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Abstract

Evolutionary Electronics is a research area which involves application of
Evolutionary computation in the domain of electronics. It is seen as a quite
promising alternative to overcome some drawbacks of conventional design. In
this paper we propose a methodology based on an Improved Multi Expression
Programming (IMEP) to automate the design of combinational logic circuits
in which we aim to reach the functionality and to minimize the total num-
ber of used gates. MEP is a genetic Programming variant that uses linear
chromosomes for solution encoding. A unique MEP feature is its ability of
encoding multiples solutions of a problem in a single chromosome. These
solutions are handled in the same time complexity as other techniques that
encode a single solution in a chromosome. This paper presents the main idea
of an improved version of the MEP method, and shows positive preliminary
experimental results.
Keywords: Evolutionary Computation, Genetic Programming, Multi Ex-
pression Programming, combinational circuits, computational effort.

1 Introduction

Automatic methods of digital circuit design are desirable, as a skilled human de-
signer’s time is often expensive. Some parts of the design process, such as finding
the optimal set of component specifications to fulfill certain criteria, are often con-
sidered tedious, as they do not fully use a designer’s skill.

Considering the increasing interest, research and application of evolutionary
computation successfully used to solve search and optimization problems (par-
ticularly in cases when no efficient algorithms are known), a new field emerges:
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Evolutionary Electronics (EE). This new field is now seen as holding good chances
for overcoming the drawbacks of conventional design techniques. EE considers the
concept for automatic design of electronic systems, employing search algorithms to
develop good designs.

The idea of electronic circuit design as a search task is summarized as follows
[16]:
Imagine a design space where each point in that space represents the design of an
electronic circuit. All possible electronics circuits are there, given the component
types available to the electronics engineer and the technological restrictions on how
many components there can be and how they can interact. In this metaphor, we
loosely visualize the circuits to be arranged in the design space so that similar
circuits are close to each other. The idea of using Evolutionary Algorithms is not
only to optimize digital chips layout, but also to accomplish the whole process of
circuit design, including designing the circuit topology from scratches.

Recent research has begun to show that it is possible to design such circuits
in a radically different way. One regards the problem of implementing the cir-
cuit as being equivalent to designing a black box with inputs and outputs. The
content of the box is encoded into a chromosome and subject to the process of
evolutionary algorithms. In this technique, the fitness of a particular chromosome
is measured as the degree to which the black box outputs behave in the desired way.

Sushil and Rawlins [6] applied GAs to the combinational circuits design prob-
lem while John Koza [5] adopted genetic programming. Coello, Christiansen and
Aguire [2] presented a computer program that automatically generates high quality
circuit designs. Miller and Thomson [7] et [8] two of the pioneers in the field the
evolvable digital circuits, used a special technique called Cartesian Genetic Pro-
gramming (CGP). The results [9] show that CGP was able to evolve some digital
circuits better than those designed by human experts.

The rest of the paper is structured as follows. The involved problem is defined in
section 2. In section 3 we describe Multi-Expression Programming (MEP). Section
4 shows how MEP is improved. Our experimental details, results and comparisons
with other methods are presented in section 5. Section 6 gives conclusions and
some suggestions for further work.

2 Problem Statement

Design is first the process of deriving, from an Input/Output behavior specifica-
tion, a structure (a combination of logic gates) that is functional (all combinations
of the truth table are satisfied). Furthermore, we want this design to be optimum
in terms of a certain set of specified constraints (e.g., the number of gates used,
the depth of the produced circuit or expected power consumption).
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Genetic programming is an extension of John Holland’s genetic algorithm (1975)
in which the population consists of computer programs of varying sizes and shapes.
Genetic programming ordinarily evolves computer programs that are represented
as rooted, point-labeled trees with ordered branches.

Multi Expression Programming (MEP) [11], [12] is a Genetic Programming
(GP) variant that uses linear chromosomes for solution encoding. A unique MEP
feature is its ability of encoding multiple solutions of a problem in a single chro-
mosome. These solutions are handled within the same time complexity as other
techniques that encode a single solution in a chromosome. In our work, we are using
an Improved Multi Expression Programming (IMEP) for evolving digital circuits.
MEP uses linear chromosomes of fixed length. It has been documented [11] that
MEP performs significantly better than other competitor techniques (such as Ge-
netic Programming, Cartesian Genetic Programming, Gene Expression Program-
ming and Grammatical Evolution) for some well-known problems such as symbolic
regression and even-parity.

