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Abstract

The paper focuses on robust estimation and forecasting techniques for grouped binary data with
misclassified responses. It is assumed that the data are described by the beta-mixed hierarchical
model (the beta-binomial or the beta-logistic), while the misclassifications are caused by the
stochastic additive distortions of binary observations. For these models, the effect of ignoring the
misclassifications is evaluated and expressions for the biases of the method-of-moments estimators
and maximum likelihood estimators, as well as expressions for the increase in the mean square error
of forecasting for the Bayes predictor are given. To compensate the misclassification effects, new
consistent estimators and a new Bayes predictor, which take into account the distortion model, are
constructed. The robustness of the developed techniques is demonstrated via computer simulations
and a real-life case study.
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1 Introduction

Grouped binary data frequently arise in longitudinal studies that are carried out over a
group of similar objects (Diggleet al.2002). A natural way to describe this kind of data
is using the binomial model (Collet 2002). However, the binomial model often leads
to inaccurate statistical inference due to the so called “over-dispersion” effects (Brooks
2001). These effects may occur for two main reasons (Neuhaus 2002): (i) intergroup
correlation, i.e. violation of the independence assumption of the experiment outcomes
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for a particular object, and (ii) intragroup correlation caused by the heterogeneity among
objects. So, special “random effects” models are used to describe the heterogeneity and
correlated outcomes (Coull and Agresti 2000).

The beta-mixed hierarchical models of grouped binary data are widely used in
practical applications when information about experimentconditions is not available.
The most popular models of this class are the beta-binomial model (BBM) that supposes
that the data on object properties are not available, and thebeta-logistic model (BLM)
that supposes that they are known. The BBM was originally proposed by Pearson (1925),
formalized by Skellam (1948) and is associated with many useful results in applied
statistics due to its conjugate property (Prentice 1988) that allows avoiding numerical
integration while using Bayes approach for forecasting of response probabilities (Slaton
et al.2000). The BLM is an extension of the BBM that was proposed by Heckman and
Willis (1977); it is widely used in economics, biometrics, political sciences and other
applications (Pfeifer 1998; Nathan 1999).

In real life, the observed binary outcomes are often misclassified (Neuhaus 1999),
and the classical statistical procedures that are optimal for the hypothetical model may
lose their “good” properties under distortions (Kharin 1996). Hence, it is important
to analyze the sensitivity of the classical estimators and predictors w.r.t. response
misclassifications and, if needed, to develop new statistical procedures that are robust to
these distortions (Huber 1981; Hampelet al.1986). Although a number of papers have
been published on robustness of the linear mixed model (Gill2001), logistic regression
(Kordzakhiaet al. 2001), binomial model (Ruckstuhl and Welsh 2001), inference for
dichotomous survey data (Gaba and Winkler 1992), and on the Bayesian identifiability
problem of multinimial data with misclassifications (Swarzt et al. 2004), these results
can not be directly applied to the grouped binary data due to their specific property.

The literature review shows that little research has been done on investigation
the robustness issue for the special models of the grouped binary data. The major
contribution to this domain has been done by Neuhaus, who hasextended his general
results for the binary regression models under response misclassifications (Neuhaus
1999) to the clustered and longitudinal binary data case. Inhis recent work, Neuhaus
(2002) obtained expressions for the parameter bias and developed methods for consistent
estimation for the population-averaged models (Liang and Zeger 1986). He also
examined a special case of the cluster-specific models (Zeger and Karim 1991),
the logistic normal model, which is an extension of the logistic regression to the
grouped binary data case. However, as noted by Neuhaus (2002), “the derivation of
bias expressions for nonlogistic links will require a different approach than for the
logistic” since the specific property of the logistic link function was used to obtain the
expressions.

This paper focuses on the robustness issues for the beta-mixed hierarchical models
under stochastic additive distortions of binary observations. These models belong to
the cluster-specific type but have not been addressed in the related works yet. The
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remainder of the paper is organized as follows. Section 2 is devoted to the problem
statement and definition of the related mathematical models. Section 3 concentrates
on the robust estimation of the beta-binomial model parameters, while Section 4 deals
with the same problem for the beta-logistic model. Section 5is dedicated to the robust
forecasting based on the beta-mixed hierarchical models (both beta-binomial and beta-
logistic ones). Section 6 presents an application example and evaluation of the developed
methods for a real-life case study. Finally, Section 7 summarizes the main contributions
of the paper.

2 Mathematical models and research problems

Let us considerk clusters with the covariatesZi ∈ Rm, i = 1, . . . , k, and let Bi =

(Bi1, Bi2, . . . , Bini ) ∈ {0,1}ni be the binary responses ofni Bernoulli trials over the cluster
i. Let us also assume that the following two assumptions hold.
A1. Within the clusteri, the success probabilitypi is a random variable that follows the

beta distribution with the true unknown parametersα0
i = fα(Zi), β0

i = fβ(Zi),
where fα(.) : Rm→ R+, fβ(.) : Rm→ R+.

A2. Random variablesp1, p2, . . . , pk are independent in total.
Let us refer to the defined above data model as the beta-mixed hierarchical model of
the grouped binary data. In this paper, we focus on two modelsof this type that are
frequently used in practical applications (the beta-binomial and the beta-logistic), which
are specified as follows:

BBM: fα(Zi) = α0, fβ(Zi) = β0, ni = n;
model parameters:n ∈ N, α0, β0 ∈ R .

BLM: fα(Zi) = exp(ZT
i a0), fβ(Zi) = exp(ZT

i b0);
model parameters:n1, . . . ,nk ∈ N, a0,b0 ∈ Rm.

For the BBM, it is assumed that the number of Bernoulli trialsni = n is the same for
all clusters andn is known a priori. Estimation of the remaining BBM parametersα0, β0

is performed (Tripathiet al.1994) using the method of moments (explicit expressions)
or the method of maximum likelihood (numerical algorithm).For the BLM, the number
of Bernoulli trials ni may vary across the clusters and is also known a priori, while
the other parametersa0,b0 are estimated using the maximum likelihood numerical
algorithm (Slatonet al.2000).

One of the main problems for the grouped binary data that is strongly motivated by
practical applications, is the forecasting of the success probabilitiesp1, . . . , pk for for the
future trials using the past binary outcomesB = {B1, . . . , Bk} obtained for small sample
sizesni that are too small to have accurate traditional estimator ˆpi = n−1

i x0
i (Collet 2002).

For the beta-mixed hierarchical models, this problem is solved via the Bayes predictor
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function (Diggleet al.2002)

p̃i(x
0
i ) = (α0

i + x0
i )/(α0

i + β
0
i + ni), (1)

wherex0
i =
∑ni

j=1 Bi j , i = 1,2, . . . , k, are the sums of the binary outcomes within the
cluster. This predictor ensures the minimal mean square error of forecasting when the
consistent estimators of the model parameters{α0

i , β
0
i } are used.

Suppose now that the original binary dataB are contaminated by the stochastic
additive binary distortions{ηi j }, and we observe the distorted binary responsesB̃

B̃i j = Bi j ⊕ ηi j (2)

with the misclassifications defined as

P{B̃i j = 1|Bi j = 0} = ε0, P{B̃i j = 0|Bi j = 1} = ε1, (3)

where⊕ is the modulo 2 sum, andε0, ε1 ≪ 1 are the distortion levels which can be
either known or unknown (Copas 1988). In this settings, two main research problems
arise:

(i) Evaluation of the effects of ignoring the misclassifications for the classical model
parameter estimation techniques and response probabilityforecasting methods.

(ii) Construction of new estimation and prediction methods, which take into account
the distortion model and compensate the misclassification effect.

In the remaining sections, these problems are solved separately for the BBM
and BLM parameter estimation, while the forecasting is examined and enhanced
simultaneously for both of them. For the first problem, the estimation bias and the
increase in the mean square error of forecasting are evaluated via asymptotic expansions.
For the second one, new estimation and forecasting methods,which are based on the
obtained probability distribution of the distorted data, are proposed.

It should be noted that for the BBM (Section 3), the paper considers the case of equal
group sizes since it is typical for many application areas that exploit this model. The
assumptionni = n allows obtaining simple expressions and helps to develop intuition
about the distortions influence on the BBM inference. However, the results for the BBM
with different{ni} can be easily obtained as a special case of the BLM results (Section
4), where the covariates{Zi} are the same for all clusters.

For further convenience, let us introduce the following notation: MM-estimator –
the method of moments estimator, ML-estimator– the method of maximum likelihood
estimator,o(ε), O(ε) –Landau symbols forε → 0, Yn = OP(Zn)– probability Landau
symbol for random sequencesYn,Zn ∈ R. The detailed definition ofOP(.) and the proofs
of theorems are given in Mathematical Appendix.
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3 Robust estimation of the beta-binomial model

Distorted beta-binomial distribution. Let xi be the number of successes for thei-th
cluster:xi =

∑ni

j=1 B̃i j , i = 1, . . . , k. The following theorem defines the probability
distribution of the random variablexi under the distortions (2), (3).

Theorem 1 The probability distribution of the distorted beta-binomial random variable
xi can be represented as a weighted sum

Pr (α, β, ε0, ε1) =
n∑

s=0

wrs(ε0, ε1) · P0
s(α, β), (4)

where{P0
s} are the non-distorted probabilities for the BBM with the parameters n, α, β

P0
s(α, β) =

(
n
s

)
B(α + s, β + n− s)

B(α, β)
,

B(.) is the complete beta function, and the weights for the distortion levelsε0, ε1 are
computed as

wrs(ε0, ε1) =
min(n,s+r)∑

l=max(s,r)

(
s

l − r

) (
n− s
l − s

)
εl−s

0 (1−ε0)n−l εl−r
1 (1−ε1)s+r−l , s, r = 0,1, . . . ,n.

Using this theorem, it can be proved that the mean and variance of the distribution
(4) are

E{xi} = ε0
nβ
α + β

+(1−ε1)
nα
α + β

, V{xi} = ε0(1−ε0)
nβ
α + β

+ε1(1−ε1)
nα
α + β

+(1−ε0−ε1)2·V0,

whereV0 = (nαβ(α+β+n))/((α+β)2(α+β+1)) is the variance of the non-distorted BBM.
Let us refer to the distribution (4) as the distorted beta-binomial distribution (DBBD)
with the parametersn, α, β, ε0, ε1.

