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Abstract

We present the basic isopermetric structure theory, obtaining
some new simplified proofs. Let 1 ≤ r ≤ k be integers. As an
application, we obtain simple descriptions for the subsets S of
an abelian group with |kS| ≤ k|S|−k+1 or |kS−rS|−(k+r)|S|,
where where �S denotes as usual the Minkowski sum of � copies
of S. These results may be applied to several questions in Com-
binatorics and Additive Combinatorics including the Frobenius
Problem, Waring’s problem in finite fields and the structure of
abelian Cayley graphs with a big diameter.

1 Introduction

The connectivity of a graph is just the smallest number of vertices dis-
connecting the graph. In order investigate more sophisticated properties
of graphs, several authors proposed generalizations of connectivity. The
reader may find details on this investigation in the chapter [2]. Investi-
gating the isoperimetric connectivity in Cayley graphs is just one of the
many facets of Additive Combinatorics. It is also one of the many facets of
Network topology. For space limitation, we concentrate on Additive Com-
binatorics, but the reader may find details and a bibliography in the recent
paper [15] concerning the other aspect.

Let Γ = (V,E) be a reflexive graph. The minimum of the objective
function |Γ(X)|−|X|, restricted to subsets X with |X| ≥ k and |V \Γ(X)| ≥
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k, the k-isoperimetric connectivity. Subsets achieving the above minimum
are called k-fragments. k-fragments with smallest cardinality are called
k-atoms. It was proved by the author in [7], that distinct k-atoms of Γ
intersect in at most k − 1 elements, if the size of the k-atom of Γ is not
greater than the size of the k-atom of Γ−1. Let 1 ∈ S be a finite generating
subset of a group G such that the cardinality 1-atom of the Cayley graph
defined by S is not greater than the cardinality 1-atom of the Cayley graph
defined by S−1. Then a 1-atom H containing 1 is a subgroup. The last
result applied to a group with a prime order is just the Cauchy-Davenport
Theorem. It has several other implications and leads to few lines proof
for result having very tedious proof using the classical transformations. In
particular, it was applied recently by the author [14] to a problem of Tao
[19].

In the abelian case, things are much easier. Assume that G is abelian
and let 1 ∈ H be a k-atom of the Cayley graph defined by S. If k = 1,
then H a subgroup (the condition involving S−1 is automatically verified).
In particular, there is a subgroup which is a 1-fragment. A maximal such
a group is called an hyper-atom. Assuming now that k = 2 and that
κ2 ≤ |S|−1. It was proved in [8] that either |H| = 2 or H is a subgroup. It
was proved also in [8] that either S is an arithmetic progression or there is
a non-zero subgroup which is a 1-fragment, if |S| ≤ (|G| + 1)/2. Let Q be
a hyper-atom of S and let φ : G !→ G/Q denotes the canonical morphism.
The author proved in [12] that φ(S) is either an arithmetic progression or
satisfies the sharp Vosper property (to be defined later) if |S| ≤ (|G|+1)/2.

Let G be an abelian group and let A,B be finite non-empty subsets
of G, with |A + B| = |A| + |B| − 1 − μ. Kneser’s Theorem states that
π(A + B) 
= {0}, where π(A + B) = {x : x + A + B = A + B}. The hard
Kemperman Theorem, which needs around half a page to be formulated,
describes recursively the subsets A and B if μ = 1. Its classical proof
requires around 30 pages. It was applied by Lev [18] to propose a dual
description, that looks easier to implement than Kemperman’s description.

The above structure isoperimetric results were used in [12, 13] to explain
the topological nature of Kemperman Theory and to give a shorter proof of
it. Our method involve few technical steps and use some duality arguments
and the strong isoperimetric property. We suspect that it could be drasti-
cally simplified. In this paper, we shall verify this hypothesis for Minkowski
sums of the form rS − sS, obtaining very simple proofs and tight descrip-
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tions. This case covers almost all the known applications. Also, Modern
Additive Combinatorics deals almost exclusively with rS − sS, c.f. [20].

The organization of the paper is the following:
Section 2 presents the isoperimetric tools, with complete proofs in or-

der to make the paper self-contained. In particular, this section contains
a proof of the fundamental property of k-atoms. In Section 3, we start
by showing the structure of 1-atoms of arbitrary Cayley graphs. We then
restrict ourselves to the abelian case. We give in this section an new sim-
plified proof for the structure theorem of 2-atoms. We deduce from it the
structure of hyper-atoms. In Section 4, we give easy properties of the de-
composition modulo a subgroup which is a fragment. Easy proofs of the
Kneser’s theorem and a Kemperman type result for kA are then presented.

