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Robust estimation and forecasting for beta-mixed
hierarchical models of grouped binary data

M. A. Pashkevich, Yu. S. Kharin

Belarusian State University

Abstract

The paper focuses on robust estimation and forecasting techniques for grouped binary data with
misclassified responses. It is assumed that the data are described by the beta-mixed hierarchical
model (the beta-binomial or the beta-logistic), while the misclassifications are caused by the
stochastic additive distortions of binary observations. For these models, the effect of ignoring the
misclassifications is evaluated and expressions for the biases of the method-of-moments estimators
and maximum likelihood estimators, as well as expressions for the increase in the mean square error
of forecasting for the Bayes predictor are given. To compensate the misclassification effects, new
consistent estimators and a new Bayes predictor, which take into account the distortion model, are
constructed. The robustness of the developed techniques is demonstrated via computer simulations
and a real-life case study.
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1 Introduction

Grouped binary data frequently arise in longitudinal stsdhat are carried out over a
group of similar objects (Digglet al.2002). A natural way to describe this kind of data
is using the binomial model (Collet 2002). However, the lnel model often leads
to inaccurate statistical inference due to the so calle@ralispersion” &ects (Brooks
2001). These féects may occur for two main reasons (Neuhaus 2002): (i)gmep
correlation, i.e. violation of the independence assunmptibthe experiment outcomes
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for a particular object, and (ii) intragroup correlatiorusad by the heterogeneity among
objects. So, special “randonffects” models are used to describe the heterogeneity and
correlated outcomes (Coull and Agresti 2000).

The beta-mixed hierarchical models of grouped binary datavédely used in
practical applications when information about experimemtditions is not available.
The most popular models of this class are the beta-binonddei(BBM) that supposes
that the data on object properties are not available, anfeteelogistic model (BLM)
that supposes that they are known. The BBM was originallppsed by Pearson (1925),
formalized by Skellam (1948) and is associated with manyulisesults in applied
statistics due to its conjugate property (Prentice 1988) afiows avoiding numerical
integration while using Bayes approach for forecastingesponse probabilities (Slaton
et al.2000). The BLM is an extension of the BBM that was proposed bgkithan and
Willis (1977); it is widely used in economics, biometricglitical sciences and other
applications (Pfeifer 1998; Nathan 1999).

In real life, the observed binary outcomes are often misdiasl (Neuhaus 1999),
and the classical statistical procedures that are optianrghe hypothetical model may
lose their “good” properties under distortions (Kharin @829Hence, it is important
to analyze the sensitivity of the classical estimators aretliptors w.r.t. response
misclassifications and, if needed, to develop new statigtimcedures that are robust to
these distortions (Huber 1981; Hampeelal. 1986). Although a number of papers have
been published on robustness of the linear mixed model 260L), logistic regression
(Kordzakhiaet al. 2001), binomial model (Ruckstuhl and Welsh 2001), infeesfar
dichotomous survey data (Gaba and Winkler 1992), and on #ye®an identifiability
problem of multinimial data with misclassifications (Swagz al. 2004), these results
can not be directly applied to the grouped binary data dukeiv specific property.

The literature review shows that little research has beamedmn investigation
the robustness issue for the special models of the groupetybdata. The major
contribution to this domain has been done by Neuhaus, whextanded his general
results for the binary regression models under responselassifications (Neuhaus
1999) to the clustered and longitudinal binary data caséidirecent work, Neuhaus
(2002) obtained expressions for the parameter bias andogedemethods for consistent
estimation for the population-averaged models (Liang amger 1986). He also
examined a special case of the cluster-specific models (Zage Karim 1991),
the logistic normal model, which is an extension of the ltdgisegression to the
grouped binary data case. However, as noted by Neuhaus)(2®02 derivation of
bias expressions for nonlogistic links will require dtdient approach than for the
logistic” since the specific property of the logistic linknfction was used to obtain the
expressions.

This paper focuses on the robustness issues for the betdigrarchical models
under stochastic additive distortions of binary obseorati These models belong to
the cluster-specific type but have not been addressed inethted works yet. The
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remainder of the paper is organized as follows. Section Z2®tkd to the problem
statement and definition of the related mathematical modastion 3 concentrates
on the robust estimation of the beta-binomial model pararsgtvhile Section 4 deals
with the same problem for the beta-logistic model. Sectiam dedicated to the robust
forecasting based on the beta-mixed hierarchical model ¢heta-binomial and beta-
logistic ones). Section 6 presents an application exanmuegaluation of the developed
methods for a real-life case study. Finally, Section 7 sunmaa the main contributions
of the paper.