In this paper, we focus only on combinational logic circuits, which contain
no memory elements and no feedback paths. However, the approach proposed is
general enough as to allow its generalization to more complex circuits.

3 Multi Expression Programming (MEP)

The Multi Expression Programming (MEP) technique is described in this section:

The standard MEP algorithm [10] uses a steady state as its underlying mecha-
nism. The MEP algorithm starts by creating a random population of individuals.
The following steps are repeated until a stop condition is reached. Two parents are
selected using a selection procedure. The parents are recombined in order to ob-
tain two offsprings. The offsprings are considered for mutation. The best offspring
replaces the worst individual in the current population if the offspring is better
than the worst individual. The algorithm returns as its answer the best expression
evolved along a fixed number of generations.

MEP genes are represented by substrings of a variable length. The number of
genes per chromosome is constant. This number defines the length of the chromo-
some. Each gene encodes a terminal or a function symbol. A gene encoding a func-
tion includes pointers towards the function arguments. Function arguments always
have indices of lower values than the position of that function in the chromosome
which ensures that no cycle arises while the chromosome is decoded. According to
the proposed representation scheme [13], [10] the first symbol of the chromosome
must be a terminal symbol. In this way only syntactically correct programs (MEP
individuals) are obtained. Offsprings obtained by crossover and mutation are al-
ways syntactically correct. Thus, no extra processing for repairing newly obtained
individuals is needed (see Section 4.4).
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Let us consider the following representation example in which, we will use the
following sets:

• Function set : F = AND, OR, XOR

• Terminal set : T = a, b, c

An example of chromosome using the sets F and T is given below (the labels
shown in the example do not belong to the chromosome):
1: a
2: b
3: AND 1, 2
4: c
5: OR 1, 2
6: XOR 3, 5
7: AND 4, 6

The phenotype’s transcription of the example given above is shown by figure 1.

Figure 1: Expressions encoded by a MEP chromosome represented as trees
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4 IMEP for evolving digital circuits

In this section, we show how the MEP method is improved. The new representa-
tion is based on rearranging the nodes: we keep all terminals in the first positions
(genes) and no other genes containing terminals are allowed in the rest of the chro-
mosome. We have done this change to improve efficiency (see below, mutation).
For example: (See table 1)

Old representation New representation

1: a 0 0 1: a 0 0
2: b 0 0 2: b 0 0
3: AND 1 2 3: c 0 0
4: c 0 0 4: AND 1 2
5: OR 1 2 5: OR 1 2
6: XOR 3 5 6: XOR 4 5
7: AND 4 6 7: AND 3 6

Table 1: The new representation versus the old representation.

4.1 MEP Algorithm

S1. Randomly create the initial population P(0)
S2. for t = 1 to Max Generations do
S3. for k = 1 to abs(P(t) / 2 do
S4. p1 = Select(P(t)); // select one individual from the current population
S5. p2 = Select(P(t)); // select the second individual
S6. Crossover (p1, p2, o1, o2); // crossover parents p1 and p2 // offsprings o1 and
o2 are obtained
S7. Mutation (o1); // mutate the offspring o1
S8. Mutation (o2); // mutate the offspring o2
S9. Select best the individual from o1,o2, the worst individual based on the fitness;
S10. endfor
S11. endfor

4.2 Improved MEP Algorithm

S1. Randomly create the initial population P(0) // keeping all terminals in the
first positions.
S2. for t = 1 to Max Generations do
S3. for k = 1 to abs(P(t) / 2)do
S4. p1 = Select(P(t)); // select one individual from the current population
S5. p2 = Select(P(t)); // select the second individual
S6. Crossover (p1, p2, o1, o2); // crossover the parents p1 and p2 // the offspring
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o1 and o2 are obtained
S7. Mutation (o1); // mutate the offspring o1
S8. Mutation (o2); // mutate the offspring o2
S9. Select best 2 individuals from P1, P2, O1,O2 based on the fitness
S10. Endfor
S11. Mutate a copy of the Best Individual
S12. Replace randomly an individual with the the mutated copy // avoid to lose
the fittest
S13. Mutation(Worst Individual)
S14. Replace the worst individual with the worst mutated
S15. Endfor

Notice that S13 and S14 were added to the algorithm because some times the
worst individual may contain good genes to be exploited, so by mutating this
individual its fitness may improve and therefore it will have better chances to be
selected.