In Section 5, we investigate universal periods for kS introducing a new
object: the sub-atom. It follows from a result by Balandraud [1] that
|TS| ≤ |T | + |S| − 2 implies that T + S + K = T + S, where K is the
final kernel of S (a subgroup contained in the atom of S described in [1]).
We shall prove that the kS + M = kS, if |kS| ≤ k|S| − k, where M is the
sub-atom. Clearly K ⊂ M. The case rS − sS, where r ≥ s ≥ 1, is solved
easily in Section 5, by showing that one of the following holds

• S is an arithmetic progression,

• |sS − rS| ≥ min(|G| − 1, (r + s)|S|),

• |H| ≥ 2 and sS− rS + H = sS− rS, where H is an hyper-atom of S.

Readers familiar with Kemperman Theory could appreciate the sim-
plicity of this result. In Section 6, we obtain the following description:

Let k ≥ 3 be an integer and let 0 ∈ S be a finite generating subset
of an abelian group G such that S is not an arithmetic progression, kS is
aperiodic and |kS| = k|S| − k + 1. Let H be a hyper-atom of S and let
S0 be a smaller H-component of S. Then (S \ S0) + H = (S \ S0) and
|kS0| = k|S0| − k + 1. Moreover φ(S) is an arithmetic progression, where
φ : G !→ G/H denotes the canonical morphism.

Necessarily |H| ≥ 2, since S is not an arithmetic progression.

2 Basic notions

Recall a well known fact:
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Lemma 1 (folklore) Let a, b be elements of a group G and let H be a finite
subgroup of G. Let A,B be subsets of G such that A ⊂ aH and B ⊂ Hb. If
|A|+ |B| > |H|, then AB = aHb.

Let H be a subgroup of an abelian group G. Recall that a H–coset is
a set of the a + H for some a ∈ G. The family {a + H; a ∈ G} induces a
partition of G. The trace of this partition on a subset A will be called an
H–decomposition of A.

By a graph, we shall mean a directed graph, identified with its underly-
ing relation. Undirected graphs are identified with symmetric graphs. We
recall the definitions in this context.

An ordered pair Γ = (V,E), where V is a set and E ⊂ V × V, will be
called a graph or a relation on V. Let Γ = (V,E) be a graph and let X ⊂ V.
The reverse graph of Γ is the graph Γ− = (V,E−), where E− = {(x, y) :
(y, x) ∈ E}. The degree (called also outdegree) of a vertex x is

d(x) = |Γ(x)|.

The graph Γ will be called locally-finite if for all x ∈ V, |Γ(x)| and |Γ−(x)|
are finite. The graph Γ is said to be r-regular if |Γ(x)| = r, for every x ∈ V.
The graph Γ is said to be r-reverse-regular if |Γ−(x)| = r, for every x ∈ V.
The graph Γ is said to be r-bi-regular if it is r-regular and r-reverse-regular.

• The minimal degree of Γ is defined as δ(Γ) = min{|Γ(x)| : x ∈ V }.

• We write δΓ− = δ−(Γ).

• The boundary of X is defined as ∂Γ(X) = Γ(X) \X.

• The exterior of X is defined as ∇Γ(X) = V \ Γ(X).

• We shall write ∂−Γ = ∂Γ− . This subset will be called the reverse-
boundary of X.

• We shall write ∇−Γ = ∇Γ− .

In our approach, Γ(v) is just the image of v by the relation Γ and Γ−(v)
requires no definition since Γ− is defined in Set Theory as the reverse of Γ.

An automorphism of a graph Γ = (V,E) is a permutation f of V such
that f(Γ(v)) = Γ(f(v)), for any vertex v. A graph Γ = (V,E) is said to be
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vertex-transitive if for any ordered pair of vertices there is an automorphism
mapping the first one to the second.

Let A,B be subsets of a group G. The Minkowski product of A with B
is defined as

AB = {xy : x ∈ A and y ∈ B}.
Let S be a subset of G. The subgroup generated by S will be denoted

by 〈S〉. The graph (G,E), where E = {(x, y) : x−1y ∈ S} is called a
Cayley graph. It will be denoted by Cay(G,S). Put Γ = Cay(G,S) and let
F ⊂ G. Clearly Γ(F ) = FS. One may check easily that left-translations
are automorphisms of Cayley graphs. In particular, Cayley graphs are
vertex-transitive.