2 Mathematical models and research problems

Let us considek clusters with the covariated € R™i = 1,...,k, and letB;, =
(Bi1, Biz, ..., Bin,) € {0, 1}" be the binary responsesmfBernoulli trials over the cluster
i. Let us also assume that the following two assumptions hold.

Al. Within the clustet, the success probabilify is a random variable that follows the
beta distribution with the true unknown parametefs= f,(Z), B° = f3(Z),
wheref,() : R" = R", f5(.) : R" - R".

A2. Random variablepy, po, ..., px are independent in total.

Let us refer to the defined above data model as the beta-mirearthical model of

the grouped binary data. In this paper, we focus on two moafethis type that are

frequently used in practical applications (the beta-biradand the beta-logistic), which
are specified as follows:

BBM: f,(Z)=0° f5(Z)=p° ni=n;
model parametersie N, %, ° € R.

BLM:  f,(Z) = expEa®), f4(Z) = expE'b°);
model parametersy,...,nce N, a% b e R™.

For the BBM, it is assumed that the number of Bernoulli trials: nis the same for
all clusters anah is known a priori. Estimation of the remaining BBM paramsiet, 5°
is performed (Tripathéet al. 1994) using the method of moments (explicit expressions)
or the method of maximum likelihood (numerical algorithidr the BLM, the number
of Bernoulli trialsnj may vary across the clusters and is also known a priori, while
the other parametera®, b° are estimated using the maximum likelihood numerical
algorithm (Slatoret al. 2000).

One of the main problems for the grouped binary data thatamgty motivated by
practical applications, is the forecasting of the succesisgbilitiesps, . . ., px for for the
future trials using the past binary outcontes- {B, ..., B¢} obtained for small sample
sizesn; that are too small to have accurate traditional estimaterri-*x° (Collet 2002).

For the beta-mixed hierarchical models, this problem igesblia the Bayes predictor
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function (Diggleet al. 2002)
Bi ) = (@ + X))/ (@) + B + i), 1)

wherexi0 = Z?‘Zl Bij, i=12,...,k are the sums of the binary outcomes within the
cluster. This predictor ensures the minimal mean squace efrforecasting when the
consistent estimators of the model parametefss°} are used.

Suppose now that the original binary dddaare contaminated by the stochastic
additive binary distortiongy;; }, and we observe the distorted binary resportses

Bij = B @ nij (2)
with the misclassifications defined as
P{Bij = 1Bjj = 0} = 50, P{Bjj =0Bjj = 1} = &, (3)

whered is the modulo 2 sum, angy, &1 < 1 are the distortion levels which can be
either known or unknown (Copas 1988). In this settings, twaonmesearch problems
arise:
(i) Evaluation of the &ects of ignoring the misclassifications for the classicatieio
parameter estimation techniques and response probdbiggasting methods.
(i) Construction of new estimation and prediction methaabich take into account
the distortion model and compensate the misclassificattecte

In the remaining sections, these problems are solved deparar the BBM
and BLM parameter estimation, while the forecasting is eérach and enhanced
simultaneously for both of them. For the first problem, thénestion bias and the
increase in the mean square error of forecasting are eedlu& asymptotic expansions.
For the second one, new estimation and forecasting metldudsh are based on the
obtained probability distribution of the distorted datee proposed.

It should be noted that for the BBM (Section 3), the paper ictars the case of equal
group sizes since it is typical for many application aread #xploit this model. The
assumptiom; = n allows obtaining simple expressions and helps to develtystion
about the distortions influence on the BBM inference. Howehe results for the BBM
with different{n;} can be easily obtained as a special case of the BLM resultsi¢8e
4), where the covariatdZ;} are the same for all clusters.

For further convenience, let us introduce the followingation: MM-estimator —
the method of moments estimator, ML-estimator— the metifadaximum likelihood
estimator,0(¢), O(e) —Landau symbols foe — 0, Y,, = Op(Z,)— probability Landau
symbol for random sequenc¥s Z, € R. The detailed definition dDp(.) and the proofs
of theorems are given in Mathematical Appendix.
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3 Robust estimation of the beta-binomial model

Distorted beta-binomial distribution. Let x; be the number of successes for thé
cluster:x; = Z?i:l Bij, 1 =1,...,k The following theorem defines the probability
distribution of the random variabbe under the distortions (2), (3).