4.3 Fitness computation

Each circuit has one or more inputs (denoted by NI) and one or more outputs
(denoted by NO).

When multiple genes are required as outputs we have to select those output
genes which minimize the difference between the obtained results and the expected
output. Each of the IMEP chromosome expressions is considered as being a po-
tential solution of the problem. Partial results are computed by Dynamic Pro-
gramming [1]. A terminal symbol specifies a simple expression (a variable: circuit
input). A function symbol specifies a complex expression obtained by connect-
ing the operands specified by the argument positions with the current function
symbol. The fitness of each sub-expression (gene) is calculated by computing this
sub-expression for each case (truth table input combinations) and then comparing
with the corresponding target value (truth table outputs): the fitness value is given
by the number of not matching values. The chromosome fitness is defined as the fit-
ness of the best expression(s) encoded by that chromosome. Fitness = 0 means that
100% of target values match with the values given by this (these) sub-expression(s).

The quality of the gene for a given output is given by (eq 1) in [10].

f(Ei, q) =

n∑

k=1

(Oi,k − Wk,q) (1)

Where Oi,k is the computed value for the gene i (Expression i) and for the
combination k and Wk,q is the target value for the combination k and the output
q.
The minimized fitness for a given output is given by (eq 2) in [10].
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Parent P1 Parent P2 Offspring O1 Offspring O2

0: x0 0 0 0: x0 0 0 0: x0 0 0 0: x0 0 0
1: x1 0 0 1: x1 0 0 1: x1 0 0 1: x1 0 0
2: x2 0 0 2: x2 0 0 2: x2 0 0 2: x2 0 0
3: xor 0 0 3: and not 2 0 3: and not 2 0 3: xor 0 0

4: and 3 2 4: and 1 3 4: and 3 2 4: and 1 3
5: and 1 4 5: xor 4 2 5: xor 4 2 5: and 1 4

6: and 1 5 6: and not 2 5 6: and 1 5 6: and not 2 5
7: xor 4 6 7: xor 6 0 7: xor 4 6 7: xor 6 0
8: and not 4 0 8: xor 7 4 8: and not 4 0 8: xor 7 4
9: xor 4 7 9: and not 7 2 9: and not 7 2 9: xor 4 7

10: and 4 8 10: and not 5 5 10: and not 5 5 10: and 4 8

11: and not 5 9 11: and 10 5 11: and not 5 9 11: and 10 5

Table 2: Multi-cut crossover operation (exchange points 3, 5, 9 and 10).

f(O) = min
i1,i2,···,iNO

NO∑

q=1

f(Ei,q, q) (2)

In our case, the minimized fitness is chosen with respect to the minimum number
of not matching values (Eq 2), then to the max number of correct outputs in the
same chromosome and finally to the minimum of the total number of gates (circuit
devices). The observation of the correct outputs in the same chromosome covers the
case when during evolution a chromosome might possibly lead to a circuit giving
some correct outputs, but at permuted positions.

4.4 The evolution operators

The evolution operators used within IMEP algorithm are Selection, Crossover and
Mutation. As explained earlier (Section 3), they preserve the chromosome struc-
ture thus, all offspring are syntactically correct expressions.

Selection: we use the Tournament with variable size. The size is dependent
on the population size. The most used value is 2 .

Crossover: two parents are selected and recombined to produce offsprings. In
our experiments, we have considered two kinds of crossover: One cut crossover and
multi-cut crossover. Cut points are chosen randomly.

Example: Let us consider the two parents P1 and P2 given below. If the
multi-cut crossover is used with the selected exchange points 3, 5, 9 and 10 then
two offspring O1 et O2 are obtained (See table 2).
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Parent P1 Parent P2 Offspring O1 Offspring O2

0: x0 0 0 0: x0 0 0 0: x0 0 0 0: x0 0 0
1: x1 0 0 1: x1 0 0 1: x1 0 0 1: x1 0 0
2: x2 0 0 2: x2 0 0 2: x2 0 0 2: x2 0 0
3: xor 0 0 3: and not 2 0 3: xor 0 0 3: and not 2 0
4: and 3 2 4: and 1 3 4: and 3 2 4: and 1 3
5: and 1 4 5: xor 4 2 5: and 1 4 5: xor 4 2
6: and 1 5 6: and not 2 5 6: and 1 5 6: and not 2 5
7: xor 4 6 7: xor 6 0 7: xor 6 0 7: xor 4 6

8: and not 4 0 8: xor 7 4 8: xor 7 4 8: and not 4 0

9: xor 4 7 9: and not 7 2 9: and not 7 2 9: xor 4 7

10: and 4 8 10: and not 5 5 10: and not 5 5 10: and 4 8

11: and not 5 9 11: and 10 5 11: and 10 5 11: and not 5 9

Table 3: One-cut crossover operation (exchange points 6).