Let Γ = (V,E) be a reflexive graph. We shall investigate the boundary
operator ∂Γ : 2V → 2V . When the context is clear, the reference to Γ will
be omitted. Since Γ is reflexive, we have in this case |∂(X)| = |Γ(X)|−|X|.

Let A ⊂ 2V be a family of finite subsets of V . We define the connectivity
of A as

κ(A) = min{|∂(X)| : X ∈ A}.
An X ∈ A with κ(A) = |∂(X)| will be called a fragment.
A fragment with a minimal cardinality will be called an atom.
Put

Sk(Γ) = {X : k ≤ |X| < ∞ and |Γ(X)| ≤ |V | − k }.

We shall say that Γ is k-separable if Sk(Γ) 
= ∅. In this case, we write

κk(Γ) = κ(Sk).

By a k-fragment (resp. k-atom), we shall mean a fragment (resp. atom)
of Sk. A k-fragment of Γ−1 is sometimes called a k-negative) fragment. This
notion was introduced by the author in [7]. A relation Γ will be called k-
faithful if |A| ≤ |V \Γ(A)|, where A is a k-atom of Γ. By a fragment (resp.
atom), we shall mean a 1-fragment (resp. 1- atom).

The following lemma is immediate from the definitions:

Lemma 2 [7] Let k ≥ 2 be an integer. A reflexive locally finite k-separable
graph Γ = (V,E) is a k − 1-separable graph, and moreover κk−1 ≤ κk.

Recall the following easy fact:
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Lemma 3 [7] Let Γ = (V,E) be a locally-finite k-separable graph and let
A be a k-atom with |A| > k. Then Γ−(x) ∩A 
= {x}, for every x ∈ A.

Proof: We can not have Γ−(x) ∩ A = {x}, otherwise A \ {x} would be a
k-fragment. �

The next lemma contains useful duality relations:

Lemma 4 [9] Let X and Y be k-fragments of a reflexive locally finite k-
separable graph Γ = (V,E). Then

∂−(∇(X)) = ∂(X), (1)

∇−(∇(X)) = X, (2)

Proof: Clearly, ∂(X) ⊂ ∂−(∇(X))

We must have ∂(X) = ∂−(∇(X)), since otherwise there is a y ∈
∂−(∇(X)) \ ∂(X). It follows that |∂(X ∪ {y})| ≤ |∂(X)| − 1, contradicting
the definition of κk. This proves (1).

Thus Γ−(∇(X)) = ∇(X) ∪ ∂−(∇(X)) = ∇(X) ∪ ∂(X) = V \ X, and
hence (2) holds.

Let Γ = (V,E) be a reflexive graph. We shall say that Γ is a Cauchy
graph if Γ is non-1-separable or if κ1(Γ) = δ − 1. h We shall say that Γ is a
reverse-Cauchy graph if Γ− is a Cauchy graph.

Clearly, Γ is a Cauchy graph if and only if for every X ⊂ V with |X| ≥ 1,

|Γ(X)| ≥ min
(
|V |, |X| + δ − 1

)
. �

Lemma 5 [7] Let Γ = (V,E) be a reflexive finite k-separable graph and let
X be a subset of V. Then

κk = κ−k. (3)

Moreover,

(i) X is a k-fragment if and only if ∇(X) is a k-reverse-fragment,

(ii) Γ is a Cauchy graph if and only if it is a reverse-Cauchy graph.
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Proof: Observe that a finite graph is k-separable if and only if its reverse is
k-separable. Take a k-fragment X of Γ. We have clearly ∂−(∇(X)) ⊂ ∂(X).
Therefore

κk(Γ) ≥ |∂(X)| ≥ |∂−(∇(X))| ≥ κ−k.

The reverse inequality of (3) follows similarly or by duality.

Suppose that X is a k-fragment. By (1) and (3), |∂−(∇(X))| = |∂(X)| =
κk = κ−k, and hence ∇(X) is a revere k-fragment. The other implication
of (i) follows easily. Now (ii) follows directly from the definitions. �

Theorem 6 [7] Let Γ = (V,E) be a reflexive locally-finite k-faithful k-
separable graph. Then the intersection of two distinct k-atoms X and Y
has a cardinality less than k. Moreover, any locally-finite k-separable graph
is either k-faithful or reverse k-faithful.

Proof:

∩ Y ∂(Y ) ∇(Y )

X R11 R12 R13

∂(X) R21 R22 R23

∇(X) R31 R32 R33

Assume that |X ∩ Y | ≥ k. By the definition of κk,

|R21|+ |R22|+ |R23| = κk

≤ |∂(X ∩ Y )|
= |R12|+ |R22|+ |R21|,

and hence

|R23| ≤ |R12|. (4)

Thus,

|∇(X) ∩∇(Y )| = |∇(Y )| − |R13| − |R23|
≥ |Y | − |R13| − |R12|
= |X| − |R13| − |R12| = |R11| ≥ k.