As follows from the theorem proof (see Appendix), the weights wrs can be treated
as the probabilities that the distorted valuer was originated from the non-distorted sum
of the binary outcomess. It should be noted that whenε0 = ε1 = 0, the proposed
distribution (4) is identical to the classical beta-binomial distribution (BBD) with the
parametersn, α, β, and the weight matrixW = (wrs) is the identity one. If the distortion
levels are small, the matrixW can be approximated by the asymptotic expansion

W(ε0, ε1) = I +W′ε0 · ε0 +W′ε1 · ε1 + o(ε0, ε1), (5)
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whereI is the identity matrix, and the matricesW′ε0, W′ε1 are calculated as

W′ε0 =



−n 0 0 . . . 0
n −(n− 1) 0 . . . 0
0 n− 1 −(n− 2) . . . 0
...

...
...
. . .

...

0 0 0 . . . 0



, W′ε1 =



0 1 0 . . . 0
0 −1 2 . . . 0
0 0 −2 . . . 0
...

...
...
. . .

...

0 0 0 . . . −n



.

The expression (5) allows obtaining the following asymptotic relation between the
distortedPr (ε0, ε1) and the originalP0

r probabilities

Pr (ε0, ε1) = P0
r +
(
(n− r + 1)P0

r−1 − (n− r)P0
r

)
· ε0 +

(
(r + 1)P0

r+1 − rP0
r

)
· ε1 + o(ε0, ε1),

(6)

whereP0
−1 = P0

n+1 = 0. This expression can be employed to assess the sensitivityof
the beta-binomial distribution to the distortions (2), (3). In the following subsection, the
result of Theorem 1 and the expression (6) are used to evaluate the sensitivity of the
classical BBM estimators.

Robustness of the classical estimators. Let α0, β0 be the true unknown values of the
BBM parameters, and let∆α̃(ε0, ε1),∆β̃(ε0, ε1) be the biases of the parameter estimators
that ignore the misclassifications with the levelsε0, ε1. The following theorems evaluate
the robustness of the classical MM and ML-estimators via their biases w.r.t. the
distortion levels.

Theorem 2 The bias of the classical MM-estimator of the BBM parameters, which
ignores the misclassifications, satisfies the following asymptotic expansion

(
∆α̃MM

∆β̃MM

)
=

(
α0 + 2β0 + 1 α0(α0 + 1)/β0

β0(β0 + 1)/α0 2α0 + β0 + 1

)
·
(
ε0
ε1

)
+

(
o(ε0, ε1) +OP(1/

√
k)

o(ε0, ε1) +OP(1/
√

k)

)
. (7)

Theorem 3 The bias of the classical ML-estimator of the BBM parameters, which
ignores the misclassifications, satisfies the asymptotic expansion

(
∆α̃ML

∆β̃ML

)
=

(
H11 H12

H21 H22

)−1 (
G11 G12

G21 G22

)
·
(
ε0
ε1

)
+

(
o(ε0, ε1) +OP(1/

√
k)

o(ε0, ε1) +OP(1/
√

k)

)
, (8)

where explicit expressions for the matrices H, G are given inMathematical Appendix.

As follows from these theorems, the classical MM and ML-estimators of the BBM
parameters become biased and inconsistent under the distortions. Expressions (7), (8)
allow assessing the sensitivity of these estimators to the misclassifications (3). Let us
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now construct consistent and unbiased estimators that takeinto account the distortion
model (2), (3).

Robust estimation in the case of known distortion levels. Let us consider the case
when the distortion levelsε0, ε1 are known a priori. Denote the empirical moments
of the orderr as m∗r = k−1∑k

i=1 xr
i . The following theorems define consistent and

asymptotically unbiased MM and ML-estimators for the case of knownε0, ε1.

Theorem 4 The consistent and asymptotically unbiased MM-estimator,which takes
into account the distortion model (2), (3), is expressed as

α̂MM =
δα(m∗1, ε0) · µ(m∗1,m

∗
2, ε0, ε1)

∆(m∗1,m
∗
2, ε0, ε1)

, β̂MM =
δβ(m∗1, ε1) · µ(m

∗
1,m

∗
2, ε0, ε1)

∆(m∗1,m
∗
2, ε0, ε1)

, (9)

where

δα = m∗1 − nε0, δβ = n−m∗1 − nε1, µ = m∗1n−m∗2 − (ε0δβ +m∗1ε1)(n− 1),

∆ = (1−ε1−ε0)
(
m∗2n−m∗1n−m∗21 (n− 1)

)
.

Theorem 5 The consistent and asymptotically unbiased ML-estimator,which takes into
account the distortion model (2), (3), can be derived by applying the classical ML-
estimator to the filtered empirical probabilities

P̂0
r =

n∑

l=0

υrl (ε0, ε1) · P̂l(ε0, ε1), (10)

where {P̂0, . . . , P̂n} is the empirical probability distribution of the distortedsample
{x1, x2, . . . , xk}, andυrl are the elements of the inverted weight matrix W from Theorem
1: V = (υrl ) =W−1, det(W),0.

Let us refer to the above estimators as the modified MM-estimator (MMM-estimator)
and the modified ML-estimator (MML-estimator) respectively. It should be noted that
the filtration approach (Theorem 5) is not limited to the maximum likelihood technique,
it can also be used together with other known estimation methods developed for the
classical (non-distorted) beta-binomial distribution. Agood review of these methods
can be found in (Tripathiet al., 1994).

Robust estimation in the case of unknown distortion levels. Let us now consider
a general case when both the BBM parametersα, β and the distortion levelsε0, ε1
are unknown. For simultaneous consistent estimation ofα, β andε0, ε1, two numerical
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algorithms are proposed; the first employs the method of moments and the second
utilizes the maximum likelihood approach.

For the method of moments, the simultaneous estimation problem can be reduced to
the solution of the following system of two nonlinear equations for the third and fourth
order moments

m∗3 = m3(α(ε0, ε1), β(ε0, ε1), ε0, ε1), m∗4 = m4(α(ε0, ε1), β(ε0, ε1), ε0, ε1), (11)

where the functionsα(ε0, ε1), β(ε0, ε1) are expressed explicitly (see Theorem 4) from
the equations for the first and second order moments

m∗1 = m1(α, β, ε0, ε1), m∗2 = m2(α, β, ε0, ε1). (12)

Here m∗r = k−1∑k
i=0 xr

i , r = 1,2,3,4; while mr (α, β, ε0, ε1) are the corresponding
theoretical moments for the DBBD with the parametersn, α, β, ε0, ε1 that can be
computed using Theorem 1. To solve the equations (11), let usapply the modified
Newton method. Denote byJc

0 the 2×2 Jacobi matrix of the system (11) on the condition
that the equations for the first two moments (12) hold. Then the iterative procedure for
the solution of (11) is expressed as

(
εt+1

0
εt+1

1

)
=

(
εt0
εt1

)
+ λ · (Jc

0)−1

(
m∗3 −m3(α(εt0, ε

t
1), β(ε

t
0, ε

t
1), εt0, ε

t
1)

m∗4 −m4(α(εt0, ε
t
1), β(ε

t
0, ε

t
1), εt0, ε

t
1)

)
, (13)

whereλ ∈ (0,1] is the algorithm parameter that ensures the convergence for large
distortion levelsε0, ε1 (Demidovich and Maron 1970). All expressions required for
the numerical implementation of the procedure (13) are given in the Mathematical
Appendix. As follows from the numerical experiments, the usual valueλ = 1 (typical
for the classical Newton technique) provides poor convergence, so it is prudent to
start iterations with rather lowλ and gradually increase it so that it becomes close
to 1 in the neighborhood of the desired solution. It can be done using the recursive
sequenceλt+1 = λt · (1− θ) + θ, whereλ0 and θ are the tuning parameters. During
the computer simulations that will be discussed below, the authors used the following
values:λ0 = 0.1, θ = 0.05. Let us refer to the estimates of the model parametersα, β

and the distortion levelsε0, ε1 obtained using the procedure (13) as the MMS-estimates.
For the maximum likelihood approach, the simultaneous estimation is reduced to the

following constrained maximization problem

l(α, β, ε0, ε1) =
n∑

r=0

fr ln(Pr (α, β, ε0, ε1))→ max
α,β,ε0,ε1

, α, β ∈ R+, ε0, ε1 ∈ [0,1], (14)

where{ f0, f1, . . . , fn} are the frequencies for the distorted sample{x1, x2, . . . , xk}, and
the explicit expressions for the distorted beta-binomial probabilitiesPr (.) are given in
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Theorem 1. This maximization problem is solved using the modification of the steepest
descent method. All the expressions required for the numerical implementation are given
in Mathematical Appendix. Let us refer to the estimates ofα, β andε0, ε1 obtained from
(14) as the MLS-estimates.

Computer simulations. To demonstrate the robustness of the proposed estimators of
the BBM parameters, a series of four computer simulations was done. It was assumed
that the true values of the model parameters wereα0 = 0.5, β0 = 9.5, n = 10. These
values are typical for the application area that the authorsdeal with (see Section 6).

Experiment 1. This experiment was dedicated to assessing the sensitivity of the beta-
binomial distribution to the distortions (Theorem 1). There were generatedk = 1000
realizations of the random variable from the DBBD with the parametersn, α0, β0 and the
distortion levelsε0 = 0.01, ε1 = 0.02. For the generated sample, there were computed
the empirical probabilitiesP∗r , r = 0,1, . . . ,n, as well as the sample mean and variance.
Also, there were calculated the weight matrixW, the theoretical probabilitiesPr andP0

r ,
the approximate valuesPa

r for Pr (the asymptotic expansion (6)), and the theoretical
mean and variance for the BBD and DBBD.

As follows from the experiment results (Tables 1-3), the original beta-binomial
distribution is quite sensitive to the distortions. For example, the relative difference
between the non-distortedP0

r and distortedPr probabilities can go up to 24.9%, and
the mathematical expectation and variance can differ by 17.0% and 3% respectively.
The corresponding weight matrixW (see Table 3) has the dominated leading diagonal
and the adjacent elements, that explains why the linearizedexpressions (6) provide
an accurate enough approximation of the probabilitiesPr . This result validates using
of stochastic expansions for assessing the sensitivity of the classical estimation and
prediction techniques with respect to the distortion levels.

Table 1: Comparison of the original, distorted and empirical mean and variance.

Distribution type Mean Variance
Classical beta-binomial distribution 0.500 0.929
Distorted beta-binomial distribution 0.585 0.957
Empirical distribution 0.577 0.943

Table 2: Comparison of the original, distorted and empirical probabilities for the BBM.

r 0 1 2 3 4 5 6 7 8 9 10
×10−1 ×10−1 ×10−2 ×10−2 ×10−2 ×10−3 ×10−3 ×10−4 ×10−4 ×10−5 ×10−6

P0
r 6.93 1.87 7.23 2.92 1.15 4.30 1.46 4.34 1.06 1.91 1.91

Pr 6.30 2.34 8.40 3.24 1.25 4.54 1.50 4.36 1.04 1.80 1.73
Pa

r 6.28 2.39 8.22 3.21 1.24 4.52 1.50 4.35 1.03 1.80 1.72
P∗r 6.32 2.34 8.33 3.19 1.17 5.00 0.95 2.50 1.50 0.00 1.91
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Table 3: Elements of the weight matrix W for the distortion levelsε0 = 0.01, ε1 = 0.02.