If one cut point crossover is used (for instance at 6) then two offsprings O3 and
O4 are obtained (See table 3).

Mutation: According to the new representation, the mutation process has
been modified. The first genes representing the problem variables are immune
against mutation. The function symbols can be mutated only into other function
symbols and the links (pointing to the function arguments) can also be mutated
into other links, however satisfying the constraint that function arguments always
have indices of lower values than the position of that function in the chromosome.
See table 4.

The original method [10] describes the mutation as follows: each symbol (ter-
minal, function or link) in the chromosome may be target of the mutation operator
(a terminal may become a function and function may become a terminal). The
first gene of the chromosome must always encode a terminal symbol.

5 Numerical experiments

In this section, numerical experiments with Improved MEP for evolving digital cir-
cuits, are performed. For this purpose several well-known test problems [9] are used.

To assess the performance of the algorithms, we consider two statistics : the
Success Rate and the Computational Effort:

• Success Rate = Number of successful runs / the total number of runs

• Computational Effort: in [5] Koza describes a method to compare the
results of different evolutionary methods. The so called Computational Effort
is calculated as the number of fitness evaluations needed to find a solution
of a problem with a probability of success z of at least z = 99%. We have
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Chromosome C Offspring O

0: x0 0 0 0: x0 0 0
1: x1 0 0 1: x1 0 0
2: x2 0 0 2: x2 0 0
3: xor 0 1 3: and 0 1

4: and not 2 3 4: and not 2 3
5: and 0 4 5: xor 0 2

6: and 5 2 6: and 5 2
7: xor 4 6 7: xor 4 6
8: and not 5 7 8: and 4 3

9: xor 4 5 9: xor 4 5
10: and 8 9 10: and 8 9
11: and not 10 7 11: and not 10 7

Table 4: Mutation in genes 3,5 and 8.

to use relative frequencies instead of probabilities for finding the solution
after a certain number of fitness evaluations. One first calculates P(M,i),
the probability of success by generation i using a population of size M. For
each generation i this is simply the total number of runs that succeeded on or
before the ith generation, divided by the total number of runs conducted. One
then calculates I(M,i,z), the number of individuals that must be processed to
produce a solution by generation i with probability greater than z (where z
is usually 99%). The minimum of I(M,i,z) over the range of i is defined as
”the computational effort” required to solve the problem.

Koza defined the following equation (3) in [10].

I(M, z) = min
i

(M(i)ceil [ln(1 − z)/ln(1 − P (M, i))]) (3)

P(M,i) = Ns(i) / Ntotal, where Ns(i) represents the number of successful runs
at generation i and Ntotal represents the total number of runs.
Before presenting our examples, we first introduce an integer-coded form of the
truth table, which we have developed to reduce the space and processing time.

The truth table 5 represents, for instance, the Two Bits Multiplier.

Before being used, the truth table is processed in order to reduce the number
of combinations checked during the evolution process. It is a kind of parallelism of
data. The idea is to group each column in one word (16 or 32 bits) depending on
the number of combinations (2NI , where NI is the number of the circuit inputs).
Words will be interpreted as the binary representation of a (non-negative) integer
and will be coded by the corresponding integer value. The new truth table of the
two Bits Multiplier is given by table 6.
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A1 A0 B1 B0 P3 P2 P1 P0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 5: Truth Table for Two Bits Multiplier.

A1 A0 B1 B0 P3 P2 P1 P0

255 3855 13107 21845 1 50 854 1285

Table 6: The new truth table of the Two Bits Multiplier.

