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Abstract. In this paper, we derive, in the framework of the flux-free method, strict
bounds for the energy norm of the error associated to a finite element computation. In
that framework, and when using linear elements, the problems posed on the subdomains
are solvable only when modified by the introduction of a projection operator in the residual.
We introduce a new such operator, and show that, in the context of a dual formulation,
it further allows to construct statically admissible fields over each subdomain. When
combined, these local stress fields provide the desired strict bound.

1 Introduction

In the past few decades, research and industry in the field of mechanics have relied
increasingly on computational tools. The models and the resolution methods have grown
increasingly complex and their careful assessment has become unavoidable. This task
can be separated in two steps, which are grouped under the general denomination of
Verification & Validation [1]. The validation step refers to the process of comparing
the output of a mathematical/mechanical model to experimental results and assessing
its adequacy. The verification step, which usually precedes the validation, deals with
the accuracy of the numerical treatment of the mathematical/mechanical model. It is
commonly referred to as the error estimation step and sets the general framework for this
paper.

Historically, error estimation initially relied on a priori, or explicit, methods, whose
goal is to assess the accuracy of a computational output before actually running the
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computation, using only data such as the geometry, discretization and mechanical pa-
rameters. However, the bounds hence provided usually depend on constants that cannot
be evaluated explicitely, therefore giving trends rather than estimations. Later works
focused rather on a posteriori, or implicit, error estimation methods, where the output
of the computation is also used to assess its accuracy. Three main groups of methods
(see [2] for a more detailed review) arose: one based on the so-called constitutive relation
error, by Ladevève and co-workers (see for example [3]); another based on the comparison
of the discontinuous stress field computed by the FE method and a regularized version,
following the leading work of Zienkiewicz and Zhu [4]; and, finally, a large family of
methods, generically called equilibrated residual, or subdomain-based, methods, where
the global residual problem of estimating the error in the original computation is replaced
by a series of smaller local problems with appropriate boundary conditions (see for ex-
ample [5, 6, 7, 8], and comparisons between approaches in [9, 10]). In this paper, we will
concentrate on the so-called flux-free techniques [5, 11, 12, 13, 14, 10], that fall within
this third group of methods, and we will follow more particularly the approach described
in [15, 10].

In most of these subdomain-based methods, although the local problems are posed on
smaller geometrical spaces, the functional spaces involved are still infinite-dimensional.
The exact error is therefore replaced by the solution of a refined problem, and the bounds
are given with respect to this solution. Hence the bounds are meaningful only as long as
the solution of the refined problem is close enough to the exact error, and the methods
are referred to as asymptotic. However, it is much more interesting, from an engineering
point of view, to be able to provide strict bounds, that is to say with respect to the exact
error. A dual formulation based on the principle of minimizing the complementary energy
was proposed to attain that goal in the context of hybrid-flux residual estimators [16, 17].
Its extension to the flux-free methodology with linear elements, which is very common in
practice, is not straightforward because issues of solvability of the local problems arise.

The objective of this paper is therefore to present the derivation of strict bounds for
the error in an elasticity problem using a subdomain-based flux-free method. A particular
emphasis will be put on the introduction of a new projection operator, which ensures, when
using linear finite elements, the solvability of the local problems, as well as the construction
of the statically admissible stress fields required to derive the strict bounds for the error.
After the description of the model problem in Section 2, the flux-free methodology for
the derivation of asymptotic bounds is recalled in Section 3. This section also introduces
the new projection operator, which is compared to one that was previously derived [10].
Section 4 then concentrates on the derivation of strict bounds of the error, in the context
of the flux-free method, and using the previously derived projection operator. Finally,
some preliminary results in 2D-elasticity are presented in Section 5.
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Figure 1: Model of the problem on the domain Ω, with internal loads f , boundary forces g on ΓN and
blocked on ΓD (left); and corresponding finite element triangulation TH with two stars in darker tones,
ΩiH and ΩjH , corresponding to nodes xiH and xjH , respectively (right).