Thus,
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|R12|+ |R22|+ |R32| = κk

≤ |∂(X ∪ Y )|
≤ |R22|+ |R23|+ |R32|,

and hence |R12| ≤ |R23|, showing that |R12| = |R23|.
It follows that

κk ≤ |∂(X ∩Y )| ≤ |R12|+ |R22|+ |R21| ≤ |R12| ≤ |R23|+ |R22|+ |R21| = κk,

showing that X ∩ Y is a k-fragment, a contradiction.

The fact that a locally-finite k-separable graph is either k-faithful or
reverse k-faithful follows by Lemma 5. �

3 A structure Theory for atoms

In the sequel, we identify Cay(〈S〉, S) with S, if 0 ∈ S. We shall even
work with subsets not containing 1. By κk(S) we shall mean κk(S − a) =
κk(Cay(〈S−〉, S−a)), for some a ∈ S. As an exercise, the reader may check
that this notion does not depend on a particular choice of a ∈ S.

Theorem 7 [6] Let 1 ∈ S be a finite proper generating subset of a group
G. Let 1 ∈ H be a 1-atom of S.

(i) If S is 1–faithful, then H is a subgroup. Moreover |H| divides κ1(S).

(ii) If G is abelian and if S is k-separable, then S is k-faithful.

(iii) If G is abelian, then H is a subgroup.

Proof: Take an element x ∈ H. Clearly xH is a 1-atom. Since (xH)∩H 
=
∅, we have by Theorem 6, xH = H. Since H is finite, H is a subgroup.
Now κ1(S) = |HS| − |H|, showing the last part of (i).

If G is abelian, then Cay(G,S) is isomorphic to Cay(G,−S), and hence
S is k-faithful if S is k-separable. Now (iii) follows by combining (i) and
(ii). �
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Theorem 8 [8] Let S be a finite generating 2–separable subset of an abelian
group G with 0 ∈ S and κ2(S) ≤ |S|−1. If 0 ∈ H is a 2–atom with |H| ≥ 3,
then H is a subgroup.

Proof: The proof is by induction. Assume first that H+Q = H, where Q is
a non-zero subgroup. For every, x ∈ H, we have |(H+x)∩H| ≥ |x+Q| ≥ 2.
By Theorems 7 and 6, H +x = H. It follows that H is a subgroup. Assume
now that H is aperiodic. Let us first show that κ1(H) = |H| − 1. Suppose
the contrary and take a 1-atom L of H with 0 ∈ L. By Theorem 7, L
is a subgroup and |L| ≤ κ1(H). Take a nonzero element y ∈ L. We have
|H ∪ (y + H)| ≤ |L + H| = |L| + κ1(H) ≤ 2κ1(H) ≤ 2|H| − 4. Thus,
|H ∩ (y + H)| ≥ 2, and hence y + H = H, by Theorem 6.

Take an N -decomposition S =
⋃

1≤i≤s
Si, with |S1 +H| ≤ · · · ≤ |Ss +H|.

Without loss of generality, we may take 0 ∈ S1. We have necessarily s ≥ 2.
We must have |Si| = |N |, for all i ≥ 2. Suppose the contrary. By the
definition of κ1, we have |S1 +H| ≥ |S1|+κ1(H) = |S1|+ |H|− 1. We have
also, since H generates N, |Si + H| ≥ |S1|+ 1. Thus, |S + H| ≥ |S|+ |H| −
1+1 ≥ |S|+ |H|, a contradiction. Now we have |X +S| = |S \S1|+ |X +S1,
for any subset X of N. In particular, H is a 2-atom of S1. If |S1| < |S|, the
result holds by Induction. It remains to consider the case s = 1.

The relation |H + S| − |H| ≤ |S| − 1 implies that κ2(H) ≤ |H| − 1. By
Lemma 3, for every x ∈ H, there sx ∈ S \ {0}, with x− sx ∈ H. We must
have

|H| ≤ |S| − 1,

otherwise there are distinct elements x, y ∈ H and an element s ∈ S \ {0}
such that x− s, y − s ∈ H. It follows that |(H + s) ∩H| ≥ 2. By Theorem
6, H + s = H, a contradiction.

