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Abstract 
 
 

In this paper a formulation for the fuzzy p-median model in a fuzzy environment 
is presented. The model allows to find optimal locations of p facilities and their 
related cost when data related to the node demands and the edge distances are 
imprecise and uncertain and also to know the degree of certainty of the solution. For 
the sake of illustration, the proposed model is applied in a reduced map of  Kinshasa 
(Democratic Republic of Congo) obtaining results which are rather than realistic 
ones 
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1 Introduction 
 
Democratic Republic of Congo  (formerly Zaire) has a total superficie of 2.344.000 

sq km., more than 45.000.000 inhabitants and it is situated in central Africa.  It borders 
on Angola in the southwest and west, on Cabinda and the Republic of the Congo in the 
west, on the Central African Republic and Sudan in the north, on Uganda, Rwanda, 
Burundi, and Tanzania in the east, and on Zambia in the southeast. The country is 
divided into ten provinces (Bandundu, Bas-Congo, Équateur, Kasai-Occidental, Kasai-
Oriental, Katanga, Maniema, Nord-Kivu, Orientale, and Sud-Kivu) and a federal district 
(which includes Kinshasa). In addition to Kinshasa, other major urban areas include 
Boma, Bukavu, Kalemie, Kamina, Kananga, Kisangani, Kolwezi, Likasi, Lubumbashi, 
Matadi, Mbandaka, and Mbuji-Mayi. Kinshasa is its capital and largest city.  

The town of Kinshasa, political capital of the Democratic Republic of Congo, 
undergoes a multiform crisis. No sector is saved, including those which are used for the 
development of the others, in particular the public transport. However, one can speak 
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about no development by excluding that of the public transport, this last being an 
irreplaceable accompaniment of the economic development. Several causes are at the 
basis of this crisis: 
1. The configuration of the town: Kinshasa is designed in such a way that in the north, 

there is a major concentration of all the useful activities, and in the south dormitory 
town where people live. At the independence, this configuration was not modified, 
and it is this configuration which justifies the pendular motions in Kinshasa. 

2. The demographic growth: In 1960, Kinshasa counted 400.000 inhabitants, but in 
2001, the population of the town was of more than 6.000.000 inhabitants. Kinshasa 
will thus be counted among the largest cities of the world, because of its population. 
According to statistical projections, in 2015 Lagos will reach 24 million inhabitants 
[8], Cairo more than 16,5 million inhabitants [9] and Kinshasa 10 million 
inhabitants. In 2015 among the 15 largest cities in Africa, it is necessary to count 
Cairo, Lagos and Kinshasa. The other cities will be Asian.  

3. The spreading out of the city: Demographic growth involves the spreading out of the 
city (approximately 10.000 km2) what definitely lengthens the distances. 

4. A null and void and degraded roadway system: On the 5.109 km of roads, 548 km 
only are covered (asphalted). Therefore 4561 km of roads are out of ground. 
Kinshasa counts only 5 primary roads:  the avenues of the IPN, 24 Novembre,  
Kasavubu, University, ant Boulevard Lumumba, from where traffic congestion, and 

5. A transport offer lower than the request: The studies show that there are 3.600.000 
of displacements per day in the town of Kinshasa, but only 196.100 displacements 
are done by means of transport. Therefore 5,44% of request satisfied and 94,55% of 
no satisfied request. The 5,44% of displacements are transported by 1.142 cars. 
Search shows that on 196.100 displacements, 3% use the car private, 40% use the 
bus or the train, 20% use the taxi and 36 % move by walking.  
As it is patent the problem of the public transport is a growing thorny problem for 

the people of Kinshasa which deserves a great deal of effort for solution. 
From a theoretical point of view, as soon as a city reaches 1.000.000 inhabitants, it 

is automatically necessary to change the system of transport, i.e., to give up the buses. 
Indeed, the capacity of a bus is very low (80 people). However since 1970 the regional 
govern is trying to change the system of transport in Kinshasa in a number of ways: 
1. By adopting new means of transport of mass, i.e., the Subway, the tram or the train. 

The subway: The construction of the underground subways is a too heavy and 
expensive investment. The ground of Kinshasa is not favourable with the 
construction of the underground subways because of the internal sea (the ground of 
Kinshasa rests on water). The tram shares the road with the vehicles. With five too 
small roads, that is impossible. The train: Since the rail network already exists and 
the rails serve the four corners of the city, one of the tracks of solution is the 
rehabilitation of the train and the electrification of the rail network  

2. By rehabilitation and town-planning: The city grows but there are no roads. There 
are no East-West roads (transverse roads) because of the mountains. From where it 
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is necessary to create transverse roads and to asphalt the roads of service roads like 
Mokali, Ndjoku, etc  

3. By promoting the river public transport by setting up of the boat-buses along the 
Congo river until Maluku. 

4. By the scattering of the great activities of the town of Kinshasa while establishing of 
the shopping centres through the city. 