2 Model problem and main notations

As indicated in the introduction, we do not consider a ”real-life” system, and start
directly from a mathematical/mechanical model of a continuous medium. In this section,
the main notations are introduced, as well as the strong and weak formulations of the
problem.

2.1 Strong formulation of the problem

We consider an elastic polygonal domain Ω ⊂ Rnd. The boundary, Γ = ∂Ω, is divided
into two complementary disjoint parts ΓD and ΓN, where essential and Neumann boundary
conditions are imposed, respectively. Furthermore, the boundary ΓD is assumed to be a
non-empty set. The boundary value problem to be solved reads: find u : Ω→ Rnd, such
that 




Divxσ(u) + f = 0 in Ω

σ(u) · n = g on ΓN

u = uD on ΓD

, (1)

where the internal force per unit volume f ∈ [H−1(Ω)]nd , the Neumann boundary tractions
g ∈ [H−1/2(ΓN)]nd, and the imposed Dirichlet boundary displacement, uD ∈ [H1/2(ΓD)]nd

are given, Hα(A) are the standard α-Sobolev spaces over A, and n is the outgoing normal
vector of Ω.

Introducing u ∈ [H1(Ω)]nd , such that u|ΓD = uD, where u|ΓD is the trace of u on ΓD,

f = f + Divxσ(uD), and g = g − σ(uD) · n, the problem (1) can be replaced by: find
u : Ω→ Rnd, such that 




Divxσ(u) + f = 0 in Ω

σ(u) · n = g on ΓN

u = 0 on ΓD

, (2)
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thereby avoiding the notational complexity introduced by the inhomogeneous Dirichlet
boundary conditions.

2.2 Weak formulation of the problem

We define V = {v ∈ [H1(Ω)]nd , v|ΓD = 0}, the space of admissible fields, the second
order strain tensor ε(v), which is defined as the symmetric part of the gradient tensor
∇v, so that ε(v) = 1

2
(∇v + (∇v)T ), and the stress tensor σ(w), which is related to the

strain tensor through a linear constitutive relation of the form, σ(w) = C : ε(w), where
C is the fourth order, symmetric, positive-definite, elasticity tensor (Cijkl = Cklij = Cjikl,
1 ≤ i, j, k, l ≤ nd, and Cijkleijekl ≥ αeijeij, α > 0, for any second-order real symmetric
tensor e).

The weak formulation of the problem (2) states: find u ∈ V , such that

aΩ(u, v) = l(v), ∀v ∈ V , (3)

where aΩ : [H1(Ω)]nd × [H1(Ω)]nd → R is the symmetric positive definite bilinear form
given by

aΩ(w, v) =

∫

Ω

σ(w) : ε(v) dΩ,

and ` : [H1(Ω)]nd → R is the linear forcing functional, defined by

`(v) =

∫

Ω

f · v dΩ +

∫

ΓN

g · v|ΓN dΓ.

For u ∈ [H−1(Ω)]nd and v ∈ [H1(Ω)]nd, we introduce the notation 〈u, v〉Ω =
∫

Ω
u · v dΩ,

and for u ∈ [H−1/2(ΓN)]nd and v ∈ [H1/2(ΓN)]nd , we introduce the notation 〈u, v〉ΓN =∫
ΓN u · v dΓ. We observe that `(v) = 〈f , v〉Ω + 〈g, v|ΓN〉ΓN. Note that, in general, we

will drop the indication of the trace, and write simply 〈g, v〉ΓN for the latter prod-
uct. For a given operator Π : [H1(Ω)]nd → [H1(Ω)]nd, we then define the adjoint
operators ΠΩ∗,ΠΓN∗ : [H−1Ω)]nd → [H−1(Ω)]nd such that 〈u,Πv〉Ω = 〈ΠΩ∗u, v〉Ω, and
〈u|ΓN,Πv|ΓN〉ΓN = 〈ΠΓN∗u, v〉Ω. Finally, throughout the paper, the energy norm induced
by the bilinear form aΩ(·, ·) will be denoted ‖ · ‖Ω, that is, ‖v‖2

Ω = aΩ(v, v).
The Lax-Milgram theorem ensures that Eq. (3) has a unique solution in V , that we

will denote uex. However this solution is usually not available analytically, and we will
use the FE method to compute an approximation.