Let 0 ∈ M be a 2-atom of H. Take a non-zero element a ∈ M. Since
κ2(H) = |M + H| − |M |, |M | divides κ2(H) if M is a subgroup. Thus,
the Induction hypothesis implies that |M | ≤ |H| − 1. Since |M + H| ≤
|M | + κ2(H) ≤ 2|H| − 2, we have |H ∩ (H + a)| ≥ 2. By Theorem 6,
H + a = H, a contradiction. �

Theorem 9 ([8],Theorem 4.6) Let S be a 2–separable finite subset of an
abelian group G such that 0 ∈ S, |S| ≤ (|G| + 1)/2 and κ2(S) ≤ |S| − 1.
If S is not an arithmetic progression, then there is a subgroup which is a
2–fragment of S.
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Proof: Suppose that S is not an arithmetic progression.
Let H be a 2–atom such that 0 ∈ H. If κ2 ≤ |S| − 2, then clearly

κ2 = κ1 and H is also a 1–atom. By Theorem 7, H is a subgroup. Then
we may assume

κ2(S) = |S| − 1.

By Theorem 8, it would be enough to consider the case |H| = 2, say
H = {0, x}. Put N = 〈x〉.

Decompose S = S0 ∪ · · · ∪ Sj modulo N , where |S0 + H| ≤ |S1 + H| ≤
· · · ≤ |Sj + H|. We have |S|+ 1 = |S + H| = ∑

0≤i≤j
|Si + {0, x}|.

Then |Si| = |N |, for all i ≥ 1. We have j ≥ 1, since otherwise S
would be an arithmetic progression. In particular, N is finite. We have
|N + S| < |G|, since otherwise |S| ≥ |G| − |N |+ 1 ≥ |G|+2

2 , a contradiction.
Now

|N |+ |S| − 1 = |N |+ κ2(S)

≤ |S + N | = (j + 1)|N |
≤ |S|+ |N | − 1,

and hence N is a 2-fragment. �

Theorem 9 was used to solve Lewin’s Conjecture on the Frobenius num-
ber [10].

A H–decomposition A =
⋃
i∈I

Ai will be called a H–modular-progression

if it is an arithmetic progression modulo H.
Recall that S is a Vosper subset if and only if S is non 2–separable or

if κ2(S) ≥ |S|.

Theorem 10 [12] Let S be a finite generating subset of an abelian group
G such that 0 ∈ S, |S| ≤ (|G|+1)/2 and κ2(S) ≤ |S|−1. Let H be a hyper-
atom of S. Then φ(S) is either an arithmetic progression or a Vosper
subset, where φ is the canonical morphism from G onto G/H.

Proof: Let us show that

2|φ(S)| − 1 ≤ |G|
|H| . (5)

Clearly we may assume that G is finite.
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Observe that 2|S + H| − 2|H| ≤ 2|S| − 2 < |G|. It follows, since|S + H|
is a multiple of |H|, that 2|S + H| ≤ |G|+ |H|, and hence (5) holds.

Suppose now that φ(S) is not a Vosper subset. By the definition of a
Vosper subset, φ(S) is 2–separable and κ2(φ(S)) ≤ |φ(S)| − 1.

Let us show that φ(S) has no 1–fragment M which is a non-zero sub-
group. Assuming the contrary. We have |φ(φ−1(M) + S)| = |M + φ(S)| ≤
|M | + |φ(S)| − 1. Thus, |φ−1(M) + S| ≤ |φ−1(M)| + |H|(|φ(S)| − 1) =
|φ−1(M)| + κ1(S). It follows that φ−1(M) is a 1-fragment. By the max-
imality of H, we have |M | = 1, a contradiction. By (5) and Theorem 9,
φ(S) is an arithmetic progression. �

4 Decomposition modulo a fragment

Let H be a subgroup of an abelian group G. Recall that a H–coset is a
set of the a + H for some a ∈ G. The family {a + H; a ∈ G} induces a
partition of G. A non-empty set of the form A ∩ (x + H) will be called
a H-component of A. The partition of A into its H-components will be
called a H-decomposition of A. By a smaller component, we shall mean a
component with a smallest cardinality.

Assume now that H is 1-fragment and take a H-decomposition S =
S0 ∪ · · · ∪ Su, with |S0| ≤ · · · ≤ |Su|.

We have |S| − 1 ≥ κ(S) = |H + S| − |H|.
It follows that for i ≥ 1, we have

2|H| − |S0| − |Si| ≤ |H + S| − |S| ≤ |H| − 1,

and hence |S0|+ |Si| ≥ |H|+ 1. In particular,

for all (i, j) 
= (0, 0), |Si|+ |Sj| ≥ |H|+ 1, hence

Si + Sj + H = Si + Sj,

by Lemma 1.