A2 A1 A0 B2 B1 B0

0 65535 16711935 252645135 858993459 1431655765
4294967295 65535 16711935 252645135 858993459 1431655765
P5 P4 P3 P2 P1 P0

0 3 3868 996141 3364198 5570645
66311 252582937 859188522 1431987832 3364198 5570645

Table 7: The new truth table of the Three Bits Multiplier .
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Problem Inputs Outputs Description

2−Bit Adder 5 3 The sum of two 2−bit numbers and
1−bit carry to produce 2−bit number
and 1−bit carry

2−Bit 4 4 The Product of two 2−bit numbers
Multiplier to produce 4−bit number
3−Bit 6 6 The Product of two 3−bit numbers
Multiplier to produce 6−bit number
1−Bit 2 3 Compares two 1−bit numbers
Comparator for <, =, >
2−Bit 4 3 Compares two 2−bit numbers
Comparator for <, =, >
3−Bit 6 3 Compares two 3−bit numbers
Comparator for <, =, >
N−Bit Even 3−6 1 The function returns True if an even
Parity number of its argument are True.
problem

Table 8: The experimental problems used to test the performance of IMEP.

When the number of combinations is greater than 32, each column is divided
into blocks of 32 bit and each block will be coded by the corresponding integer.
This strategy enables us to divide the computing time by a factor of 32 when NI
> 4, else by a factor of 2NI .

For Example the truth table of the three Bits Multiplier is given by the table 7
below . The original one consists of 64 rows instead of 2.

5.1 Experiment Details

The performance of the IMEP was tested on four different classes of benchmark
problems shown in table 8: Digital Adder, Digital Multiplier, Digital Comparators
and N−Bit Even Parity problem.

5.2 Results

The results show the contribution of the changes introduced to the MEP algorithm
and in the mutation process. These results are compared to those published in [9],
[13], [15], [14], [3] depending on the studied case.

5.2.1 Standard MEP versus Improved MEP

First, two examples were evolved: a 2−Bit Adder and a 2−Bit Multiplier and com-
pared to those published in [9]. The parameters used are given by table 9.
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Parameters Values

Number of Runs 100
Selection Binary Tournament
Crossover Multi-cut crossover
Crossover Probability 0.9
Mutation Probability 3 genes / chromosome
Functions Set 1 for Multiplier A AND B, A AND NOT B, A XOR B
Functions Set 3 for Adder MUX(A,B,C), A XOR B

Table 9: The parameter settings used in experiments of the first part.

Fixed length chromosome = 20

2−Bits adder with carry 2−Bits Multiplier

MEP IMEP MEP IMEP

A population size A population size A population size A population size
of 270 individuals of 50 individuals of 90 individuals of 20 individuals
yields over 90% yields 100% yields 100% yields 100%
successful runs successful runs successful runs. successful runs
after 150,000 after 1,500 after 150,000 after 500
generations. generations only. generations. generations only.
After this value,
the success rate
does not increase
significantly.

Table 10: Fixed Length Chromosome.

In [9], two experiments have been done on both 2−Bit multiplier and 2−bit
adder. The first experiment kept the chromosome length fix and equal to 20 genes
and the population size was varied from 10 to 300 individuals. In the second one,
the population size was kept fix equal to 20 and the chromosome length was varied
from 10 to 100 genes. The number of generations used in all experiments [9] was
150,000. The results obtained with the IMEP algorithm, compared to the results
of [9], are given in the tables 10 and 11. On the one hand, We can clearly see that
IMEP is faster the MEP because the population size and the chromosome length
were decreased respectively in the first and the second experiments and the number
of generations was considerably reduced in both experiments. On the other hand,
IMEP is more effective then MEP in term of the increased rate of successful runs.

Four other examples were evolved: 3−Bit Parity, 4−Bit Parity, 5−Bit and
6−Bit parity problems and compared with the results published in [14]. The pa-
rameters used in [14] are given in table 12. According to [4] and [9] , the boolean
even Parity problem appears to be extremely difficult to evolve using standard
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Fixed Population Size = 20 individuals

2−Bits adder with carry 2−Bits Multiplier

MEP IMEP MEP IMEP

A chromosome A chromosome A chromosome A chromosome
length of 80 genes length of 50 length of 100 length of 50
yields over 90% genes yields over genes yields over genes yields
successful runs. 100% successful 100%successful runs. 100% successful
after 150,000 runs after 1,000 runs after 150,000 after 100
generations. generations only. generations. generations only.
After this value,
the success rate
does not increase.

Table 11: Fixed Population Size.

Parameters Values

Number of Runs 100
Number of Generations 51
Selection q-Tournament(q= 10% of the Population Size)
Crossover Multi-cut crossover
Mutation Probability 0.1
Functions Set A AND B, A NAND B, A OR B, A NOR B

Table 12: The parameters setting according to [14].

logic gates AND, NAND, OR, NOR. According to [3], the Even Parity problem is
a very hard classification problem for GP to solve; increasing rapidly in difficulty
and solution size with N (N is the number of the problem inputs).

