; analogously |N−(u0) ∩N+

s−1(X)| ≥ d−(u0)− 1. First,
suppose δ+(D) ≥ 3, then there exists a vertex v ∈ N+(u0) ∩ N−

s−1(X).
Observe that d(v, u0) = 2s − 1, yielding that |[N+

s−1(v) ∩X,x0]| ≥ 1, that
is, x0 ∈ N+

s−1(v) ∩X. Therefore the shortest u0 → x0 path together with
the arc u0v and the shortest v → x0 path are two distinct u0 → x0 directed
paths of length at most s, which is a contradiction. A similar contradiction
is obtained supposing δ−(D) ≥ 3. Hence, D is λ′-optimal. �

Our next goal is to study sufficient conditions for λ′-optimality in s-
geodetic digraphs of diameter diam(D) = 2s.

Theorem 5 Let D be a strongly connected s-geodetic digraph with δ+(D) ≥
3 or δ−(D) ≥ 3 and diameter diam(D) = 2s. Then D is λ′-optimal if
|N+

s (u) ∩N−
s (v)| ≥ 3 for all pair u, v of vertices at distance d(u, v) = 2s.

Proof: From Theorem A it follows that D is λ′-connected and λ′(D) ≤
ξ′(D). Let S be a λ′-cut of D and suppose that D is non λ′-optimal, that is,
|S| < ξ′(D). A contradiction will be obtained by proving the existence of
two vertices u, v ∈ V (D) such that d(u, v) = 2s and |N+

s (u) ∩N−
s (v)| < 3.

From Lemma 1 it follows that S = ω+(F ) = [X,X ]. Let us denote by
μ = max{d(u,X) : u ∈ F} and μ = max{d(X,u) : u ∈ F}. From Lemma 2
it follows that μ ≥ s−1 and μ ≥ s−1. If μ+μ ≥ 2s then it is enough to take
two vertices u (at distance μ to X) and u (at distance μ from X), yielding

74



On the λ′-optimality
of s-geodetic digraphs C. Balbuena and P. Garćıa-Vázquez

that 2s = diam(D) ≥ d(u, u) ≥ d(u,X)+ 1+ d(X,u) = μ + μ+ 1 ≥ 2s + 1,
which is a contradiction, hence, μ = s− 1 or μ = s− 1.

First assume that μ = s − 1 and μ = s. By Lemma 3, there exists
a vertex u0 ∈ N−

s−1(X) ∩ F such that [N+
s−1(u0) ∩ X,X ] = {xx}. Given

any vertex u ∈ F at distance μ = s from X, we have 2s = diam(D) ≥
d(u0, u) ≥ d(u0,X) + 1 + d(X,u) = s − 1 + 1 + s = 2s, following that
d(u0, u) = 2s. Notice that N+

s (u0) ∩ F = {x} whereas F ∩ N−
s (u) = ∅,

since d(X,u) = s. Hence N+
s (u) ∩ N−

s (u) = {x} which contradicts the
hypothesis that |N+

s (u)∩N−
s (v)| ≥ 3 for all pair u, v of vertices at distance

d(u, v) = 2s.
Second assume that μ = s− 1 and μ = s− 1. By Lemma 3, there exists

a vertex u0 ∈ N−
s−1(X) ∩F such that [N+

s−1(u0)∩X,X ] = {xx}, and there

is a vertex u0 ∈ N+
s−1(X) ∩ F such that [X,N−

s−1(u0) ∩X] = {yy}. Notice

that N+
s (u0) ∩ F = {x} and N−

s (u0) ∩ F = {y}. Then

N+
s (u0) ∩N−

s (u0) ⊆
(
N+

s (u0) ∩ F
)
∪
(
N−

s (u0) ∩ F
)

= {x, y}

and therefore, |N+
s (u0) ∩N−

s (u0)| < 3, again a contradiction.
Hence, D is λ′-optimal and the result holds. �

We recall here that in the line digraph L(D) of a digraph D, each
vertex represents an arc of D. Thus, V (L(D)) = {uv : (u, v) ∈ A(D)}; and
a vertex uv is adjacent to a vertex xz if and only if v = x, that is, when the
arc (u, v) is adjacent to the arc (x, z) in D. For any h ≥ 1 the h-iterated
line digraph, Lh(D), is defined recursively by Lh(D) = L(Lh−1(D)). From
the definition it follows that the minimum degrees δ(L(D)) = δ(D) = δ.
Moreover, the diameter of any strongly connected digraph other than a
directed cycle [1] satisfies

diam(Lh(D)) = diam(D) + h. (1)

Moreover, if D is s-geodetic then Lh(D) is s′-geodetic with s′ = min{s +
h, g − 1}, where g denotes the girth of D [5].

Theorem 6 Let D be a strongly connected s-geodetic digraph with δ+(D) ≥
3 or δ−(D) ≥ 3 and girth g ≥ s + 1. Then Lg−1−s(D) is λ′-optimal if
diam(D) ≤ g + s− 2.

Proof: Observe that the iterated line digraph Lg−1−s(D) is s′-geodetic
with s′ = s + g − 1− s = g − 1. From (1) and the hypothesis diam(D) ≤
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g + s− 2 it follows that

diam(Lg−1−s(D)) = diam(D) + g − 1− s ≤ 2(g − 1)− 1 = 2s′ − 1.

Hence the result follows directly from Theorem 4. �
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