Thus

(S \ S0) + S = (S \ S0) + H + S.

Similarly

((S \ S0))− S = (S \ S0) + H − S.
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Since S0 − S0 ⊂ S1 − S1 = H, we have

S − S + H = S − S.

In particular, (kS \ kS0) + H = kS \ kS0.

Proposition 11 Let S0 denotes a smaller H-component of S, where H is
a non-zero subgroup fragment. We have S − S + H = S − S. Let 2 ≤ k be
an integer. Then (S \S0)+(k−1)S is H-periodic subset with cardinality at
least min(|G|, k|S + H| − k|H|). If kS + H 
= kS, then |S1| > |H|/2 ≥ |S0|,
and |kS| ≥ k|S + H| − k|H| + |kS0|. Moreover kS0 is aperiodic if kS is
aperiodic.

Proof: The first part was proved above. By the definition of κ, we have
|(S \ S0) + (k − 1)S| = |(S \ S0)H + (k − 1)S| ≥ u|H| + (k − 1)κ =
k|S + H| − k|H|.

Assume now that kS + H 
= kS. we have kS0 
= kS0 + H, and hence
2S0 
= 2S0 + H, since (S \ S0) + (k − 1)S is H-periodic. By Lemma 1,
|H|/2 ≥ |S0|. We have now |S1| ≥ |H|+1−|S0| ≥ |H|/2+1. We must also
have kS0∩((S\S0)+(k−1)S) = ∅. Thus, |kS| ≥ |(S\S0)+(k−1)S|+|kS0| ≥
k|S + H| − k|H|+ |kS0|.

Assume now that kS is aperiodic. Since (S\S0)+(k−1)S is H-periodic
and since the period of kS0 is a subgroup of H, necessarily kS0 is aperiodic.
�

Corollary 12 ( Kneser, [17]) Let k be a non-negative integer and let S
be a finite subset of an abelian group G. If kS is aperiodic, then |kS| ≥
k|S| − k + 1

Proof: Let H be a 1-atom containing 0. By Theorem 7, H is subgroup.
Let S0 denotes a smaller H-component of S. Without loss of generality we
may assume that 0 ∈ S0. We may assume κ(S) ≤ |S| − 2, since otherwise
|kS| ≥ |S|+ (k − 1)κ(S) = k|S| − k + 1, and the result holds.

By Proposition 11, kS0 is aperiodic. By the Induction hypothesis and
Proposition 11, |kS| = |kS0|+(k− 1)(|S +H|− |H|) ≥ k|S0|− k +1+(k−
1)(|S + H| − |H|) ≥ k|S| − k + 1. �

We shall now complete Proposition 11 in order to deal with the critical
pair Theory.
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Proposition 13 Let 2 ≤ k be an integer. Let S0 denotes a smaller H-
component of S, where H is a non-zero subgroup fragment kS + H 
= kS.
Assume moreover that kS is aperiodic and |kS| = k|S| − k + 1. Then

(i) kS0 is aperiodic,

(ii) |kS0| = k|S0| − k + 1,

(iii) (S \ S0) + H = S \ S0 and

(iv) |k(S + H)| = k|S + H| − k|H|+ |H|.

Proof: (i) follows by Proposition 11. By Kneser Theorem and Proposition
11,

k|S| − k + 1 = |kS| ≥ |kS0|+ |(k − 1)S + (S \ S0)|
≥ |kS0|+ k|S + H| − k|H|
≥ k|S0| − k + 1 + k|S + H| − k|H| ≥ k|S| − k + 1.

In particular, the inequalities used are equalities and hence (ii) holds and
|S| = |S + H| − |H| + |S0|, proving (iii). Also, it follows that |kS + H| =
|(k − 1)S + (S \ S0)|+ |H| = k|S + H| − k|H|+ |H|, proving (iii). �

We can deduce now a Kemperman type result for kS.

Corollary 14 Let k ≥ 2 be an integer and let S be a finite subset of an
abelian group G such that kS is aperiodic and |kS| = k|S| − k + 1. There
is a non-zero subgroup H such (S \ S0) + H = (S \ S0), where S0 is an H-
component of S. Also, |kS0| = k|S0| − k + 1 and |kφ(S)| = k|φ(S)| − k + 1,
where φ : G !→ G/H denotes the canonical morphism. Moreover one of the
following holds:

• S0 is an arithmetic progression,

• k = 2 and S0 = x− ((S0 + H) \ S0), for some x.