5. By the optimization of the transport networks (terrestrial, railway and river). The 
attempt here would be to get alternative transportation networks in Kinshasa 
according to the four first tracks of solution, and  

6. By proposing and designing new networks of transport based on the solution of 
tailored locations problems which say us, for instance where to locate bus stops, 
underground or tram stations, etc. 
A Location Problem deals with the choice of a set of points for establishing certain 

facilities in such a way that, taking into account different criteria and verifying a given 
set of constraints, they optimally fulfil the needs of the users. Some of the main location 
problems are modelled on a network or a graph. Thus, the vertices of the network 
represent the points where the users that demand the facility are, and the edges reveal the 
existence of a certain link between the vertices (for instance, roads joining cities). In 
general, the graphs represent deterministic situations where the points of demand and the 
links joining them are known. Originally proposed by Hakimi (1964, 1965) who 
demonstrated the possibility of locating optimally at least p facilities on the network 
nodes, the crisp p-median problem consists of selecting p facility nodes or locating p 
facilities on finite, connex, simple, no directed, determinist and static graph such that the 
weighted total distance between all the demand nodes and their closest facility nodes is 
minimized. 

 This problem has been investigated by several authors [14, 7, 1, 10,  2, 3, 4, 5, 13,  
8, 12,  15, 9, 16 and recently 11). Generally, the crisp p-median problem is 
mathematically formulated as follows: 

 
* min i ij ij

i j

z wd x= ∑∑         (1) 

 
s.t. 1ij

j

x =∑ ,   i N∀ ∈      (2) 

 ,ij jx y≤    , ,i j N∀ ∈      (3) 

 ,j
j

y p=∑          (4) 

 
 { }, 0,1ij jx y ∈    , ,i j N∀ ∈      (5) 

  
where i is the demand node, j is the facility node, iw  is the demand at node i, ijd  is the 

distance of the shortest path between nodes i and j, ijx   is 1 if the node i is assigned to 



                                                                             D. Kutangila  & J.L. Verdegay 

 

100 

 

facility j and 0 otherwise, jy  is 1 if there is a facility at node j and 0 otherwise, and p is 

the number of facilities to be located. 
The objective function (1) minimizes the total weighted distance between all the 

demand nodes and their closest facility nodes. The set of restrictions (2) formalizes the 
single assignment of demand nodes to facility nodes. The set of restriction (3) prohibits 
assignment to node that has not facility. (4) fixes the number of facilities to be located to 
p and (5) formalizes the binary nature of assignment-localization decision. 

The crisp p-median problem is applicable in the deterministic environment where all 
the data are certain. However the real world is full of uncertainty, and we often are given 
imprecise and uncertain data. In this case, we need to know how certain is our results 
(the degree of certainty of our results). We refer to this problem as the fuzzy p-median 
problem. Consequently, the aim of this paper is to present a new model of fuzzy p-
median problem, what is addressed in the following section, and then to propose a 
solution method that, finally is illustrated by means of a real problem which is tailored to 
to the objectives of a scientific paper like this. 

 
 

 2 A model of the fuzzy p-median problem 
 
Let us consider a network G = (N,A), where N = {1,…,n} is the set of nodes and A is 

a set of existing edges between each nodes pair (i,j) in the graph. Each node i∈N has a 
positive weight wi representing the population (demand) at the node. Each edge (i,j) also 
has a positive weight lij that represents the length of the edge. With the weight of the 
existing edges, we calculate a matrix D of distances dij of the shortest paths between the 
nodes (i,j), ∀ i,j ∈ N,  i ≠ j. 

Under a uncertainty environment, the values  wi and  lij are vague ones. With such 
data, it is obvious that optimal locations and the cost obtained using the crisp p-median 
model are not certain. Thus, the basic problem is to determine the degree of certainty of 
the optimal locations and their related cost when the values wi and lij are uncertain. 

Therefore, we define the following fuzzy subsets, for the fuzzy p-median problem: 
• W = {( wi|µW(wi))}, ∀ i ∈ N, is the fuzzy subset of the most certain weights wi. 

µW(wi) is the degree of belongingness of the node i to the fuzzy subset W, in other words 
µW(wi) is the degree of certainty of the weight wi. 

• L = {( lij|µL(lij))}, ∀ i,j ∈ N, is the fuzzy subset of the most certain lengths lij of 
the edges between the nodes i and j. µL(lij) is the degree of belongingness of the length lij 
to the fuzzy subset L, in other words µL(lij) is the degree of certainty of the length lij. 

