Mathware & Soft Computing 14 (2007) 125-128

On Two Conditional Entropies without Probability

D.Vivona - M.Divari *

Sapienza - Universitá di Roma Dip. di Metodi e Modelli Matematici per le Scienze Applicate 16, Via A.Scarpa - 00161 Roma (Italy) vivona@dmmm.uniroma1.it

Abstract

We generalize the conditional entropy without probability given by Benvenuti in [1] and we recognize that this form is the most general compatible with the given properties.

Then we compare our form of conditional entropy given in [4] with Benvenuti's one.

Key words: Entropy, Conditional entropy, Functional equations.

1 Introduction

In a probabilistic setting, Khinchin and Yaglom proposed a form of conditional entropy, [3, 5].

Later, Benvenuti defined the conditional entropy without probability, [1].

In this paper, by using the variables of Benvenuti's form, we give a generalization of conditional entropy.

Then, we point out the link between Benvenuti's expression and the form found by us in a recent paper, [4].

2 Preliminaries

In the crisp setting, following Forte, [2], we consider the following model.

1) Setting. X is an abstract space, \mathcal{A} a σ -algebra of crisp sets $A \subset X$, π_A is a partition of A:

$$\pi_A = \{A_1, \dots, A_i, \dots, A_n / A_i \cap A_h = \emptyset, i \neq h, A_i \neq \emptyset, A_i \in \mathcal{A}, \cup_{i=1}^n A_i = A\} , \quad (1)$$

A is the support of π_A , \mathcal{E} is the class of all partitions of subsets A of X. This class is not empty because it contains, at least, the partition consisting of the only set A, which will be indicated with $\{A\}$.

^{*}This research was supported by GNFM of MIUR (Italy) and "Sapienza" - University of Roma

2) Order. The partition π_A is less fine than π'_A ($\pi_A \preceq \pi'_A$) if every element of π'_A is included in an element of π_A .

3) Algebraical independence. Given two partitions π_A as in (1) and

$$\pi_B = \{B_1, \dots, B_j, \dots, B_m/B_j \cap B_k = \emptyset, j \neq k, B_j \neq \emptyset, B_j \in \mathcal{A}, \cup_{j=1}^m B_j = B\}, \quad (2)$$

they are algebraically independent if $A_i \cap B_j \neq \emptyset$, $\forall i = 1, ..., n, j = 1, ..., m$.

4) Entropy measure. The entropy H without probability is a map $H: \mathcal{E} \to \mathbb{R}^+_0$ with the following properties: $\forall \pi_A, \pi'_A, \pi_B \in \mathcal{E}$:

(i) $\pi_A \preceq \pi'_A \Rightarrow H(\pi_A) \leq H(\pi'_A)$. Furthermore: $H({X}) = 0$ and $H(\emptyset) = +\infty$. (*ii*) $H(\pi_A \cap \pi_B) = H(\pi_A) + H(\pi_B)$, if π_A and π_B are algebraically independent.

3 Conditional entropy

Benvenuti in [1] defined the conditional entropy without probability of a partition $\pi_A \in \mathcal{E}$ in axiomatic way as

$$D(\pi_A) = H(\pi_A) - H(\{A\}) = H(\pi_A) - J(A),$$
(3)

where J(A) is the information of the support A of π_A :

the conditional entropy $D(\pi_A)$ of the partition π_A is defined as the gap between the unconditional entropy $H(\pi_A)$ and the entropy of the support A.

The conditional entropy (3) enjoys the following properties: $\forall \pi_A, \pi'_A, \pi_k$ (k = $1, \ldots, n) \in \mathcal{E}$:

- $\begin{array}{l} (\mathbf{I}) \quad D(\{A\}) = 0 \\ (\mathbf{II}) \quad \pi_A \preceq \pi'_A \Rightarrow D(\pi_A) \leq D(\pi'_A) \\ \end{array} ,$

(III)
$$D \left[\bigcap_{k=1}^{n} \pi_{k} \right] = \sum_{k=1}^{n} D(\pi_{k})$$

if the partitions π_k are algebraically independent.