Proof: Take a non-zero subgroup H with minimal cardinality such k(S +
H) = k|S + H| − k|H| + |H| and (S \ S0) + H = (S \ S0), where S0 is an
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H-component of S. Notice that G is such a group. Since the period of kS0

is a subgroup of H, kS0 is aperiodic and hence

|kS0| = k|S0| − k + 1,

using the relation |kS| = k|S| − k + 1.
Observe that S0 can not have a fragment non-zero subgroup Q. Other-

wise we have by Proposition 11, k(S0 + Q) = k|S0 + Q| − k|Q| + |Q| and
(S0 \T0)+Q = (S0 \T0), where T0 is a Q-component of S0. It would follow
that k(S + Q) = k|S + Q| − k|Q| + |Q| and (S \ T0) + Q = (S \ T0), a
contradiction. Let H0 be the subgroup generated by S0 − S0. By Theorem
9, either (i) holds or one of the following holds:

• S0 is non 2-separable. We have necessarily |2S0| = |H0| − 1. Take
a ∈ S0 and put {b− a} = H0 \ (2(S0− a)). Necessarily b− (S0− a) =
H0 \ (S0 − a), and thus b− S0 = H0 + a \ (S0) = (S0 + H0) \ S0.

• S0 is a 2-separable Vopser subset. We must have k = 2, otherwise
The condition |2S0| ≥ min(|H0|−1, 2|S0|). But |H0| ≥ |kS0| ≥ 2|S0|+
|S0|−1 ≥ 2|S0|+1, observing that S0 is not an arithmetic progression.
By Kneser’s Theorem, |kS0| ≥ k|S0| − k + 2, a contradiction. Since
|2S0| = 2|S0| − 1 and since S0 is a Vosper subset, we have necessarily
|2S0| = |H0| − 1. Take a ∈ S0 and put {b − a} = H0 \ (2(S0 − a)).
Thus, b− (S0 − a) = H0 \ (S0 − a), and hence

b + a− S0 = (H0 + a) \ S0 = (S0 + H0) \ S0. �

In the above result, the structure of S is completely determined by
the structure of S0 and by the structure of φ(S). Unfortunately kφ(S) is
sometimes periodic. In order transform the last result, we investigate the
S, where kS is periodic and where one element has a unique expressible
element. The methods of Kemperman solve very easily this question, as
shown in [12].

The hyper-atomic approach avoids the last difficulty and lead to a sim-
pler description, as we shall see later.

5 Universal periods

Let T and S be finite subsets of an abelian group. It follows from a result
by Balandraud that |TS| ≤ |T |+ |S| − 2 implies that T + S has a universal
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period contained in the atom of S. We shall construct a universal period
for kS which is bigger in general.

We shall first prove that S − S has a universal period containing the
atom if S is not an arithmetic progression and if |S − S| is not very big.

Theorem 15 Let r ≥ s ≥ 1 be integers and let S be a finite subset of
an abelian group G and let H be a hyper-atom of S. One of the following
holds:

(i) S is an arithmetic progression,

(ii) |sS − rS| ≥ min(|G| − 1, (r + s)|S|),

(iii) The hyper-atom H is a non-zero-subgroup and sS−rS+H = sS−rS.

Proof: Assume that (i) and (ii) do not hold. It follows that S is 2-separable
and non-vosperian. Let H be a hyper-atom of S. By Theorem 9, |H| ≥ 2.
By Proposition 11, S −S + H = S −S. Therefore, sS− rS + H = sS− rS.
�

Proposition 11 suggests a very simple method giving another universal
period for kS containing necessarily Balandraud period.

Let H be a subgroup fragment of S. An H-component S0 of S will be
called desertic component if |S0| ≤ |H|/2. By Proposition 11, the desertic
component is unique if it exists. We shall say that S is a desert if it has a
desertic component.

Given a subset A, with κ(A) ≤ |A| − 2. We define a desert sequence
A0, · · · , A�, verifying the following conditions:

• A0 = A,

• Ai+1 is a desert for 0 ≤ i ≤ �− 1,

• A� is not a desert.

Such a sequence exists and is unique, since Proposition 11 asserts that
Ai is unique for 1 ≤ i ≤ �. The sequence must end since Hi is a finite group
with size < |Hi−1|/2. The sub-atom M of A is defied as M = H� if H� is
non-zero. Otherwise M = H�−1. In particular, the sub-atom is a non-zero
subgroup.
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Theorem 16 Let k be a non-negative integer and let S be a finite subset
of an abelian group G. If |kS| ≤ k|S| − k, then

kS + M = kS,

where M is the sub-atom of S.