2.3 Finite Element solution of the problem

We therefore introduce a triangulation, TH , of Ω, whose elements and vertices are de-
noted, respectively, {T iH}1≤i≤Ne and {xiH}1≤i≤Nv , with Ne and Nv the number of elements
and vertices, respectively. We assume that the triangulation is such that ΓD and ΓN

consist of entire faces (edges in 2D) of TH ∈ TH .
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The corresponding finite-element approximation space is then taken to be VH = {v ∈
V , v|TH ∈ P1(TH), ∀TH ∈ TH}, where P1(TH) is the space of linear polynomials over TH .

These polynomials, denoted {Φi
H(x)}1≤i≤Nv , are such that Φi

H(xjH) = δij, and supp(Φi
H) =

Ωi
H . They form a partition of unity in the sense that

∑Nv
i=1 Φi

H(x) = 1, ∀x ∈ Ω. Note
that VH might be chosen to include polynomials of higher order, in relation in particular
with p-finite element methods. We restrict ourselves here to this case, because it is a very
popular one, and, as will be seen in Sec. 3.3, it poses specific problems.

The approximation of u ∈ VH associated to TH , denoted uH , is then defined as the
unique solution of

aΩ(uH , v) = `(v), ∀v ∈ VH .

2.4 The error estimation problem

We are interested in computing the error between the exact solution uex of Eq. (3) and
uH , which we will denote z = uex − uH ∈ V . By linearity, it is the solution of

aΩ(z, v) = `(v)− aΩ(uH , v) =: R(v), ∀v ∈ V , (4)

where the linear continuous functional R : [H1(Ω)]nd → R is called the residue, and is
such that R(v) = 0, ∀v ∈ VH . The resolution of Eq. (4) is of the same complexity as
that of Eq. (3), because z and v are still in infinite-dimensional spaces. Therefore, we do
not try to solve the problem exactly for z, but rather look for bounds of ‖uex − uH‖2

Ω =
‖z‖2

Ω = aΩ(z, z) = R(z).

2.5 Estimation of the error in a quantity of interest

However, in many engineering problems, the goal is rather to compute bounds on
certain quantities of interest rather on the field of displacement ‖uex−uH‖. We therefore
introduce that quantity of interest s = `O as the output of a linear functional `O :
[H1(Ω)]nd → R, defined by

`O(v) =

∫

Ω

fO · v dΩ +

∫

ΓN

gO · v dΓ− a(uO, v),

where fO ∈ [H−1(Ω)]nd , gO ∈ [H− 1

2 (ΓN)]nd , and uO ∈ [H−1(Ω)]nd are three given func-
tions. Note that this form may easily incorporate, as particular cases, displacements or
tractions integrated over arbitrary subdomains or boundary segments.

Thus, our goal is to compute bounds for `O(z), from which we can easily evaluate the
bounds for sex = `O(uex) = sH + `O(z) as

sH + slow
H ≤ sex ≤ sH + sup

H ,

where sH = `O(uH), and sup
H and slow

H are, respectively, upper and lower bounds for `O(z).
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Different methods [2, 18] exist to compute sup
H and slow

H , usually based on the compu-
tation of the bounds of the energy norm of the solution of a dual problem with the same
structure as Eq. (4). We will therefore concentrate in this paper on the bounding of the
energy norm of z, solution of Eq. (4), and assume that it allows us to bound sex. The
applications in Section 5 will however present bounds on quantities of interest.

Finally, it is customary to introduce the estimated value sest
H of sex as the mean value

between the two bounds

sest
H = sH +

sup
H + slow

H

2
,

and the relative bound gap as

ρH = 2
sup
H − slow

H

sest
H

.

When no exact solution is available, that is to say for all interesting situations, ρH can
be used to judge the accuracy of the bounds.