0 1 2 3 4 5 6 7 8 9 10
0 0.9044 0.0183 0.0004 ∼10−5 ∼10−7 ∼10−9 ∼10−10 ∼10−12 ∼10−14 ∼10−15 ∼10−17

1 0.0914 0.8969 0.0362 0.0011∼10−5 ∼10−6 ∼10−8 ∼10−10 ∼10−11 ∼10−13 ∼10−14

2 0.0042 0.0815 0.8891 0.0538 0.0022 0.0001∼10−6 ∼10−7 ∼10−9 ∼10−11 ∼10−12

3 0.0001 0.0033 0.0717 0.8811 0.0710 0.0036 0.0001∼10−5 ∼10−7 ∼10−8 ∼10−10

4 ∼10−6 0.0001 0.0025 0.0621 0.8727 0.0879 0.0053 0.0003∼10−5 ∼10−7 ∼10−8

5 ∼10−8 ∼10−6 0.0001 0.0019 0.0527 0.8641 0.1044 0.0074 0.0004∼10−5 ∼10−6

6 ∼10−10 ∼10−8 ∼10−6 ∼10−5 0.0013 0.0435 0.8551 0.1206 0.0097 0.0006∼10−5

7 ∼10−12 ∼10−10 ∼10−8 ∼10−7 ∼10−5 0.0009 0.0344 0.8460 0.1363 0.0124 0.0008
8 ∼10−15 ∼10−13 ∼10−11 ∼10−9 ∼10−7 ∼10−5 0.0005 0.0256 0.8366 0.1517 0.0153
9 ∼10−17 ∼10−15 ∼10−13 ∼10−11 ∼10−9 ∼10−8 ∼10−6 0.0003 0.0169 0.8269 0.1667
10 ∼10−20 ∼10−18 ∼10−16 ∼10−14 ∼10−12 ∼10−10 ∼10−8 ∼10−6 0.0001 0.0083 0.8171

Experiment 2. This experiment was devoted to assessing the bias of the classical
BBM parameter estimators that ignore the misclassifications (Theorems 2, 3). There
were generated 100 independent random samples of sizek = 1000 from the BBM with
the parametersn, α0, β0. It was assumed thatε0=ε1∈ [ 0; 0.02 ] and they varied with the
step 0.002, and each sample was contaminated according to the distortion model (2), (3).
For each distorted sample and for each value of the distortion level, the classical MM and
ML methods were applied. Then, for all values ofε0, ε1, the 95%-confidence intervals
of theα, β estimates were computed (using the common technique, whichassumes that
the estimates follow the normal distribution). Finally, for the same distortion levels, the
theoretical biases were obtained using the stochastic expansions (7), (8).

The results of the experiment are presented in Figure 1, where ρ(.) is the relative
bias (i.e.∆α/α0 or∆β/β0). As follows from the figure, the stochastic expansions (7),(8)
provide good approximation of the parameters biases causedby the distortions with
the levelsε0, ε1 ≤ 0.01 . Besides, the classical estimators are quite sensitive to the
distortions. For example, for the distortion levelsε0 = ε1 = 0.01, the relative errors for
the parametersα, β are respectively 50%, 22.7% for the the MM-estimator and 52.7%,
28.0% for the ML-estimator.
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Figure 1: The biases of the classical MM- and ML-estimators of the BBM parameters, which ignore the
misclassifications: gray tubes –experimental 95% confidence intervals; solid lines– approximation via the
asymptotic expansions (7), (8);ρ –the relative bias,ε– the distortion level (ε0=ε1).

However, for practical applications, it is also important to analyze the sensitivity of
another BBM parametrization (Prentice 1986):π = α/(α+β), γ = 1/(α+β), whereπ is
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the average response probability, andγ is a measure of the inter-group correlation. For
this parametrization, the relative errors of the MM and ML-estimators for the parameters
π, γ are 20.9%, 19.4% and 17.7%, 22.6% respectively. It means that ignoring response
misclassifications leads to quite large errors when assessing both the average response
probability for the clusters and the inter-group correlation between units. This numerical
result emphasizes the importance of the research topic and motivates development of
new robust estimators, which take the distortion model intoaccount.

It should be noted that Neuhaus (1999, 2002) performed similar computer
simulations for the binary regression, as well as for the population-averaged and the
mixed-effects logistic models. In his simulation, Neuhaus was interested in the bias
of the regression coefficients and made a conclusion that the biases due to response
misclassifications were negligible for small values of the distortion levels and were
substantial only whenε0, ε1 ≥ 0.10 . Since our experiments yielded qualitatively
different results (see Figure 1), this fact should be explained in details.

For the comparison purposes, the beta-mixed hierarchical model considered in
this paper (both BBM and BLM) can be reformulated as a specialcase of the
generalized linear mixed model (GLMM), which is an extension of the generalized
linear model (GLM) to the longitudinal or clustered data case. The reformulation can
be done by introducing dummy constant covariates for each cluster/unit, and choosing
an appropriate link function and a random effects distribution. Then the regression
coefficients can be considered as the beta-mixed hierarchical model parameters, and
their sensitivity to the distortions can be investigated using technique employed in
this paper. Hence, the above model conversion can be treatedas a specific nonlinear
re-parametrization of the beta-mixed hierarchical model,which leads to completely
different meaning of the model parameters.

For this re-parametrization, the parameter estimator sensitivity w.r.t. the
misclassifications may increase, depending on the true values of the parameter. For
instance, for small values ofπ (which are typical for our application area), the
misclassifications essentially influence the estimate ˆπ, sinceE{xi/n} = ε0(1−π)+(1−ε1)π.
Thus, whenπ = 0.05 andε0 = ε1 = 0.01 the expectation ofxi/n is equal to 0.059,
i.e. misclassifications cause 18% increase of the corresponding parameter value. This
justifies the qualitative difference of the Neuhaus’ and ours simulation results.

Therefore, the obtained results show that the beta-binomial model parameter
estimators are less robust to the response misclassifications compared to the estimators
for the models investigated by Neuhaus. This emphasizes theresearch topic importance
and motivates development of robust estimators for the BBM.It should be also noted
that the robust estimation approach for the logistic-normal model that was employed by
Neuhaus (2002) can not be applied to the BBM since he used specific properties of the
logistic link function that the beta-binomial distribution does not possess.

Experiment 3. This experiment was aimed at the performance evaluation ofthe
proposed robust estimators in the case of known distortion levels (Theorems 4, 5). It
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was assumed thatε0 = ε1 = 0.01 , and the developed MMM and MML-estimators
were compared to the classical MM and ML-estimators by assessing the biases,
standard deviations, and histograms. As follows from the experiment results (Figure
2), the proposed estimation methods allow essentially decreasing the bias of theα, β
estimates and lead to the smaller standard deviation while compared to the classical
estimators. In particular, the MMM-estimator yields the relative biases 2.0%, 2.1%
for the parametersα, β respectively against 47.7%, 25.2% obtained by applying the
classical MM technique. The MML-estimator ensures the relative biases 0.9%, 1.1%
in contrast to 54.2%, 30.3% for the classical ML method. These results confirm the
robust performance of the proposed estimators.
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Figure 2: Histograms of the classical and proposed estimators of the BBM parameters for known distortion
levels: f –empirical frequency,µ– sample mean,σ –sample standard deviation; the circles denote the true
parameter values.

Experiment 4. This experiment focused on the performance evaluation of the
proposed robust estimators in the case of unknown distortion levels. It was assumed
that ε0 = ε1 = 0.01 , and the developed MMS and MLS-estimators were compared to
the classical MM and ML-estimators by assessing the biases and standard deviations.
As follows from the experiment results (Table ), the proposed estimation techniques
allow essentially decreasing the bias of theα, β estimates, while the standard deviation
increases compared to the classical estimators. In particular, the MMS-estimator yields
the relative biases 2.0%, 3.2% for the parametersα, β respectively against 46.0%, 24.3%
obtained by applying the classical MM technique. The MLS-estimator ensures the
relative biases 6.0%, 1.2% in contrast to 52.0%, 29.3% for the classical ML method. On
the other hand, the standard deviation increases up to twicecompared to the classical
methods that ignore the misclassifications. This effect is caused by the identification of
two extra parametersε0, ε1 in addition toα, β that normally leads to extra variation.

Advantages of the developed methods were also confirmed by additional numerical
research aimed at the identifiability analysis, which was based on computing of the
determinant and condition number for the relevant Jacobi matrices. For the MMS-
estimator, there were examined both the full 4×4 Jacobian of the system (11), (12) and
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the reduced 2×2 Jacobian, which is used in the numerical procedure (13). During the
simulation, the determinant of the full Jacobian was far from zero and varied from 0.01
to 0.10 that confirms the identifiability. However, the corresponding condition number
was rather high (from 5.8·105 to 1.4·106), that validates using of the proposed iterative
procedure (13), which employs inversion of the 2×2 matrix with much better condition
number (from 55.4 to 73.8). For the MLS-estimator, there wasexamined the 4×4 matrix
of the second derivatives for the log-likelihood function (14). Its determinant was greater
then 105 that indicates the identifiability of all model parameters.But the corresponding
condition number varied from 5.2 ·105 to 7.8 ·108 that explains slow convergence of
the optimization routine (approximately 85 times slower then for the MMS-estimator)
due to the ravine structure of the objective function. Nevertheless, the MLS technique
gives better estimation results in comparison with the MMS (in 48% of simulation runs,
the MLS biases were smaller then the MMS biases for all four parameters, in 27% of
runs –for three parameters, in 19% of runs– for two parameters, in 5% of runs –for
one parameter, and only in 1% of runs the MMS dominated over the MLS for all the
parameters). These results confirm both the identifiabilityand the robust performance
of the developed estimators.

Table 4: Comparison of the classical and proposed estimators of the BBM for unknown
distortion levels.

Parameter α β

(true value 0.5) (true value 9.5)

Method MM ML MMS MLS MM ML MMS MLS
Mean 0.73 0.76 0.49 0.53 11.81 12.28 9.20 9.39
Standard deviation 0.12 0.11 0.21 0.22 2.01 1.97 2.63 0.71

4 Robust estimation of the beta-logistic model

Robustness of the classical ML-estimator. Let a0,b0 be the true unknown values of the
BLM parameters, and let∆ã(ε0, ε1), ∆b̃(ε0, ε1) be the biases of the parameter estimators
that ignore the misclassifications with the levelsε0, ε1. The following theorems evaluate
the robustness of the classical ML-estimator via its bias w.r.t. the distortion levels.