Koza has shown that N = 5 represents, in effect, an upper limit for standard
GP, even with a large population size of 8000 [4]. To solve the problem for N = 6
and higher, large populations and Automatically Defined Functions (ADF) [4] are
required.

In [14], two experiments have been done on both 3 and 4−bit parity problems.
The first experiment kept the chromosome length fixed to 200 genes and the popu-
lation size was varied from 20 to 400 individuals . In the second one, the population
size was kept fixed to 100 and the chromosome length was varied from 50 to 500
genes.

For the 3−bit parity problem, we have used the same parameters given by the
table 12. The results are shown in the table 13.

We can see that the Improved MEP outperforms the standard one. We have
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3−Bit Parity

MEP IMEP

A chromosome length of 270 genes with A chromosome length of 180 genes with
population size of 100 individuals yields population size of 100 individuals
a 100% successful runs. yields a 100% successful runs.
Also
A chromosome length of 200 genes with
population size of 300 individuals yields
a 100% successful runs.

Table 13: The comparative results of 3−bit Parity.

Parameters Values

Number of Runs 100
Number of Generations 200
Chromosome Length 100
Population Size 60
Selection Binary Tournament
Crossover Multi-cut crossover
Mutation Probability 3 genes / chromosome
Functions Set A AND B, A NAND B, A OR B, A NOR B

Table 14: The parameters setting according to [14].

tried also to evolve the same problem using different parameters which are given
by the table 14. We have noticed that the size of the tournament used causes a
high pressure so premature convergence was attained. And we have concluded that
a mutation = 0.1 causes the best individual to be lost during the evolution. We
have noticed also according to our experiments that a small population size with a
large number of generations gives better solutions in quality and time because as
argued before (Section 4.3), after the fitness = 0 is attained, the evolution system
tries to minimize the number of gates.

We have obtained also 100% successful runs, but in less time than by other
methods. The run time over 100 runs was equal to 5:49:920 (M:S:mS) for the
parameters used in [14] and equal to 3:19:984 using our parameters. Then we
have decided to use new parameters to evolve the 4, 5 and 6−bit parity problem.
The results are given by table 15, 16 and 17 respectively. Consider the results
given in table 17: neither GP nor MEP were able to evolve the 5−parity problem
without ADF (automatically defined function) meanwhile IMEP was able to give
a successful rate of 40 % and can do better if the best combination of evolution
system parameters is used ([4]).
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4−Bit Parity

CGP MEP IMEP

The best result was The best result was 42% A chromosome length of
found after 1,000,000 successful runs obtained 30 genes with population
generations of (1+4)ES by a chromosome length of size of 50 individuals
(mutation equal to 2 200 genes with population during 30,000 generations
genes per genotype). size of 300 individuals yields 70% successful runs.
15 successful runs A chromosome length of
over 100 (15%). 100 genes with population

size of 100 individuals
during 10,000 generations
yields 96% successful runs

Table 15: The comparative results of 4−bit Parity.

5−Bit Parity

GP MEP IMEP

The best result The best result A chromosome length of 100 genes
found was 1 found was 5 with population size of 50 individuals
successful run successful runs during 40,000 generations yields 20
over 8 (12.5%) over 30 (16.66%) successful runs over 50 (40%).
using using A chromosome length of 150 genes
a population of a population of with population size of 50 individuals
8000 individuals 1000 individuals during 40,000 generations yields 35

having successful runs over 50 (70%)
600 genes each.

Table 16: The comparative results of 5−bit Parity.

6−Bit Parity

GP MEP IMEP

Not Solvable Not Solvable A chromosome length of 150 genes
without ADF without ADF with population size of 50 individuals

during 100000 generations yields
8 successful runs over 50 (16%).
A chromosome length of 150 genes
with population size of 100 individuals
during 100000 generations yields
20 successful runs over 50 (40%).

Table 17: The comparative results of 6−bit Parity.



118 F.Z. Hadjam, C. Moraga & K.M. Rahmouni

5.2.2 IMEP versus CGP and ECGP

The Cartesian Genetic Programming and Embedded Genetic Programming Meth-
ods were introduced respectively, by Miller and Thomson in [8] and by Walker and
Miller in [15].