3 Asymptotic error estimation

As described above, Eq. (4) cannot be solved exactly because it is posed in an infinite-
dimensional space. The idea behind asymptotic error estimation methods is to replace the
exact problem (4) by a discretized version using a triangulation, Th, much finer than TH ,
and a corresponding finite element approximation space of functions Vh = {v ∈ V , v|Th ∈
P1(Th), ∀Th ∈ Th}. The refined approximation to zh of z, is given by

a(zh, v) = `(v), ∀v ∈ Vh.
Even when h � H, and zh can be considered a good approximation of z, it should be
stressed that all bounds that are derived in this section really make reference to ‖zh‖Ω

and not ‖z‖Ω.
The next two sections introduce the basis of the subdomain-based flux-free approach,

as described in particular in [15, 10]. The problem of the solvability of the local prob-
lems, already discussed in these references, is then completed by the description of a new
projection operator.

3.1 Definition of the subdomains

The subdomains where the local problems will be defined are the stars (or patches)

Ωi
H =

Ne⋃

j=1

δ
(
xiH ∈ T jH

)
T jH , 1 ≤ i ≤ Nv,

that are the unions of elements in contact with one vertex. This definition leads us to the
introduction of a new functional space for each star,

VHΩiH = VH ∩ [H1(Ωi
H)]nd,
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which formally contains continuous functions defined over Ωi
H , and that we extend to

Ω by setting the undefined values to zero. The functions in each of these spaces are
therefore continous over Ωi

H but discontinous over Ω. We introduce, in a similar manner,
Vbrok = ⊕Nei=1 (V ∩ [H1(T iH)]nd), which contains functions that are continuous in each
element of the triangulation TH , but generally discontinous across the inter-element faces.
We additionally notice that VHΩiH ⊂ Vbrok, 1 ≤ i ≤ Nv.

3.2 Definition of the local problems

The subdomain-based flux-free error estimation method relies on the properties of the
Finite Element interpolation functions {Φi

H(x)}1≤i≤Nv , which form a partition of unity
over Ω. One can therefore write Eq. (4) as

a(z, v) = R(v) = R

(
Nv∑

i=1

Φi
Hv

)
=

Nv∑

i=1

R(Φi
Hv), ∀v ∈ V.

We consider the local error estimation problems consisting in finding, for 1 ≤ i ≤ Nv,
the local zi ∈ VHΩiH solution of

ai(z
i, v) = R(Φi

Hv), ∀v ∈ VHΩiH , 1 ≤ i ≤ Nv, (5)

where the linear continuous functionals ai : [H1(Ωi
H)]nd× [H1(Ωi

H)]nd → R are the restric-
tions on Ωi

H of a, such that

ai(w, v) =

∫

ΩiH

σ(w) : ε(v) dΩ, 1 ≤ i ≤ Nv.

It can be seen that the support of Φi
Hv is the star Ωi

H so that each Eq. (5) is indeed local.
Once these Nv local problems have been solved, the error estimator ẑ defined by

ẑ =

Nv∑

i=1

zi (6)

can be proved to verify ‖z‖Ω ≤ ‖ẑ‖Ω. It should be noted that ẑ ∈ Vbrok, so that it is
only continuous by parts, on each of the elements, and not continuous over Ω.

3.3 Solvability of the local problems

In order for the local problems (5) to be solvable, we must verify that

R(Φi
Hv) = 0, ∀v ∈ ker ai. (7)

Physically, ker ai groups the rigid body displacement fields over the star Ωi
H . They are at

most linear over the star. When considering high-order polynomials for the resolution of
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Figure 2: Two conforming finite element meshes with different refinement (left) with one star indicated
(left, darker shade); and test function interpolated on the coarse (center) and refined (right) meshes.

the original problem, that is when VH contains the second-order polynomials (by parts),
R(Φi

Hv) is then null, when v is one of these rigid body fields. However, when using first
order polynomials at most over the elements, Φi

Hv is not necessarily included in VH , so
that Eq. (7) is not necessarily verified.

In order to ensure the solvability of the local problems, the introduction of a projection
operator Π : V → VH was proposed in [10], such that

R (Πv) =

Nv∑

i=1

R (ΦiΠv) = 0, ∀v ∈ V .