Theorem 6 The bias of the classical ML-estimator of the BLM parameters, which
ignores the misclassifications, satisfies the following asymptotic expansion

(
∆ã
∆b̃

)
= −H−1G ·

(
ε0
ε1

)
+ 12m

(
o(ε0, ε1) +OP

(
1
√

k

))
, (15)

under the assumption that the covariates Zi belong to the countable set
{ϑ1, ϑ2, . . . , ϑd} ⊂ Rm, i = 1,2, . . . , k, all vectors{ϑq} are equiprobable, and the clusters
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with the same covariatesϑq have equal group sizešnq, where12m is a vector of ones of
size2m, and H, G are(2m× 2m), (2m× 2) matrices given in Mathematical Appendix.

As follows from the theorem, the classical ML-estimator of the BLM parameters
becomes biased and inconsistent under the distortions. Expression (15) allows assessing
the sensitivity of this estimator to the misclassifications(3). Let us now propose
consistent and unbiased estimators that take into account the distortion model (2).

Robust estimation in the case of known distortion levels. Consider the case when
the distortion levelsε0, ε1 are known a priori. First, let us obtain a stochastic expansion
for the biases that differs from (15) by taking into account an observed sampleX =
{x1, x2, . . . , xk}.

Theorem 7 For the observed sample X, the bias of the classical ML-estimator of the
BLM parameters, which ignores the misclassifications, satisfies the following asymptotic
expansion

(
∆ã
∆b̃

)
= J−1(a0,b0,X) · ge(a

0,b0,X, ε0, ε1) + 12m

(
o(ε0, ε1) +OP

(
1
√

k

))
, (16)

where the(m×m)-matrix J(.) and the m-vector ge(.) are defined in Mathematical
Appendix.

Then, the expansion (16) allows constructing a bias compensating procedure for the
classical ML-estimator

(ãt+1, b̃t+1)T = (ãt, b̃t)T − λ · J−1(ãt, b̃t,X) · ge(ã
t, b̃t,X, ε0, ε1), (17)

where t is the iteration number andλ is the algorithm parameter that ensures
convergence. The parameterλ is selected in the similar way as for the numerical
procedure (13) from Section 3:λt+1 = λt · (1− θ)+ θ. In the given below computer
simulations, the authors used valuesλ0 = 0.1, θ = 0.05. Let us refer to the bias-
corrected ML-estimator (17) as the modified ML-estimators (MML).

Robust estimation in the case of unknown distortion levels. Let us now consider
a general case when both the BLM parametersa,b and the distortions levelsε0, ε1
are unknown. For simultaneous consistent estimation ofa,b and ε0, ε1, a maximum
likelihood based numerical algorithm is proposed.

Using results from Section 3, the log-likelihood function for the BLM that
accommodates the distortion model (2), (3) may be expressedas

lε(a,b,X, ε0, ε1)=
k∑

i=1

log


ni∑

j=0

wi
xi j(ε0, ε1)·Pi

j(a,b)

, (18)
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where

Pi
j(a,b)=

(
ni

j

)
B(αi(a)+ j, βi(b)+ni− j)

B(αi(a), βi(b))
, αi(a) = exp(ZT

i a), βi(b) = exp(ZT
i b),

B(.) is the complete beta function, andwi
xi j are the weights of the distorted beta-

binomial distribution with the parametersni , αi(a), βi(b), ε0, ε1 (see Theorem 1). Then,
the simultaneous estimation of the BLM parameters and the distortion levels is reduced
to the following constrained maximization problem

lε(a,b,X, ε0, ε1)→ max
a,b,ε0,ε1

, a,b ∈ Rm, ε0, ε1 ∈ [0,1]. (19)

The problem (19) is solved using the gradient descent method; all the required
expressions are given in the Mathematical Appendix. Let us refer to the estimates of
a,b andε0, ε1 obtained from (19) as the MLS-estimates.

Computer simulations. To demonstrate the robust performance of the developed
methods for the estimation of the BLM, a number of computer simulations was done. It
was assumed that the true values of the parameters werea0=1, b0=2, ∀i,ni = 10, k=
1000, and the covariatesZi ∈ R were uniformly distributed on the segment [1.0; 1.1].
This range of the covariates corresponds to the intervalsα ∈ [2.7; 3.0], β ∈ [7.4; 9.0]
that is typical for the application area the authors deal with (see Application Example).
The simulations included three experiments.

Experiment 1. This experiment was devoted to assessing the bias of the classical
ML-estimator of the BLM parameters that ignores the misclassifications (Theorem 6).
There were generated 100 independent random samples of sizek = 1000 from the
BLM with the parametersa0,b0. It was assumed thatε0=ε1∈ [ 0; 0.05 ] and they varied
with the step 0.01, and each sample was contaminated according to the distortion model
(2), (3). For each distorted sample and for each value of the distortion level, the classical
ML method was applied. Then, for all values ofε0, ε1, the 95%-confidence intervals
of the a,b estimates were computed (assuming that the estimates follow the normal
distribution). Finally, for the same distortion levels, the theoretical biases were obtained
using the stochastic expansion (15).

As follows from the experiment results (Figure 3), the stochastic expansion (15)
provides good approximation of the parameters biases caused by the distortions with
the levelsε0, ε1 ≤ 0.05 . Besides, the classical ML-estimator is quite sensitiveto the
distortions. For example, for the distortion levelsε0 = ε1 = 0.05, the relative errors
for the parametersa,b are 39.2%, 12.1% respectively. It should be noted that the
higher parameter biases in comparison with the results of Neuhaus (1999) for the
binary regression are due to the specific nonlinear parametrization of the beta-mixed
hierarchical models (for details, see the above discussionin the Computer Simulation
subsection for the BBM).
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Figure 3: The biases of the classical ML-estimator of the BLM parameters, which ignores the
misclassifications: gray tubes –experimental 95% confidence intervals; solid lines– approximation via the
expansion (15);∆a,∆b –the relative bias,ε– the distortion level (ε0=ε1).

Experiment 2. This experiment was aimed at the performance evaluation ofthe
proposed robust estimator in the case of known distortion levels (Theorem 7). It was
assumed thatε0=ε1=0.03 , and the developed bias-corrected estimator was compared to
the classical ML-estimator by assessing the biases, standard deviations, and histograms.
As follows from the experiment results (Figure 4), the proposed estimation method
allows essentially decreasing the bias of thea,b estimates and leads to the similar
standard deviations. In particular, the bias-corrected estimator yields the relative biases
2.3%, 1.1% for the parametersa,b respectively against 23.1%, 8.2% obtained by
applying the classical ML technique.

The identifiability of the model parametersa,b and convergence of the numerical
procedure (17) are determined by the properties of the 2× 2 matrix of the second
derivativesJ for the BLM log-likelihood function (which does not take into account
the distortion model). Additional numerical research indicated that the determinant of
this matrix was greater then 105, while the corresponding condition number varied from
38.4 to 51.7. These results confirm both the identifiability and the robust performance
of the bias-corrected estimator.
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Figure 4: Histograms of the classical and proposed estimators of the BLM parameters for known distortion
levels: f –empirical frequency,µ– sample mean,σ –sample standard deviation; the circles denote the true
parameter values.

Experiment 3. This experiment focused on the performance evaluation of the
proposed robust estimator in the case of unknown distortionlevels. It was assumed
that ε0 = ε1 = 0.03 , and the developed MLS-estimator was compared to the classical
ML-estimator by assessing the biases and standard deviations. As follows from the
experiment results (Table 5), the proposed estimation technique allows essentially
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decreasing the bias of thea,b estimates, while the standard deviation is approximately
the same in all cases. In particular, the MLS-estimator yields the relative biases 4.1%,
1.6% for the parametersa,b respectively against 23.0%, 7.5% obtained by applying the
classical ML technique.

To analyze the identifiability of the parametersa,b, ε0, ε1 and the convergence of
the developed MLS estimation algorithm, there was examinedthe 4×4 matrix of the
second derivatives for the log-likelihood function (18), which takes into account the
distortion model. Its determinant was greater then 107 that indicates the identifiability
of all model parameters. But the corresponding condition number varied from 1.3·103 to
5.1·104 that explains relatively slow convergence of the optimization routine due to the
ravine structure of the objective function. However, the computing time is acceptable
for practical applications. These results confirm both the identifiability and the robust
performance of the developed MLS-estimator.

Table 5: Comparison of the classical and proposed estimators of the BLM for unknown
distortion levels.

Parameter a b
(true value 1.0) (true value 2.0)

Method ML MLS ML MLS
Mean 1.23 1.04 2.15 2.03
Standard deviation 0.11 0.12 0.11 0.11

5 Robust forecasting for beta-mixed hierarchical models

Robustness of the classical Bayes predictor. First, let us analyze the robustness of the
classical Bayes predictor (1), which incorporates the truevalues of the model parameters
α0

i , β
0
i , assuming that the predictor inputxi =

∑ni

j=1 B̃i j is contaminated by the distortions
with known levelsε0, ε1 (here, the subscripti denotes the index of the cluster, for
which the forecast is performed). The following theorem evaluates the robustness of the
classical Bayes predictor w.r.t. the distortion levels by assessing the increase of the mean
square error of forecasting.

Theorem 8 If the classical Bayes predictor (1) uses the true model parametersα0
i , β

0
i ,

then the mean square error of the forecast, which is based in the misclassified responses,
is expressed as

r̃2
i = r2

0i +
ni(β0

i ε0 + α
0
i ε1) + n[2−]

i ((β0
i )

[2+]ε20 − 2α0
i β

0
i ε0ε1 + (α0

i )
[2+]ε21)

(α0
i + β

0
i )

[2+](α0
i + β

0
i + ni)2

. (20)

where r20i is the error in the non-distorted case(ε0=ε1=0)

r2
0i =

α0
i β

0
i

(α0
i + β

0
i )

[2+](α0
i + β

0
i + ni)

.
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Then, let us consider the case when the true values of the parametersα0
i , β

0
i are

unknown, so their estimates ˆαi , β̂i (biased because of the distortions) are used for
the prediction. The following theorem evaluates the robustness of the classical Bayes
predictor in this case.