ECGP is an extension of CGP that can automatically acquire, evolve and re-use
partial solutions in the form of modules. The performance of IMEP was tested on
two different classes of problems: digital adders (1−bit, 2−bits and 3−bits) dig-
ital multipliers (2−bits and 3−bits) and digital comparators (1−bit, 2−bits and
3−bits) (see table 8). The computational effort spent by IMEP was compared to
the one spent by CGP and ECGP tested in [15] on the same problems cited above.
The parameter settings used for CGP and ECGP [15] in all the experiments are:
a (1+4) ES, 300 genes as initial genotype size and a genotype point mutation rate
equal to 6 genes (2%). Other proper parameters are given in [15]. The parameter
settings used for IMEP are: a population size varying between 5 and 50, where the
number of genes was varying between 100 and 300 (depending on the studied case)
with a crossover probability equal to 0.9. Over all five problems tested, IMEP,
CGP and ECGP produced 100% successful solutions over 50 independent runs.
The functions set used to evolve the comparators and the adders is AND, NAND,
OR, NOR and the functions set used to evolve the multipliers is A AND B, A AND
NOT B, A XOR B(see [15]). The results are given in the table 18.

Originally CGP used a program topology defined by a rectangular grid of nodes
with a user defined number of rows and columns. The genotype is a fixed length
representation and consists of a list of integers which encode the function and con-
nections of each node in the directed graph.

It may be seen that in most cases IMEP outperforms CGP and ECGP, except
for the relatively more complex problems such as the 3−Bit Adder and the 3−Bit
Comparator due probably to the fact that the same mutation rate was used in the
experiments for different sizes of each problem class. We propose as a future work:
the study of the impact of a mutation dynamic probability according to the size of
the considered problem.

Some of the evolved circuits relative to the examples given in this paper are
shown in figure 2, figure 3, figure 4 and figure 5.

According to the best knowledge of the authors, the evolved 3-bit multiplier
shown in figure 4, represents the circuit with the shortest depth. Furthermore the
solution of the even parity 6 problem shown in figure 6 is one of the possible optimal
solutions.
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IMEP CGP ECGP

1−Bit adder 5,460 26,720 35,840
2−Bit adder 303,600 493,760 203,520
3−Bit adder 3,916,350 2,599,360 1,530,880
2−Bit Multiplier 2,180 35,840 35,520
3−Bit Multiplier 1,864,450 8,659,840 1,917,760
1−Bit Comparator 15 2,880 3,200
2−Bit Comparator 24,000 78,880 87,360
3−Bit Comparator 670,220 466,880 520,320

Table 18: The computational effort figures for IMEP, CGP and ECGP for digital
multipliers and digital comparators.

Figure 2: Evolved 3-bits Adder with carry : 9 gates using MUX, XOR
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Figure 3: Evolved 3-bits Comparator : 16 gates using AND, AND with one input
inverted, OR, NXOR

Figure 4: Evolved 3-bits Multiplier : 29 gates with 6 levels, using AND, AND with
one inverted input, XOR
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Figure 5: Evolved 6-bit parity problem : 15 gates using AND, OR, NOR

6 Conclusion and future works

In this paper, an Improved Multi Expression Programming (IMEP) has been used
for evolving digitals circuits. It has been shown that the new algorithm with
the modified representation and the mutation process have improved the standard
MEP. In the different outperformed experiments, all the circuits were evolved from
scratch. Well known benchmark problems such as multipliers, comparators, full
adders and even parity problems, and comparative studies with other methods,
were used to asses the performance of the improved MEP. The results show that
IMEP outperforms :

• MEP in both studied cases : 2−Bit multiplier and 2−bit adder.

• MEP, GP and CGP in the case of the even parity problem and multiplier.

Another comparative study was done between IMEP, CGP and ECGP. IMEP
shows significant speedup when compared with non modular CGP and even with
ECGP in the most of cases but did not perform as well as CGP and ECGP on the
digital 3−Bit comparator problem. (Notice that also CGP gave better results than
ECGP in the case of comparators). This phenomenon found in the comparators
will be investigated further in future work. Perhaps a potential reason can be the
limit values of certain parameters like the chromosome length and the population
size. We intend to use parallelism (Distributed IMEP) to overcome this drawback
in our future works. Parallelism may contribute to decrease the average number of
evaluations required by each algorithm to achieve their best possible fitness value
under the principle of ”divide to conquer”.
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