It should be remembered that such a projection operator verifies, by definition, Πv = v,
∀v ∈ VH . If we rewrite then Eq. (5) as

ai(z
i, v) = R

(
Φi
H(v − Πv)

)
, ∀v ∈ VHΩiH , 1 ≤ i ≤ Nv, (8)

we see that ẑ, defined in Eq. (6), still provides the desired bound, while ensuring the
solvability of each local problem, even when considering linear interpolating polynomials
for VH . The next two sections present two such projection operators. For each of them,
we will also derive the adjoint operators ΠΩ∗ and ΠΓN∗, in the sense defined in Sec. 2.

To observe and compare the properties of these two projection operators, a simple
example is provided. In Fig. 2, a pair of simple coarse and refined meshes in R2 is
presented, along with the interpolation of a test function on each of the meshes. This
function can be imagined, for example, to be one component of a displacement field or
volume force field. Fig. 3 and Fig. 4 then depict, respectively, the action of the projection
operators on a displacement field, and that of their adjoint on a volume force field.

3.3.1 Pointwise projection operator

The pointwise projection operator Π0 : V → VH is defined by

Π0v(x) =
Nv∑

i=1

Φi
H(x)v(xiH).
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Figure 3: Test function v (left) and quantity (Id−Π)v for the pointwise projection operator Π0 (center)
and the global linear operator ΠΩ (right).

It can be easily seen that Π0v(xiH) = v(xiH), ∀1 ≤ i ≤ Nv, so that Π0v is the linear
interpolant of v at the vertices of the finite element mesh. The adjoint operators ΠΩ∗

0 and
ΠΓN∗

0 are defined by

ΠΩ∗
0 f =

Nv∑

i=1

δ(x− xi)
∫

Ω

Φi
Hf dΩ,

and

ΠΓN∗
0 g =

Nv∑

i=1

δ(x− xi)
∫

ΓN

Φi
Hg dΩ.

Indeed, with these definitions, it can be checked that 〈f ,Π0v〉Ω = 〈ΠΩ∗
0 f , v〉Ω, and

〈g,Π0v〉ΓN = 〈ΠΓN∗
0 g, v〉Ω. When considering the strong formulation in section 4.1, these

definitions for the adjoint operators will lead to the introduction of concentrated forces,
which are complex to deal with in a numerical setting. We therefore introduce another
projection operator, with smoother adjoint.

3.3.2 Global linear projection operator

The global linear projection operator ΠΩ : V → VH is defined by

ΠΩv(x) =

Nv∑

i=1

Ψi
H(x)

∫

Ω

Φi
Hv dΩ =

Nv∑

i=1

Φi
H(x)

∫

Ω

Ψi
Hv dΩ,

where the {Ψi
H}1≤i≤Nv are defined by

Ψi
H =

Nv∑

j=1

[M−1]ij Φj
H(x), 1 ≤ i ≤ Nv,

with [M−1] the inverse of the mass matrix [M ] defined by

[M ]ij =

∫

Ω

Φi
HΦj

H dΩ, 1 ≤ i, j ≤ Nv.
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Figure 4: Dual test function weighted on the star Φi
Hf (left), and quantity (Id−ΠΩ∗)(ΦiHf) corresponding

to the pointwise projection operator Π0 (center) and the global linear operator ΠΩ (right).

The functions {Ψi
H}1≤i≤Nv are linear over each element TH , like the {Φi

H}1≤i≤Nv , however
their support is not limited to one star, but extends in general over the entire domain Ω.
This is related to the fact that, although [M ] is local, in the sense that it is mainly filled
with null entries, its inverse [M−1] is not. It should be noted that the introduction of this
global operator might be thought to go against the general philosophy of localization in
subdomain-based computations. However, we will see in Section 4 that this is not the
case as the operator ΠΩ will always go accompanied by a localizing function.

An interesting property of this operator is that it minimizes the L2-norm in the sense
that, for any w : V → VH , ‖Πv − v‖2

L2 ≤ ‖w − v‖2
L2 .