Theorem 9 If the classical Bayes predictor (1) uses the biased estimatesα̂i , β̂i of the
model parameters, then the mean square error of the forecast, which is based in the
misclassified responses, is expressed as

r̃2
i = r̃2

0i +
ni(β0

i η
β

i ·ε0 + α
0
i η
α
i ·ε1)

(α0
i + β

0
i )(α̂i + β̂i + ni)2

+
n[2−]

i (β0
i

[2+] ·ε20 − 2α0
i β

0
i ·ε0ε1 + α

0
i

[2+] ·ε21)

(α0
i + β

0
i )

[2+](α̂i + β̂i + ni)2
, (21)

wherer̃2
0i is the error in the case of the non-distorted responses but the biased parameter

esimates

r̃2
0i =

niα
0
i β

0
i + β

0
i

[2+]
α̂2

i − 2α0
i β

0
i α̂i β̂i + α

0
i

[2+]
β̂2

i

(α0
i + β

0
i )

[2+](α̂i + β̂i + ni)2
, (22)

the coefficientsηαi , η
β

i are

ηαi = 1+ 2
(α0

i + 1)β̂i − (α̂i + 1)β0
i

α0
i + β

0
i + 1

, η
β

i = 1+ 2
(β0

i + 1)α̂i − (β̂i + 1)α0
i

α0
i + β

0
i + 1

, (23)

and the ascending and descending factorials are denoted as v[2+] = v(v + 1), v[2−] =

v(v− 1).

As follows from these theorems, the classical Bayes predictor loses its optimality
under the distortions (in the sense of the mean square error of forecasting).
Expressions (20), (21) allow assessing the sensitivity of the classical predictor to the
misclassifications (3). Let us propose now the robust predictor that takes into account
the distortion model (2).

Robust prediction under distortions. Since the results from the previous sections allow
obtaining the unbiased estimates of the model parameters aswell as the probability
distribution of the misclassified responses, there can be derived the optimal predictor that
minimizes the effect of the misclassifications in the forecast input data. This predictor is
defined in the following theorem.

Theorem 10 The optimal Bayes predictor, which takes into account the distortion
model (2), (3), is expressed as the weighted sum

p̂i(x) = E{pi |x, ε0, ε1} =
ni∑

r=0

ϑi
xr ·

α0
i + r

α0
i + β

0
i + ni

, (24)
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where x is the sum of the distorted binary observations for the i-th cluster, and the
weighting coefficientsϑi

xr are computed from

ϑi
xr=

(
ni

r

)
wi

xr B(α0
i +r, β0

i +ni−r) ·


ni∑

l=0

(
ni

l

)
wi

xl B(α0
i +l, β0

i +ni−l)


−1

(25)

using expressions for wisl given in Theorem 1.

It can also be proved that the corresponding mean square error of forecasting is
computed as

r2(p̂i) =
(α0

i )
[2+]

(α0
i + β

0
i )

[2+]
−

ni∑

x=0
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ni∑
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i + ni
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·
ni∑
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ni
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i )
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i )
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(α0
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0
i )

[ni+]

 ,

(26)
and the p.d.f. of this forecast is

fpi (p|x, ε0, ε1)=
ni∑

r=0

ϑi
xr · B(α0

i +r, β0
i +ni−r)−1 pα

0
i +r−1(1− p)β

0
i +ni−r−1. (27)

As follows from expressions (24), (27), the proposed predictor is a weighted sum of
the classical predictors for the beta-hierarchical model with shifted parameters. Also,
the expression for the weightsϑi

xr are based on the Bayes formula, andϑi
xr can be

treated as the posteriori probability that the distorted value x was originated from the
sum of the non-distorted binary observationsr (in contrast,wi

xr are the corresponding
a priori probabilities). Since for the weight matrix (ϑi

xr), there can be obtained the
asymptotic expansion similar to (5), it is prudent to derivean approximate expression
for the proposed predictor (24), which is valid for small values ofε0, ε1.

Robust prediction for small distortion levels. If values of ε0, ε1 are small, then
the sums in expressions (24), (25) can be reduced to three terms by eliminating the
weighting coefficients other thenϑi

x,x−1, ϑ
i
x,x , ϑ

i
x,x+1 for (24) andwi

x,x−1, wi
x,x , wi

x,x+1
for (25). Then the robust predictor can be expressed as the classical Bayes predictor
multiplied by the correction factor

p̂i(x) =
α0

i + x

α0
i + β

0
i + ni

· 1+ γ0 · ε0 − γ1 · ε1
1+ ξ0 · ε0 − ξ1 · ε1

+ o(ε0, ε1), (28)

where

γ0 =
(α0

i + β
0
i )x− α

0
i ni

α0
i + x

, γ1 =
(α0

i + β
0
i )x− α

0
i,+ni

β0
i,− + ni − x

,
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ξ0 =
(α0

i,− + β
0
i )x− α

0
i,−ni

α0
i,− + x

, ξ1 =
(α0

i + β
0
i,−)x− α

0
i ni

β0
i,− + ni − x

,

andα0
i,− = α

0
i − 1, β0

i,− = β
0
i − 1, α0

i,+ = α
0
i + 1. Expression (28) allows essentially

simplifying the complexity of the robust forecasting algorithm and can be used in
practical applications, for which the computing time is crucial.

Computer simulation. To demonstrate the robust performance of the developed
forecasting technique, the following computer simulationwas done. There was
considered the beta-binomial model, and it was assumed thatthe true values of the model
parameters wereα0=0.5, β0=9.5, n=10. For thisα0, β0, there were generatedk=1000
realizations of the beta random variablep1, p2, . . . , pk (the corresponding mean value
wasp̄ = 0.05). Then, for each cluster with the success probabilitypi , a random Bernoulli
sample of sizen was obtained. Next, every sample was distorted using the expression
(2) for ε0 = ε1 ∈ [ 0; 0.05 ] varying with the step 0.01. Using these data, the ML- and
MLS-estimates of theα, β parameters were computed. For each cluster, two types of the
forecast was done: (i) the classical prediction (1) based onthe ML-estimates, and (ii) the
proposed prediction (24) based on the MLS-estimates. Finally, for every distortion level,
the 95%-confidence intervals of the mean square error of forecasting were computed for
the both predictors (assuming that the errors follow the normal distribution).

As follows from the experiment results (Figure 5), the developed prediction
technique based on the proposed MLS-estimation algorithm ensures essentially lower
mean square error of forecasting when compared to the classical estimation and
prediction methods.

Classical predictor

Proposed predictor

e

R

0.075

0.065

0.055

0.045
0 0.01 0.02 0.03 0.04 0.05

r

Figure 5: Comparison of the classical and proposed predictors: gray tubes – experimental 95% confidence
intervals, solid lines– theoretical mean square errors of forecasting; r – mean square error,ε – distortion
level (ε0=ε1).
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For example, for the distortion levelsε0 = ε1 = 0.05, the classical procedures lead
to the errorr = 0.071 againstr0 = 0.047 for the non-distorted case, while the proposed
robust methods ensure the errorr = 0.054 (note that Figure 5 showsr againstε, while
the above expressions are given forr2). Hence, for the average response probability
p̄ = 0.05, the increment of the forecast error∆r = r − r0 reduces from 0.026 to
0.007. It should be stressed that the increment∆r caused the misclassifications can
not be compensated completely (as follows from the Bayes forecasting theory), but
the obtained valuer = 0.054 is the lowest for these model parameters and distortion
levels. These results confirm the robust performance of the developed estimation and
forecasting techniques.

6 Application example

The developed methods of robust estimation and prediction were used for forecasting
TV audience behaviour. This problem arises in mediaplanning (Sissors and Lincoln
1994), which focuses on optimizing of advertising schedules taking into account the
target consumer groups (defined by age, sex, income, etc.) and budget constraints. For
this application area, statistical forecasting of future audience behaviour using records
from the past is a key issue, since it defines efficiency of the advertising spending.

Grouped binary data in mediaplanning. In TV mediaplanning, the binary responses
arise as a result of exposing advertising commercials to a part of TV audience (the
representative sample of the target group) during predefined TV breaks, where 1 means
that a person saw the commercial and vice versa. These data are registered by special
electronic devices (people-meters) and are grouped in a natural way with respect to
every person and break type (defined by week day, day time, adjoining program genres,
etc.).

The misclassifications that may contaminate these data are caused by improper use of
the people-meters, which automatically register a TV channel being viewed, but require
manual registration of household members watching the TV. It is obvious that there
exists a small probability of using a wrong registration button that leads to distortions of
the recorded observations. The statistical properties of the viewing data are traditionally
described by the beta-binomial model (Danaher 1992), whilethe misclassification effect
is usually ignored.

In frames of the paper notation, the TV viewing data may be interpreted as follows:
B̃i j is the i-th person response toj-th commercial break of the certain type,k is the
number of persons in a target group, andni is the number of the breaks that thei-th
person was exposed to. It assumed that the target group and break type uniquely define
the covariatesZi , and each person’s viewing behaviour for this break type is described
by the success probabilitypi that follows the beta distribution with the parameterα0

i , β
0
i .
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For the case studies below, there were examined two data setsfor one of the German
TV channels for the year 2000. The first of them focuses on improving the model
adequacy, while the second one deals with increasing the forecasting accuracy.

Viewing data modelling. To demonstrate the advantages of the developed distorted
beta-binomial model (DBBM), which takes into account the misclassifications and
employs the proposed robust estimation techniques, there were considered the TV
viewing data for eleven commercial breaks (n = 11) corresponding to “World News”
showed on Saturday prime time. There were investigated six target groups with different
sex (M,W) and age (14-29, 30-49, 50+) with sizek varying from 1025 to 2488.

The results of the model adequacy analysis are presented in Table 6, which shows
that the proposed DBBM and the relevant robust estimation algorithms significantly

Table 6: Adequacy analysis of the classical (BBM) and the proposed (DBBM) models
for describing the TV audience behaviour using Pearson’sχ2 goodness-of-fit statistics.