• Using the subset L, we will build a fuzzy matrix D of the most certain distances 
dij of the shortest paths between the nodes pairs (i,j). We define the fuzzy matrix by  D = 
{( dij|µD(dij))}, ∀ i,j ∈ N where dij is the distance of the shortest path between nodes i and 
j calculated using Floyd-Warshall Algorithm [6] and µD(dij) is the degree of certainty of 
dij.  
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The goal of both fuzzy and crisp p-median problem is to find optimal locations of p 
facilities such that the total weighted distance or the total cost of travel from each 
demand node to its closest facility node is minimized. The fuzzy p-median particular 
aspect is to determine the degree of certainty of the optimal locations and cost. 

Thus, the difference between the crisp p-median problem and the fuzzy one is: 
• The crisp p-median problem handles precise and certain data with degree of 

certainty 1 and consists of finding optimal locations of p facilities with their related cost 
having a degree of certainty 1. 

• The fuzzy p-median problem handles imprecise and uncertain data with degree 
of certainty between 0 and 1 and consists of finding optimal locations for p facilities 
with their related cost having degree of certainty mapped in the unit interval [0,1]. 

 Therefore we can conclude that the fuzzy p-median problem is a generalization of 
the crisp one and is more realistic than the crisp problem since the real world is full of 
uncertainty, and consequently we can formulate the fuzzy p-median model as it follows: 
 

 ( z*|λ*) = min ∑i ∑j(wi|µW(wi))( ( dij|µD(dij))xij     (1) 

           s.t. ∑j xij = 1,   ∀ i ∈ N     (2) 

                     xij  ≤ yj,         ∀ i,j ∈ N    (3) 

            ∑j yj = p,         (4) 

                 xij, yj ∈ {0,1},  ∀ i,j ∈ N    (5)  
 

where  
z* = optimal transport total cost, 
λ* = degree of certainty of the optimal cost (optimal solution) 
W = fuzzy subset of the most certain weights wi of the nodes i. 
D = fuzzy matrix of the most certain distances dij of the shortest paths between all the 
nodes pairs (i,j).  
 i ∈ N = demand nodes, 
j ∈ N = facility nodes, 
wi  = uncertain population or demand of the nodes i, 
µW(wi) = degree of certainty of wi. 
dij  = uncertain distance of the shortest path between the nodes i and  j, 
µD(dij) = degree of certainty of dij. 
dij = 1 if the node i is assigned to the node j and 0 otherwise, 
yj = 1 if there is a facility at  j and 0 otherwise,  
p =  number of facilities to be located. 

 The fuzzy p-median model we have formulated must be applied on fuzzy graphs. In 
these graphs, no having exact demands at each node nor exact distances among edges, 
we express these quantities or values following them with their degrees of certainty. 
Consequently, the objective function of the fuzzy p-median model for such a graph 
doesn’t calculate only the optimal cost but also its degree of certainty.  
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3 A Solution approach 
 
In the objective function of the model we use the aggregation operator ∑ for the 

sum. This operator will be used to calculate the optimal cost. With regard to what 
operation we must  effectuate on the degrees of certainty in order to obtain the degree of 
certainty of the final solution we consider the following. It is well-known that elements 
of a collection of fuzzy sets can be combined to produce a single fuzzy set through 
aggregation operations [18]. This is the case, for instance, in the intersection and union 
of any number of fuzzy sets. In general, many other types of aggregation may be 
performed on fuzzy sets. Here we will focus on aggregations A:[0,1]→[0,1] satisfying 
the following requierements: 

• Boundary conditions: A(0,…,0) = 0 and A(1,…,1) = 1 
• Monotonicity:  A(x1,…,xn) ≥ A(y1,…,yn)  if  xi ≥  yi, i = 1,...,n 
The aggregation operators discussed in [18] are the compensatory operators defined 

by Zimmermann and Zysno (1980), the symmetric sums by Dubois and Prade (1980), 
the averaging operators  by Dyckhoff and Pedrycz (1984) and the ordered weighted 
averaging operator (OWA) by Yager (1988). In our model we are going to use averaging 
operators. An averaging operator (generalized mean) for n arguments is idempotent and 
commutative, in addition to fulfilling monotonicity and boundary conditions. As 
discussed in Dyckhoff and Pedrycz (1984), the generalized mean takes the form  

( ) ( )1
1

1
,..., ,  R, 0.

n
p

p
n i

i

A x x x p p
n =

= ∈ ≠∑
 

It is important to note that the family of generalized means subsumes some well-
known cases of fuzzy-set operators. In particular, we obtain 

1. Arithmetic Mean (p = 0)  

( ) ( )1
1

1
,..., .

n

n i
i

A x x x
n =

= ∑
 

2. Geometric Mean (p → 0) 

( ) ( )
1

1 1,..., ,..., n
n nA x x x x=

 
3. Harmonic Mean (p = -1)  

( )1

1

,...,
1n n

i i

n
A x x

x=

=

∑
 

4. Minimum (p → -∞)   

( ) ( )1 1,..., min ,...,n nA x x x x=
 

5. Maximum (p → ∞)   

( ) ( )1 1,..., max ,..., .n nA x x x x=
 

The parameter p can be referred to as a compensation factor.   