Finally, we observe that ΠΩ is self-adjoint in the sense that, for all f ∈ [H−1(Ω)]nd and
v ∈ [H1(Ω)]nd,

〈f ,ΠΩv〉Ω = 〈ΠΩf , v〉Ω = 〈ΠΩ∗
Ω f , v〉Ω,

and we have that

ΠΓN∗
Ω g(x) =

Nv∑

i=1

Ψi
H(x)

∫

ΓN

Φi
Hv dΩ =

Nv∑

i=1

Φi
H(x)

∫

ΓN

Ψi
Hv dΩ,

as it is easy to check that, for all g ∈ [H−1/2(Ω)]nd and v ∈ [H1(Ω)]nd , 〈ΠΓN∗
Ω g, v〉Ω =

〈g,ΠΩv〉ΓN.

4 Strict error estimation

A dual formulation based on the principle of minimizing the complementary energy is
used to obtain computable approximations of the solutions of a series of local problems
that, once combined, provide an upper bound of the exact error. This method extends
previous works in the context of hybrid-flux residual estimators [16, 17] to the flux-free
methodology.
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4.1 Strong form of the residual global problem

We first explicitate the weak formulation of the global problem, and derive the corre-
sponding strong formulation. Expanding Eq. (4), it is recalled that the weak formulation
of the residual global problem states: find u ∈ V such that

∫

Ω

σ(z) : ε(v) dΩ =

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓ−
∫

Ω

σ(uH) : ε(v) dΩ, ∀v ∈ V ,

where uH = uH + uD. Integrating by parts, and taking into account the discontinuity
of the stress field at the interfaces between the elements, we get the strong form of the
residual global problem:





Divxσ(z) + (f + Divxσ(uH)) = 0 in Ω

σ(z) ·n− (g − σ(uH) · n) = 0 on ΓN

Jσ(z) · nK + Jσ(uH) · nK = 0 on Γint

z = 0 on ΓD

.

4.2 Dual formulation of the global problem

The dual formulation consists in introducing a new variable q, in the space of second-
order tensors with coordinates in L2(Ω), representing a stress field that verifies





Divxq = −fH in Ω

q · n = gH on ΓN

Jq · nK = −jH on Γint

,

and is said to be statically admissible. We posed fH = f + Divxσ(uH), gH = g−σ(uH),
jH = Jσ(uH) ·nK and we additionally define the complementary energy as

πc(q) =
1

2

∫

Ω

q : C−1 : q dΩ.

It can be verified, using Cauchy-Schwartz’s inequality, that any such field provides an
upper bound for the energy norm of the error as

2πc(q) ≥ ‖z‖2
Ω.

and that the equality is obtained for q = σ(z).
In [17, Appendix A], a constructive proof is given of the existence of such a statically

admissible stress field on each element of the finite element mesh, provided that the loads
(volume and surface) be polynomial by parts. We extend this now to the context of the
flux-free methodology.
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4.3 Strong form of the local problems

We propose to apply the same methodology as above, but this time on each of the local
problems (8) defined over the stars. We therefore turn to the expansion of the weak form
in Eq. (8), which reads: find zi ∈ VHΩiH such that

∫

ΩiH

σ(zi) : ε(v) dΩ =

∫

ΩiH

f · Φi
H(Id− Π)v dΩ +

∫

ΓN∩∂ΩiH

g · Φi
H(Id− Π)v dΓ

−
∫

ΩiH

σ(uH) : ε(Φi
H(Id− Π)v) dΩ, ∀v ∈ VHΩiH ,

where Π may represent either Π0 or ΠΩ.
The corresponding strong form, using the adjoints ΠΩ∗, ΠΓN∗, and ΠΓint∗ (defined sim-

ilarly to ΠΓN∗, only replacing the boundary) of Π, and the previously defined loads fH,
gH and jH , is





Divxσ(zi) = (ΠΩ∗ − Id)(Φi
HfH)− ΠΓN∗(Φi

HgH) + ΠΓint∗(Φi
HjH) in Ωi

H

σ(zi) · n = Φi
HgH on ΓN ∩ ∂Ωi

H

Jσ(zi) · nK = −Φi
HjH on Γint

zi = 0 on ΓD ∩ ∂Ωi
H

.