Target group M 14-29 M 30-49 M 50+ W 14-29 W 30-49 W 50+
Data characteristics

Group size,k 1137 2011 2281 1025 2084 2488
Sample mean 1.2·10−2 4.9·10−2 3.6·10−2 2.1·10−2 3.8·10−2 4.7·10−2

Overdispersion 1.66 3.33 2.75 2.05 2.54 3.27
Classical beta-binomial model (MM-estimator)

p-value 0.41 0.96 0.01 0.82 0.10 0.05
χ2-statistics 9.30 3.14 21.7 5.16 14.6 17.1
Parameterα 0.17 0.16 0.17 0.18 0.21 0.16
Parameterβ 13.9 3.14 4.56 8.33 5.27 3.25

Classical beta-binomial model (ML-estimator)
p-value 0.45 0.97 0.02 0.80 0.10 0.05
χ2-statistics 8.88 2.87 20.0 5.43 14.6 16.9
Parameterα 0.17 0.17 0.19 0.19 0.24 0.17
Parameterβ 13.5 6.55 5.08 8.81 5.78 3.47

Distorted beta-binomial model (MMS-estimator)
p-value 0.28 0.99 0.32 0.89 0.84 0.14
χ2-statistics 10.9 1.00 10.4 4.35 4.99 13.5
Parameterα 0.09 0.13 0.14 0.13 0.15 0.15
Parameterβ 9.57 5.58 3.88 7.07 4.00 3.14
Distortion levelε0 0.003 0.002 0.003 0.003 0.006 0.001
Distortion levelε1 0.060 0.000 0.042 0.000 0.060 0.004

Distorted beta-binomial model (MLS-estimator)
p-value 0.63 0.98 0.77 0.88 0.83 0.50
χ2-statistics 7.11 2.46 5.67 4.40 5.04 8.34
Parameterα 0.11 0.15 0.10 0.15 0.15 0.11
Parameterβ 9.12 6.39 3.14 7.51 4.31 2.36
Distortion levelε0 0.001 0.002 0.007 0.002 0.006 0.005
Distortion levelε1 0.048 0.015 0.068 0.008 0.020 0.111
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increase the modelling accuracy. For example, for the target group M 50+ (men of age
50 and older), the classical BBM yields thep-values 0.01 for the MM-estimator and
0.02 for the ML-estimator, while the proposed DBBM ensures values 0.32 and 0.77 for
the MMS and MLS estimators respectively. This confirms the applicability of the paper
results to the modelling of the TV audience behaviour.

Forecasting of audience behaviour. To illustrate the accuracy of the developed
forecasting technique, there were consideredNz = 31 commercial breaks of different
types exposed in December 2000 for the target group W 50+ in the frames of a single
adverting campaign. Based on the past data for the similar breaks (for three preceding
months, September – November, 2000), there were obtained the viewing behaviour
models based on the proposed DBBD distribution. Then, usingthe proposed prediction
method, for all persons and all breaks, there were generatedthe forecastsπiz (the
probability that thei-th person watched the break of typez). Similar forecasts were
also obtained for the classical model based on the BBD.

The accuracy for the obtained forecast was evaluated using the specific performance
measures adopted in mediaplanning, theReachandGRP(Danaher 1992). The first of
them,Reach, describes the audience fraction (within the target group), which have seen
the advertising commercial at least once during the whole advertising campaign:

Reach= k−1
k∑

i=1

1−
Nz∏

z=1

(1− πiz)

 .

The second performance measure,GRP (Gross Rating Points), defines the sum
of the above fractions throughout the campaign (without considering the audience
duplication):

GRP= k−1
k∑

i=1

Nz∑

z=1

πiz .

Using these expressions, there were obtained theReach–GRPcurves via considering
smaller advertising campaigns composed of the considered breaks (with break number
from 1 toNz). In practice, such curves are the primary tool for media-planners who use
them for assessing the economical efficiency of adding extra break to the campaign.

Figure 6 compares theReach–GRPcurves for the BBM and DBBM-based forecasts
with the real data curve calculated using the December 2000 records. As follows
from the figure, the proposed forecasting technique ensuresmuch more accurate
approximation of theReach–GRPrelation than the classical BBM method. In particular,
the maximum relative error of theReach–GRP approximation using the BBM-based
forecast is about 21%, while the proposed DBBM-based technique ensures the relative
error less then 4.2%. This confirms the practical value of ourresults.



148 Robust estimation and forecasting for beta-mixed hierarchical models of grouped binary data

20

15

10

5

0

Reach, %

Real-life data

0 5 10 15 20 25 30 35 40 45 50

GRP, %

Classical BBM

Distorted BBM

Figure 6: Comparison of the Reach–GRP curves based on the classical (BBM) and the proposed (DBBM)
models against the curve obtained from the real data.

7 Conclusion

The paper proposes new robust estimation and forecasting techniques for the grouped
binary data in the case of response misclassifications caused by stochastic additive
distortions. It is assumed that the data are described by thebeta-binomial or the
beta-logistic model that belong to the class of the beta-mixed hierarchical ones. For
these models, it is examined the effect of ignoring the misclassifications and there are
obtained expressions for the biases of the method-of-moments and maximum likelihood
estimators, as well as expressions for the increase in the mean square error for the Bayes
predictor. These expressions allow assessing the sensitivity of the classical techniques
w.r.t. the distortion levels and decide on their applicability in practice.

To minimize the misclassification effects, there were developed new consistent
estimators and a new Bayes predictor, which take into account the distortion model.
There were considered two cases (of known and unknown distortion levels), for which
explicit expressions and numerical algorithms were proposed that allow constructing the
small-sensitive estimators of the model parameters and thesmall-sensitive forecasting
procedures. The robustness of the developed techniques wasverified by computer
simulations, and the practical value was confirmed by a real-life case study. The
proposed algorithms were implemented as a MATLAB toolbox.
Future work will deal with the minimax robust estimation andforecasting for the case
of known upper and lower bounds of the distortion levels, andalso with the problem of
small sample performance for the developed methods.
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Mathematical Appendix

Basic notation. P{.} is the probability of a random event,E{.} is the mathematical
expectation of a random variable,V{.} is the variance of a random variable,y[z−] =

y(y−1) . . . (y−z+1), y[z+] = y(y+1) . . . (y+z−1), y ∈ R, z ∈ N are the incomplete factorials,
Cr

n= ( n
r ) is the binomial coefficient. Definition ofOP: for two random sequencesYn,Zn,

Yn = OP(Zn) means that∀ǫ > 0 ∃ kǫ ,Nǫ that 0< kǫ < +∞, 0 < Nǫ < +∞ and for
n > Nǫ , P{|Yn/Zn| < kǫ} > 1− ǫ.

Proof of Theorem 1.Let r be a realization of the DBBD random variable. Denote by
{Hrs}, r = 0,1, . . . ,n, a partition complete set of disjoint events, whereHrs means that the
distorted valuer was obtained via the distortions (2) from the original positive responses
counts. Then using the total probability formula

Pr (ε0, ε1) =
n∑

s=0

P{Hrs} · P0
s, r = 0,1, . . . ,n.

To find the probabilityP{Hrs}, denote byz0, z1 the number of the distorted zeros and
ones in the original data. Then combinatorics yields to the following expression

wrs(ε0, ε1) = P{Hrs} =
∑

z0,z1

Cz1
n ε

z0

0 (1− ε0)n−s−z0ε
z1
1 (1− ε1)s−z1, s− z1 + z0 = r.

Denotingl = s+z0 = r+z1 leads tol ≥ r, l ≤ s+ r, l ≥ s, l ≤ n, which is equivalent to
max(s, r) ≤ l ≤ min(n, s+ r), that proves the theorem. ¤

Remark. The standard approach for investigating the properties of the estimators that
are fitted to the misspecified model is based on the results of White (1982) that involve
Kullback-Leibler divergence. For Theorems 2, 3, 6, the authors employ a different
approach that allows using the specific DBBD properties to obtain elegant proofs.
However, one can check that using the Kullback-Leibler divergence leads to the exactly
the same results.

Proof of Theorem 2.The classical MM-estimator of the BBM parameters is expressed
as (Johnsonet al.1996):

α̃MM =
(n− x̄− s2/x̄)x̄

(s2/x̄+ x̄/n− 1)n
, β̃MM =

(n− x̄− s2/x̄)(n− x̄)
(s2/x̄+ x̄/n− 1)n

, (29)

where x̄ is the sample average ands2 is the sample variance. Letm(ε0, ε1), d(ε0, ε1)
be the mean and variance of the DBBD with the parametersn, α0, β0, ε0, ε1 (see
Theorem 1). Since ¯x, s2 are unbiased and consistent estimators, andV{x̄} = d(ε0, ε1)/k,
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V{s2} = O(1/k) (Ivchenko and Medvedev 1984), then ¯x = m(ε0, ε1) + OP(1/
√

k), s2 =

d(ε0, ε1) + OP(1/
√

k). Using these expressions together with the properties ofOP(.) to
modify (29), we get

α̃MM(ε0, ε1) =
(n−m(ε0, ε1) − d(ε0, ε1)/m(ε0, ε1)) m(ε0, ε1)

(d(ε0, ε1)/m(ε0, ε1) +m(ε0, ε1)/n− 1)n
+OP(1/

√
k),

β̃MM(ε0, ε1) =
(n−m(ε0, ε1) − d(ε0, ε1)/m(ε0, ε1)) (n−m(ε0, ε1))

(d(ε0, ε1)/m(ε0, ε1) +m(ε0, ε1)/n− 1) n
+OP(1/

√
k).

Employing the expressions form(ε0, ε1), d(ε0, ε1) and the linear term of the Taylor
expansion with the Peano remainder for the above functions of ε0, ε1 proves the theorem.

¤

Expressions for Theorem 3. In the theorem statement, the following notation is used:

P0
0,s = P0

s(α
0, β0), PΣs(ε0, ε1) =

s∑

r=0

Pr (α
0, β0, ε0, ε1), s= 0,1, . . . ,n,

Sα =
n−1∑

s=0

1− PΣs(0,0)

(α0 + s)2
, Sβ =

n−1∑

s=0

PΣs(0,0)

(β0 + n− s− 1)2
, Sαβ =

n−1∑

s=0

1
(α0 + β0 + s)2

,

Sαp = −
n−1∑

s=0

(n− s)P0
0,s

α0 + s
, S+αp =

n−1∑

s=0

(s+ 1)P0
0,s+1

α0 + s
, Sβp =

n−1∑

s=0

(n− s)P0
0,s

β0 + n− s− 1
,

S+βp = −
n−1∑

s=0

(s+ 1)P0
0,s+1

β0 + n− s− 1
,

H = {Hi j }2×2, G = {Gi j }2×2, H11 = Sαβ − Sα,

H12 = H21 = Sαβ, H22 = Sαβ −Sβ, G11 = Sαp, G12 = S+αp = S+βp = G21, G22 = Sβp.