In the setting of Benvenuti's axioms, we give a generalization of (3), putting

$$D'(\pi_A) = \Psi\left(H(\pi_A), J(A)\right) , \qquad (4)$$

where $\Psi : \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+}$ must satisfy the following properties for all $\pi_{A}, \pi_{A}^{'}, \pi_{B} \in \mathbb{R}_{0}^{+}$ \mathcal{E} :

(I') $\Psi \left(H(\{A\}), J(A) \right) = 0$, (II') $\pi_A \preceq \pi'_A \Rightarrow \Psi\left(H(\pi_A), J(A)\right) \leq \Psi\left(H(\pi'_A), J(A)\right) ,$ (III') $\Psi\left(H(\pi_A \cap \pi_B), J(A \cap B)\right) = \Psi\left(H(\pi_A), J(A)\right) + \Psi\left(H(\pi_B), J(B)\right)$, if π_A and π_B are algebraically independent. Putting $x = H(\pi_A), x' = H(\pi'_A), y = J(A), z = H(\pi_B), t = J(B)$ with $x, x', y, z, t \in [0, +\infty)$ and x > y, x' > y, z > t, from (I')-(III') we obtain the following system of functional equations:

$$\begin{array}{ll} (a) \quad \Psi(y,y) = 0 \\ (b) \quad x \leq x' \Rightarrow \Psi(x,y) \leq \Psi(x',y) \\ (c) \quad \Psi(x+z,y+t) = \Psi(x,y) + \Psi(z,t) \end{array}$$

4 Solution of the problem

First of all, we recognize that the system is satisfied by the function:

$$\Psi(x,y) = x - y \quad , \tag{5}$$

so we find again the Benvenuti formulation (3).

Now, we look for other solutions, restricting ourselves to functions of the kind

$$\Psi(x,y) = h^{-1} \left(h(x) - h(y) \right)$$
(6)

where the function h is strictly increasing with h(0) = 0.

It is immediate verify that every function Ψ of the kind (6) is solution of the equations (a) and (b).

The equation (c) becomes

$$h^{-1}\left(h(x+z) - h(y+t)\right) = h^{-1}\left(h(x) - h(y)\right) + h^{-1}\left(h(z) - h(t)\right).$$
(7)

Putting

$$y = 0, \quad z = t,\tag{8}$$

the equation (7) is

$$h^{-1}\left(h(x+t) - h(t)\right) = h^{-1}(h(x)) + h^{-1}(0) = x$$

and therefore

$$h(x+t) = h(x) + h(t)$$
: (9)

this is the well-known Cauchy equation whose solution is $h(u) = c \ u, \ c \in \mathbb{R}_0^+$.

From (6), we deduce immediately

$$\Psi(x,y) = x - y \; ,$$

and our generalization coincides with (3).

Therefore, when we use as variables the entropy $H(\pi_A)$ and the information J(A) and we restrict ourselves to the case described in 6, we have a unique conditional entropy

$$D'(\pi_A) = \Psi\left(H(\pi_A), J(A)\right) = H(\pi_A) - J(A) = D(\pi_A)$$

which coincides with the conditional entropy given by Benvenuti.

5 Conclusion

In [4], in the crisp case, the authors have characterized an entropy $H_{\pi'}(\pi)$ for a partition π conditioned by a partition π' as function of $H(\pi \cap \pi)$ and $H(\pi')$:

$$H_{\pi'}(\pi) = \Phi(H(\pi \cap \pi'), H(\pi')).$$

We have proved that

$$H_{\pi'}(\pi) = H(\pi \cap \pi') - H(\pi').$$

That means that if the conditioning partition π' is the support set A the conditional entropy is exactly Benvenuti's conditional entropy (3).

References

- P. Benvenuti, Sulle misure di informazione compositive con traccia compositiva universale, Rend.Mat., 2, s.VI (1969), pp.481-505.
- [2] B. Forte, Measures of information: the general axiomatic theory, R.A.I.R.O. (1969), pp.63-90.
- [3] A.I. Khinchin, *Mathematical foundation of information theory*, Dover Publication, New Jork (1957).
- [4] D. Vivona and M. Divari, Fuzzy partitions: a form of conditional entropy, Proc. AGOP'07 (2007), 161-163.
- [5] A.M. Yaglom and I.M. Yaglom, *Probability and information*, Riedel Publishing company, (1983).