 p-Median Problems in a Fuzzy Environment 
 
 

 

103

 

In our model of the fuzzy p-median problem, the degrees of certainty are going to be 
handled using the arithmetic mean operation instead of the sum operation and the 
minimum operation instead of the multiplication operation. That is, the model that we 
have presented is going to be solved in two steps: first, the crisp p-median is normally 
calculated with approximative data in order to find the crisp optimal locations and cost, 
i.e. the above model is used without the degrees of certainty, like this: 

 
  z* = min ∑i ∑jwi dijxij         (1) 
          s.t. 
   ∑j xij = 1,   ∀ i ∈ N               (2) 
   xij  ≤ yj,    ∀ i,j ∈ N   (3) 
   ∑j yj = p,        (4) 
   xij, yj ∈ {0,1}  ∀ i,j ∈ N   (5)   
 
Second, the degrees of certainty are used in the following submodel in order to 

calculate the degree of certainty of the crisp solution obtained in step 1: 
  

( ) ( )( )*

1 1

1 1
min ,

n p p

W i D ij ij
i j

w d x
n p p

λ µ µ
−

= =

 
=  −  

∑ ∑      

 
s.t.  
  ∑j xij = 1,   ∀ i = 1,…,n - p         
       µW(wi), µD(dij) ∈ [0,1] ∀ i = 1,…,n – p, j = 1,…, p      
 
If wi and dij  are certain, i.e. if  µW(wi) = 1, ∀ i ∈ N  and µD(dij) = 1, ∀ dij ∈ D, then  

λ* = 1 and there is no need of going to step 2, since this is a crisp p-median. But if wi and 
dij  are uncertain, i.e. if µW(wi) ∈ [0,1], ∀ i ∈ N  and µD(dij) ∈ [0,1], ∀ dij ∈ D, then, by 
the step 2, we have λ* ∈ 1; this is a fuzzy p-median.  Thus, the fuzzy p-median is a 
generalization of the crisp one. 

 
 

4 Illustrative example 
 

The map of Kinshasa can be seen in Figure 1. This is a map that because of several 
reasons,  far from the aim of this paper, can be considered as fuzzy, and hence also the 
nodes, distance, demands, etc. As the real situation is very complex, here for the sake of 
illustration in order to find two optimal locations of bus station, we will consider only a  
fuzzy graph of western Kinshasa, with uncertain demands and distances as follow. First 
seven nodes (Binza IPN, Binza Delvaux, Binza Ozone, Binza Pompage, Kintambo 
Magasin, Parking Bandal and Selembao Marché), will be considered. Second, the 
distances between nodes (Table 2) are approximate ones. In this way, all of them will be 
considered as fuzzy ones with degrees of membership equal in all the case to 0.75. Take 
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into acccount that our main aim here is only to show how the proposed model solve a 
problem which although real, here is simplified. 
 

Node Designation Demand Degree of 
certainty 

1 
2 
3 
4 
5 
6 
7 

Binza IPN 
Binza Delvaux 
Binza Ozone 
Binza Pompage 
Kintambo Magasin 
Parking Bandal 
Selembao Marché 

26.13 
26.13 
26.13 
26.13 
14.80 
30.58 
44.97 

0.75 
0.70 
0.80 
0.65 
0.70 
0.70 
0.65 

Table 1: Nodes in the network 
 

 1 2 3 4 5 6 7 
1 0,00 3,00 7,00 11,20 8,00 7,60 3,60 
2 3,00 0,00 4,00 8,20 5,00 9,50 6,60 
3 7,00 4,00 0,00 6,40 3,20 7,70 10,60 
4 11,20 8,20 6,40 0,00 3,20 7,70 11,70 
5 8,00 5,00 3,20 3,20 0,00 4,50 8,50 
6 7,60 9,50 7,70 7,70 4,50 0,00 4,00 
7 3,60 6,60 10,60 11,70 8,50 4,00 0,00 

Table2: Distances between nodes 
 
Then it is easily obtained that the optimal locations are nodes 5 and 7 with the cost 

of 514,270, and the degree of certainty of these locations and their related cost is 0,69. 
 

Conclusion 
 
We have seen that the crisp p-median problem is applied on deterministic graphs to 

locate p facility centres such that the weighted sum of the distances between all the 
demand nodes and their closest facility centres is minimized. The resulted solution is 
certain and has the degree of certainty equals to 1. We have formulated the model of the 
fuzzy p-median problem applicable to fuzzy graphs where data are uncertain. That 
model has allowed us to know the degree of certainty of the uncertain solution obtained 
on uncertain data. 
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Figure 1: Map of Kinshasa town 
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