Proof of Theorem 3.The ML-estimator for the BBM is defined as a solution of the
following system of two equations (Johnsonet al.1996)

n−1∑

r=0

k− Fr

α + r
−

n−1∑

i=0

k
α + β + r

= 0,
n−1∑

r=0

Fr

β + n− r − 1
−

n−1∑

r=0

k
α + β + r

= 0, (30)

whereFr = f0+ f1+. . .+ fr , and{ fs} are the empirical frequencies. The system has a single
solution that maximizes the likelihood function (Johnsonet al.1996). By definition, the
frequencies are the binomial random variables with the parametersk, Ps(α0, β0, ε0, ε1).
Since for a discrete probability distribution, the relative frequencies̃fs = fs/k are
unbiased and consistent estimators of the corresponding theoretical probabilities, and
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V{ f̃s} = Ps(α0, β0, ε0, ε1)(1 − Ps(α0, β0, ε0, ε1))/k, then f̃s = fs/k = Ps(α0, β0, ε0, ε1) +
OP(1/

√
k), s= 0,1, ...,n. As a result, the system (30) can be expressed as

n−1∑

r=0

1−PΣr (ε0, ε1)
α + r

−
n−1∑

r=0

1
α+β+r

+OP

(
1
√

k

)
= 0,

n−1∑

r=0

PΣr (ε0, ε1)
β+n−r−1

−
n−1∑

r=0

1
α+β+r

+OP

(
1
√

k

)
= 0.

Let us linearize the obtained system byε0, ε1 in the neighborhood of the point
(α0, β0,0,0), then

A0
α∆α̃ML(ε0, ε1) + A0

β∆β̃ML(ε0, ε1) + A0
ε0
ε0 + A0

ε1
ε1 + o(ε0) + o(ε1) +OP(1/

√
k) = 0,

B0
α∆α̃ML(ε0, ε1) + B0

β∆β̃ML(ε0, ε1) + B0
ε0
ε0 + B0

ε1
ε1 + o(ε0) + o(ε1) +OP(1/

√
k) = 0,

where the coefficients are the corresponding derivatives. Expressing the∆α̃ML(ε0, ε1),
∆β̃ML(ε0, ε1) in terms ofε0, ε1 from this system proves the theorem. ¤

Proof of Theorem 4. Using Theorem 1, one can show that the MM-estimator of the BBM
parametersα, β that takes into account the distortions model (2) is defined as a solution
of the following system of two equations

m∗1 = n
α

α + β
+ n

β

α + β
· ε0 − n

α

α + β
· ε1, (31)

m∗2 = m∗1 + n[2−] ·
α[2+] + β[2+]ε20 + α

[2+]ε21 − 2αβε0 − α[2+]ε1 − 2αβε0ε1
(α + β)[2+]

. (32)

Using the substitution

u =
α

α + β
, v =

α + 1
α + β + 1

, α =
u(1− v)

v− u
, β =

(1− v)(1− u)
v− u

,

transforms the above system into

m∗1 = n(u+ (1−u)ε0−uε1), m∗2 = m∗1+n(n−1)(vu(1−ε0−ε1)+ε20+2uε0(1−ε0−ε1)).

Solving this system with respect tou, v and changing the variables back toα, β proves
the theorem. ¤

Proof of Theorem 5.The empirical probabilities vector̂P(ε0, ε1) satisfies the following
asymptotic expression (see the proof of Theorem 3):P̂r (ε0, ε1) = Pr (ε0, ε1)+OP(1/

√
k),
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r = 0,1, . . . ,n. Using the result of Theorem 1, one getsP̂r (ε0, ε1) = W(ε0, ε1) · P0 +

OP(1/
√

k). Using the properties ofOP(1/
√

k) and the notation (10) concludes the proof.
¤

MMS-estimator of BBM parameters. The Jacobi matrixJc
0 for the iterative procedure

(13) is calculated asJc
0 = H ·G + S , where

H11 = n[3−] α[3+]

(α + β)[3+]

2∑

i=0

(
1
α + i

− 1
α + β + i

)
,

H12 = n[3−] α[3+]

(α + β)[3+]

2∑

i=0

(
−1

α + β + i

)
,

H21 = n[4−] α[4+]

(α + β)[4+]

3∑

i=0

(
1
α + i

− 1
α + β + i

)
+ 6·H11,

H22 = n[4−] α[4+]

(α + β)[4+]

3∑

i=0

(
−1

α + β + i

)
+ 6·H12,

G11 = − (α + 2β + 1) , G12 = −α (α + 1) /β,

G21 = −β (β + 1) /α, G22 = −
(
2α0 + β0 + 1

)
,

S11 = 3n[3−] α
[2+]β

(α + β)[3+]
, S12 = 3n[3−] α[3+]

(α + β)[3+]
,

S21 = 14n[4−] α
[3+]β

(α + β)[4+]
+ 6·S11, S22 = 4n[4−] α

[4+]β

(α + β)[4+]
+ 6·S12.

MLS-estimator of BBM parameters. The partial derivatives of the log-likelihood
function l(α, β, ε0, ε1) are computed as

∂l
∂α
=

n∑

r=0

 fr
n∑

i=0

wri (ε0, ε1) ·
∂P0

i (α, β)/∂α

Pr (α, β, ε0, ε1)

 ,

∂l
∂β
=

n∑

r=0

 fr
n∑

i=0

wri (ε0, ε1) ·
∂P0

i (α, β)/∂β

Pr (α, β, ε0, ε1)

 ,

∂l
∂ε0
=

n∑

r=0

 fr
n∑

i=0

∂wri (ε0, ε1)
∂ε0

·
P0

i (α, β)

Pr (α, β, ε0, ε1)

 ,

∂l
∂ε1
=

n∑

r=0

 fr
n∑

i=0

∂wri (ε0, ε1)
∂ε1

·
P0

i (α, β)

Pr (α, β, ε0, ε1)

 ,
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where
∂P0

i

∂α
= P0

i (α, β) ·


i−1∑

j=0

1
α + j

−
n−1∑

j=0

1
α + β + j

 ,

∂P0
i

∂β
= P0

i (α, β) ·


n−i−1∑

j=0

1
β + j

−
n−1∑

j=0

1
α + β + j

 ,

∂wri

∂ε0
=

min(n,i+r)∑

l=max(i,r)

Cl−r
i Cl−i

n−i

(
(l − i)εl−i−1

0 (1− ε0)n−l − (n− l)εl−i
0 (1− ε0)n−l−1

)
εl−r

1 (1− ε1)i+r−l ,

∂wri

∂ε1
=

min(n,i+r)∑

l=max(i,r)

Cl−r
i Cl−i

n−iε
l−i
0 (1− ε0)n−l

(
(l − r)εl−r−1

1 (1− ε1)i+r−l − (i + r − l)εl−r
1 (1− ε1)i+r−l−1

)
.

Expressions for Theorem 6. In the theorem statement, the following notation is used:

Hls=

d∑

q=1

ϑqlϑqsα̌
0
q


ňq−1∑

j=0


1− πq

j

α̌0
q + j

− 1

α̌0
q + β̌

0
q + j

−
ňq−1∑

j=0


1− πq

j

(α̌0
q + j)2

− 1

(α̌0
q + β̌

0
q + j)2

α̌0
q

,

l, s= 1, . . . ,m,

Hls=

d∑

q=1

ϑqlϑqsβ̌
0
q


ňq−1∑

j=0


π

q
j

β̌0
q+ňq− j−1

− 1

α̌0
q+β̌

0
q+ j

−
ňq−1∑

j=0


π

q
j

(β̌0
q+ňq− j−1)2

− 1

(α̌0
q+β̌

0
q+ j)2

β̌0
q

,

l, s= m+ 1, . . . ,2m,

Hsl = Hls =

d∑

q=1

ϑqlϑqsα̌
0
qβ̌

0
q

ňq−1∑

j=0

1

(α̌0
q + β̌

0
q + j)2

, l = 1, . . . ,m, s= m+ 1, . . . ,2m,

Gl1 =

d∑

q=1

ϑqlα̌
0
q

ňq−1∑

j=0

ňq − j

α̌0
q + j

P̌q
j , Gl2 = −

d∑

q=1

ϑqlα̌
0
q

ňq−1∑

j=0

j + 1

α̌0
q + j

P̌q
j+1, l = 1, . . . ,m,

Gl1 = −
d∑

q=1

ϑqlβ̌
0
q

ňq−1∑

j=0

ňq − j

β̌0
q+ňq− j−1

P̌q
j , Gl2 =

d∑

q=1

ϑqlβ̌
0
q

ňq−1∑

j=0

j + 1

β̌0
q+ňq− j−1

P̌q
j+1,

l = m+1, . . . ,2m,

π
q
j =

j∑

z=0

P̌q
z(a0,b0), P̌q

j (a
0,b0) = C j

ňq

B(α̌0
q + j, β̌0

q + ňq − j)

B(α̌0
q, β̌

0
q)

, α̌0
q = ea0Tϑq, β̌0

q = eb0Tϑq.

Proof of Theorem 6.The log-likelihood function for the BLM is expressed as (Slaton et
al. 2000)

l(a,b)=
k∑

i=1

ln(Cxi
ni

) +
xi−1∑

j=0

ln(αi(a) + j) +
ni−xi−1∑

j=0

ln(βi(b) + j) −
ni−1∑

j=0

ln(αi(a) + βi(b) + j)

 .

(33)
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Under the theorem assumptions, the functionl(a,b) can be rewritten as

l(a, b) =
d∑

q=1

kq∑

t=1

ln(Cyq
t

ňq
) +

yq
t −1∑

j=0

ln(α̌q(a) + j) +
ňq−yq

t −1∑

j=0

ln(β̌q(b) + j) −
ňq−1∑

j=0

ln(α̂q(a) + β̌q(b) + j)

,

where kq is a number of clusters with factors vectorϑq, k =
∑d

q=1kq, yq
t is the

observed number of successes for the cluster typet, X =
⋃d

q=1{y
q
1, y

q
2, . . . , y

q
kq
}, and

α̌q(a) = eaTϑq, β̌q(a) = ebTϑq. Then, transforming the sum byt using approach of Johnson
et al. (1996) for the BBM likelihood system derivation yields

l(a, b)=λ +
d∑

q=1

kq

ňq−1∑

j=0

(
(1− Fq

j ) · ln(α̌q(a) + j) + Fq
j · ln(β̌(b) + ňq − j − 1)− ln(α̌q(a) + β̌q(b) + j)

)
,

where λ is some constant,Fq
j =

∑ j
z=0 f q

z , and f q
z is a relative frequency of the

value z occurrence in a sample{yq
1, y

q
2, . . . , y

q
kq
}. Let us use the following asymptotic

property of f q
z (Ivchenko and Medvedev 1984):f q

z = P̃q
z + OP(1/

√
kq ), whereP̃q

z is
the corresponding theoretical probability. Then, using the properties ofOP(.) and the
assumption that the factors{ϑ1, ϑ2, . . . , ϑd} are equiprobable, it can be proved that for
k→ ∞, the ML-estimator maximizes the following function

l1(a, b)=
d∑

q=1

ňq−1∑

j=0

(
(1−π̃q

j )·ln(α̌q(a)+ j) + π̃q
j ·ln(β̌q(b)+ňq− j−1)− ln(α̌q(a)+β̌q(b)+ j)

)
+OP

(
1
√

k

)
,

where π̃q
j =

∑ j
z=0 P̃q

z(a0,b0, ε0, ε1), and P̃q
z(a0,b0, ε0, ε1) are the elements of the

probability row for the DBBD with the parameters ˇnq, α̌q, β̌q, ε0, ε1 (see Theorem 1):

P̃q
z(a0, b0, ε0, ε1) =

ňq∑

l=1

wq
zl(ε0, ε1) · P̌q

z(a0, b0), wq
z j =

min(ňq,z+ j)∑

l=max(z, j)

Cl−z
z Cl− j

ňq− jε
l− j
0 (1− ε0)ňq−lεl−z

1 (1− ε1) j+z−l .