Proof: We use the last notations. The proof is by induction on �. We have
κ1(S) ≤ |S|−2, and hence |H0| ≥ 2. By Proposition 11, (S\S0)+(k−1)S is
H-periodic. We may assume that kS0∩ ((S \S0)+(k−1)S) = ∅, otherwise
kS is H0-periodic. Proposition 11, |kS| = |kS0| + |(S \ S0) + (k − 1)S| ≥
k|S0| − k + 1 + ku|H| ≥ k|S| − k + 1. In particular, |kS0| ≤ k|S0| − k.
Notice that S and S0 have the same sub-atom. By the induction hypothesis
kS0 + M = kS0. It follows that kS + M = kS. �

6 Hyper-atoms and the critical pair Theory

Applications of hyper-atoms to the critical pair theory where first obtained
in [12]. A more delicate notion of hyper-atoms was introduced in [13].

Theorem 17 Let k ≥ 2 be an integer and let S be a finite subset of an
abelian group G such that S is not an arithmetic progression, kS is aperiodic
and |kS| = k|S| − k + 1. Let H be a hyper-atom of S and let S0 be a
smaller H-component of S. If |2S| 
= |G| − 1, then |H| ≥ 2. Moreover,
(S \ S0) + H = (S \ S0) and |kS0| = k|S0| − k + 1. Also, either φ(S) is an
arithmetic progression or k = 2 and one of the following holds:

1. S = x− (G \ S), for some x.

2. (φ(S)−φ(S0))∩(φ(S0)−φ(S)) = {φ(0)}, where φ : G !→ G/H denotes
the canonical morphism.

Proof: By Kneser’s Theorem and since 2S is aperiodic, we have |2S| =
2|S| − 1. Take an H-decomposition S = S0 ∪ · · · ∪ Su.

Assume first that S is non-2-separable. This forces |2S| = |G|−1. Then
necessarily k = 2, otherwise 3S = G, by Lemma 1. Put 2S = G \ {x}. We
have clearly (x − S) ∩ S = ∅. Clearly (1) holds. Assume now that S is
2-separable. By Theorem 9, |H| ≥ 2.
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By Proposition 13, (S \ S0) + H = (S \ S0) and |kS0| = k|S0| − k + 1.
Assume now that φ(S) is not an arithmetic progression. By Theorem

10, φ(S) is a Vosper subset.
Thus, |φ(G)|−1 < 2|φ(S)|−1, otherwise |φ((S \S0)+S)| ≥ 2|φ(S)|−1,

and hence |(S \ S0) + S| ≥ 2u|H| + |H| ≥ 2|S|, a contradiction. Thus,
|φ(G)| = 2|φ(S)| − 1. In this case, k = 2 and 2φ(S) = φ(G). Necessarily,
2φ(S0) is uniquely expressible in 2φ(S). In other words (φ(S) − φ(S0)) ∩
(φ(S0)− φ(S)) = {φ(0)}. �

Corollary 18 Let k ≥ 3 be an integer and let S be a finite subset of an
abelian group G such that S is not an arithmetic progression, kS is aperiodic
and |kS| = k|S|−k+1. Let H be a hyper-atom of S and let S0 be a smaller
H-component of S. Then (S \S0)+H = (S \S0) and |kS0| = k|S0|− k +1.
Moreover φ(S) is an arithmetic progression, where φ : G !→ G/H denotes
the canonical morphism.
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that remain connected after failure of a vertex and its neighbors. J.
Graph Theory, accepted.

[16] J. H. B. Kemperman. On small sumsets in Abelian groups. Acta Math.,
103:66–88, 1960.

[17] M. Kneser. Summenmengen in lokalkompakten abelesche Gruppen,
Math. Zeit., 66:88–110, 1956.

[18] V. F. Lev. Critical pairs in abelian groups and Kemperman’s structure
theorem. Int. J. Number Theory, 2(3): 379–396, 2006.

[19] T. Tao. An elementary non-commutative Freiman theorem.
http://terrytao.wordpress.com/2009/11/10

/an-elementary-non-commutative-freiman-theorem.

282



Topology of Cayley graphs
applied to inverse additive problems Y. O. Hamidoune

[20] T. Tao, V.H. Vu. Additive Combinatorics, Cambridge Studies in Ad-
vanced Mathematics 105, Cambridge University Press, 2006.

[21] G. Vosper. The critical pairs of subsets of a group of prime order. J.
London Math. Soc., 31:200–205, 1956.

283