4.4 Dual formulation of the local problems

For the dual formulation of the local problems, we therefore seek, on each star, a
statically admissible field qi verifying





Divxq
i = (ΠΩ∗ − Id)(Φi

HfH)− ΠΓN∗(Φi
HgH) + ΠΓint∗(Φi

HjH) in Ωi
H

qi · n = Φi
HgH on ΓN ∩ ∂Ωi

H

Jqi · nK = −Φi
HjH on Γint

.

If we particularize the projection operator for the two cases that were studied in the
previous sections, we see that Π0 leads to the introduction of punctual forces in the
definition of the local problems above, while ΠΩ leads to the introduction of linear loads
distributed in the volume Ωi

H . The results that are described in [17] can therefore be
readily extended to the flux-free formulation when using the projection operator ΠΩ. In
that case, a statically admissible qi can be computed on each star, which results in global
statically admissible stress field by summation. We then have the strict upper bound for
the energy norm of the error:

2πc(q̂) = 2πc

(
Nv∑

i=1

qi

)
≥ ‖z‖2

Ω. (9)
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Figure 5: Geometry of the 2D square plate with rectangular holes (left), and initial mesh of the one-
fourth part that is considered for modelling (right). Γ0 defines the part of the boundary on which
the displacement is integrated to yield the output quantity of interest. These drawings were extracted
from [19].

5 Application: 2D Square plate with rectangular holes

A square thin plate with rectangular holes is considered. Normal tractions are applied
on the left and right sides of the plate. Since the problem is symmetric, only one fourth
of the plate is considered, as shown in Fig. 5. This problem was already studied in [19,
20, 15, 17] using tri3 elements and in [10] using quad4 elements, each time coupled with
adaptivity schemes. Here we consider a series of uniformly refined meshes by starting at
an value of the mesh diameter hini ≈ 0.14, and successively adding a node at the center
of each segment, replacing each triangle by four smaller ones.

The output of interest that is considered is the integral of the normal displacement
over the boundary Γ0, that is

`O(v) =

∫

Γ0

v · n dΓ.

Fig. 6 and Tab. 1 show the convergence of the bounds and of the relative bound gap for
this problem.

6 Conclusions and perspectives

In this paper, we have described the extension of previous results on the derivation of
strict bounds for the energy norm of the error to the framework of the flux-free method.
The main novelty lies in the introduction of a new projection operator that, at the same
time, ensures the solvability of the local problems posed on the stars, and allows for the
construction of the statically admissible fields required for the estimation of the strict
bounds.

Further, this global projection operator will also allow for the construction of strict
bounds in nonlinear problems, when some classical conditions of convexity or monotonicity

13
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Figure 6: Finite-Element approximation sH (left, dashed line), estimated value sest

H (left, solid line) and
bounds (left, gray shade); and relative bound gap (right) in a series of uniformly refined h-meshes for
`O(uH)

mesh diameter [m] Nb. elts. [-] displacement [m]
h Ne sH sest

H slow
H sup

H ρH
hini ≈ 0.14 108 .4051 .4197 -.0074 .0365 .1046

hini/2 1728 .4153 .4215 -.0040 .0164 .0484
hini/4 6912 .4201 .4227 -.0019 .0072 .0215
hini/8 27648 .4221 .4229 -.0016 .0033 .0116

Table 1: Bounds and relative bound gap in a series of uniformly refined h-meshes for `O(uH)

are verified, and following the works in [21, 22, 23]. Indeed, in these references, the
derivation of strict bounds is mainly based on the construction of a statically admissible
stress field, which has now been made possible within the framework of the flux-free
methodology.

Con el apoyo de Universitat Politècnica de Catalunya y E.T.S. d’Enginyers de Camins, Canals i Ports
de Barcelona
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[21] P. Ladevèze. Upper error bound on calculated outputs of interest for linear and nonlinear structural
problems. Comptes Rendus Mécanique, 334:399–407, 2006.
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