Besides, it can be proved that the following asymptotic expansions forP̃q
z hold

P̃q
z= P̌q

z+
(
(ňq−z+1)P̌q

z−1 − (ňq−z)P̌q
z

)
ε0+
(
(z+1)P̌q

z+1 − zP̌q
z

)
ε1+o(ε0)+o(ε1), z= 0, 1, . . . , ňq, (34)

where P̌q
−1 = P̌q

ňq+1 = 0. Since the ML-estimator is a solution of the optimization
probleml1(a,b)→ max, then the corresponding partial derivable are equal to zero:

d∑

q=1

ϑqα̌q(a)
ňq−1∑

j=0


1− π̃q

j (a,b, ε0, ε1)

α̌q(a) + j
− 1

α̌q(a) + β̌q(b) + j

 + 1m ·OP

(
1
√

k

)
= 0m, (35)
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d∑

q=1

ϑqβ̌q(a)
ňq−1∑

j=0


π̃

q
j (a,b, ε0, ε1)

β̌q(a) + ňq − j − 1
− 1

α̌q(a) + β̌q(b) + j

 + 1m ·OP

(
1
√

k

)
= 0m, (36)

where 0m is a vector of zeros of sizem. Linearizing this system w.r.t.∆a(ε0, ε1),
∆b(ε0, ε1) and expressing the biases from the linearized system concludes the proof.

¤

Expressions for Theorem 7. In the theorem statement, the following notation is used:

J =

(
JAa JAb

JBa JBb

)
, (gε)

T = (ga,gb)T ,

where

JAa
ls =

k∑

i=1

Zil Zisα
0
i


xi−1∑

j=0

1

α0
i + j
−

ni−1∑

j=0

1

α0
i +β

0
i + j
− α0

i


xi−1∑

j=0

1

(α0
i + j)2

−
ni−1∑

j=0

1

(α0
i +β

0
i + j)2



 ,

JBb
ls =

k∑

i=1

Zil Zisβ
0
i


ni−xi−1∑

j=0

1

β0
i + j
−

ni−1∑

j=0

1

α0
i +β

0
i + j
− β0

i


ni−xi−1∑

j=0

1

(β0
i + j)2

−
ni−1∑

j=0

1

(α0
i +β

0
i + j)2



,

JAb
ls = JBa

ls =

k∑

i=1

Zil Zisα
0
i β

0
i

ni−1∑

j=0

1

(α0
i +β

0
i + j)2

, l, s= 1,2, . . . ,m.

ga
l =

k∑

i=1

Zilα
0
i


−xi(β0

i + ni − xi)

(α0
i + xi − 1)2

ε0 +
ni − xi

β0
i + ni − xi − 1

ε1

 ,

gb
l =

k∑

i=1

Zilβ
0
i


xi

α0
i + xi − 1

ε0 +
(ni − xi)(α0

i + xi)

(β0
i + ni − xi − 1)2

ε1

 .

Proof of Theorem 7.Using the asymptotic expansion (34) and the properties of the BBD
(Johnsonet al. 1996), the log-likelihood functionlε(a,b,X, ε0, ε1) can be expressed in
the following asymptotic form

lε(a,b,X, ε0, ε1) = l(a,b,X) + e(a,b,X, ε0, ε1) + o(ε0) + o(ε1),

where

e(a, b,X, ε0, ε1) =
k∑

i=1

((
xi
βi(b) + ni − xi

αi(a) + xi − 1
− (ni − xi)

)
·ε0 +

(
(ni − xi)

αi(a) + xi

βi(b) + ni − xi − 1
− xi

)
·ε1
)
,
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and l(.) is defined by (33). Let us note that, when ignoring the distortions, the ML-
estimatorã(X, ε0, ε1), b̃(X, ε0, ε1) is the solution of the optimization probleml(a,b)
→ max. However, when taking the distortions into account, theML-estimator
ã0(X, ε0, ε1), b̃0(X, ε0, ε1) is the solution of another problem:lε(a,b) → max. Let us
denote

y =

(
a
b

)
, ỹ(X, ε0, ε1) =

(
ã(X, ε0, ε1)
b̃(X, ε0, ε1)

)
, ỹ0(X, ε0, ε1) =

(
ã0(X, ε0, ε1)
b̃0(X, ε0, ε1)

)
, y0 =

(
a0

b0

)
.

It can be proved that, in the neighborhood of ˜y0, ∂l
∂y(ỹ0)+ J(ỹ0) · (ỹ− ỹ0)+o(ỹ− ỹ0) = 02m.

On the other hand,∂l
∂y(ỹ0) = −ge(ỹ0) + 12m(o(ε0) + o(ε1)), where

∂l(a,b,X)
∂a

=

k∑

i=1

Ziαi(a)


xi−1∑

j=0

1
αi(a) + j

−
ni−1∑

j=0

1
αi(a) + βi(a) + j

 , (37)

∂l(a,b,X)
∂b

=

k∑

i=1

Ziβi(a)


ni−xi−1∑

j=0

1
βi(a) + j

−
ni−1∑

j=0

1
αi(a) + βi(a) + j

. (38)

Then, using the above expressions and the asymptotic property of the ML-estimator
ã0=a0+1m·OP(1/

√
k), b̃0=b0+1m·OP(1/

√
k) completes the proof. ¤

MLS-estimation of BLM parameters. The partial derivatives of the log-function
l(a,b,X, ε0, ε1) are computed as

∂l
∂ar
=

k∑

i=1

ni∑

j=0

wi
xi j(ε0, ε1) · ∂P

i
j(a,b)/∂ar

∑ni

t=0 wi
xi t(ε0, ε1) · Pi

t(a,b)
,
∂l
∂br
=

k∑

i=1

ni∑

j=0

wi
xi j(ε0, ε1) · ∂P

i
j(a,b)/∂br

∑ni

t=0 wi
xi t(ε0, ε1) · Pi

t(a,b)
,

∂l
∂ε0
=

k∑

i=1

ni∑

j=0

∂wi
xi j(ε0, ε1)/∂ε0 · P

i
j(a,b)

∑ni

t=0 wi
xi t(ε0, ε1) · P

i
t(a,b)

,
∂l
∂ε1
=

k∑

i=1

ni∑

j=0

∂wi
xi j(ε0, ε1)/∂ε0 · P

i
j(a,b)

∑ni

t=0 wi
xi t(ε0, ε1) · P

i
t(a,b)

,

where

∂Pi
j(a,b)

∂ar
= Pi

j(a,b)Zir αi(a)


j−1∑

l=0

1
αi(a) + l

−
ni−1∑

l=0

1
αi(a) + βi(a) + l

 ,

∂Pi
j(a,b)

∂br
= Pi

j(a,b)Zir βi(a)


ni− j−1∑

l=0

1
βi(a) + l

−
ni−1∑

l=0

1
αi(a) + βi(a) + l

 ,

and∂wi/∂ε0, ∂wi/∂ε1 are defined above (see the MLS-estimator for the BBM).
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Proof of Theorem 8.Under the distortions, the mean square error of forecastingfor the
classical Bayes predictor can be expressed as

r̃2
i = E{(pi − (α0

i + x)/(α0
i + β

0
i + ni))

2},

where pi is the beta random variable with the parametersα0
i , β

0
i , and the variable

x (the distorted sum of binary responses) follows the DBBD with the parameters
ni , α

0
i , β

0
i , ε0, ε1. Simplifying the latter expression leads to

r̃2
i = E{p2

i } − 2
α0

i E{pi} + E{xpi}
α0

i + β
0
i + ni

+
α0

i
2
+ 2α0

i E{x} + E{x2}
(α0

i + β
0
i + ni)2

, (39)

whereE{pi} = α0
i /(α

0
i + β

0
i ), E{p2

i } = α
0
i (α

0
i + 1)/((α0

i + β
0
i )(α

0
i + β

0
i + 1)), and the

mathematical expectations of the random variablesx, xpi , x2 are

E{x} = nε0 + n(1−ε0−ε1)·E{pi}, E{xpi} = nε0·E{pi} + n(1−ε0−ε1)·E{p2
i }, (40)

E{x2} = E{x} + n(n− 1)
(
ε20 + 2ε0(1−ε0−ε1)·E{pi} + (1−ε0−ε1)·E{p2

i }
)
. (41)

Substituting these formulas to (39) and simplifying the corresponding expression proves
the theorem. ¤

Proof of Theorem 9.Following the proof of Theorem 8, the mean square error of
forecasting for the classical Bayes predictor under the distortions (when using the
estimates ˆαi , β̂i) can be expressed as

r̃2
i = E{p2

i } − 2
α̂iE{pi} + E{xpi}
α̂i + β̂i + ni

+
α̂2

i + 2α̂iE{x} + E{x2}
(α̂i + β̂i + ni)2

, (42)

where the mathematical expectationsE{x},E{xpi},E{x2} are defined by expressions
(40), (41). Then, collecting the coefficients ofε0, ε1 andε20, ε0ε1, ε

2
1 in expression (42)

taking into account the notation (22), (23) proves the theorem. ¤

Proof of Theorem 10.Using the Bayes formula and Theorem 1, the posterior p.d.f. of
the random variablepi is expressed as:

fpi (x|s, ε0, ε1) =

∑ni

r=0 wi
sr(ε0, ε1) ·Cr

ni
xr (1− x)(ni−r) · B(α0

i , β
0
i )
−1xα

0
i −1(1− x)β

0
i −1

∫ 1

0

∑ni

r=0 wi
sr(ε0, ε1) ·Cr

ni
yr (1− x)(ni−r) · B(α0

i , β
0
i )
−1yα

0
i −1(1− y)β

0
i −1dy

.

Simplifying this formula using the properties of the beta distribution (Johnsonet al.
1996) leads to the expression for the forecast p.d.f. (27). Then, calculating the mean
of this distribution taking into account the properties of the DBBD gives the predictor
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(24). The mean square error of forecasting (26) is derived using the technique given in
the proof of Theorem 8 for the obtained predictor. ¤
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