Theorem 1 The probability distribution of the distorted beta-bin@iiandom variable
X can be represented as a weighted sum

Pi(e. B, 80, 81) = ) Wis(€0, £1) - PY(@. ), (4)
s=0

where{PY} are the non-distorted probabilities for the BBM with the aareters na,

Bla+sB8+n-29)
B(a. ) ’

B(.) is the complete beta function, and the weights for the distodevelssg, £, are
computed as

n
@@m=@)

min(n,s+r) s n—s
Wrs(go, £1) = Z (I —r )(I ~ )e'o‘s(l—so)“" g (l-e)*"", sr=0,1,...,n

S
l=max(sr)

Using this theorem, it can be proved that the mean and vaiahthe distribution
(4) are

na
ﬂ+(1—80-61)2'V0,

) = a0 (o) Vi) = solleo) e e(loer)

whereVy = (naB(a+B+n))/((e+B)*(a+B+1)) is the variance of the non-distorted BBM.
Let us refer to the distribution (4) as the distorted betahiial distribution (DBBD)
with the parameters, «, 3, €, 1.

As follows from the theorem proof (see Appendix), the wesghit; can be treated
as the probabilities that the distorted vatueas originated from the non-distorted sum
of the binary outcomes. It should be noted that whesty = ¢; = 0, the proposed
distribution (4) is identical to the classical beta-binaiistribution (BBD) with the
parameters, «, 8, and the weight matri¥V = (ws) is the identity one. If the distortion
levels are small, the matri¥/ can be approximated by the asymptotic expansion

W(eo, 1) = | + W, - g0 + W[, - &1 + 0(0, 1), (5)
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wherel is the identity matrix, and the matric®¢, , W, are calculated as

-n 0 0 ... 0 O 1 O0.. O

n —(n-1) 0..0 0-1 2 .. 0
W=l 0 n-1 -m-2 ... o0 w-lo o= .. o
£0 ’ &1

0 0 0 ... 0 0O 0O O ... —n

The expression (5) allows obtaining the following asymigtatlation between the
distortedP, (g0, £1) and the originaP? probabilities

Pr(z0.81) = P+ (=1 + 1P, — (n=1)PY) - &0 + ((r + 1)PP,, — rPP) - &1 + (e, £1),

(6)
whereP?, = P% = 0. This expression can be employed to assess the sensitfvity
the beta-binomial distribution to the distortions (2),.(8)the following subsection, the
result of Theorem 1 and the expression (6) are used to eealbiatsensitivity of the

classical BBM estimators.

Robustness of the classical estimators. Let o, 8° be the true unknown values of the
BBM parameters, and l@ti(so, £1), AB(so, £1) be the biases of the parameter estimators
that ignore the misclassifications with the levejse;. The following theorems evaluate
the robustness of the classical MM and ML-estimators vidrth@&ases w.r.t. the
distortion levels.

Theorem 2 The bias of the classical MM-estimator of the BBM parametersich
ignores the misclassifications, satisfies the followingrgstptic expansion

( A&MM ) _ ( (IO + 2,80 +1 a/O(a/o + l)/ﬁo )‘(80 ) + ( 0(80, 81) + Op(l/ \/E) ) (7)
A |\ BB+ 1)/a® 22 +8°+1 J\er | T\ o(eq, £1) + Op(1/ V) |

Theorem 3 The bias of the classical ML-estimator of the BBM parametersich
ignores the misclassifications, satisfies the asymptopiaresion

( Aami ) _ ( Hii Hi2 )_l( Gu G2 ).(80 ) N ( 0(s0, £1) + Op(1/ VK) ) (8)
ABmL Ha1 Hazz G G2/ \e&1 o(g0, £1) + Op(1/ VK) |’
where explicit expressions for the matrices H, G are givekathematical Appendix.

As follows from these theorems, the classical MM and MLyaators of the BBM
parameters become biased and inconsistent under thetidissorExpressions (7), (8)
allow assessing the sensitivity of these estimators to tiselassifications (3). Let us
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now construct consistent and unbiased estimators thatimékeiccount the distortion
model (2), (3).

Robust estimation in the case of known distortion levels. Let us consider the case
when the distortion levelsg, 1 are known a priori. Denote the empirical moments
of the orderr asmi = k! Z!‘zl x. The following theorems define consistent and
asymptotically unbiased MM and ML-estimators for the calSlenown &g, &;.

Theorem 4 The consistent and asymptotically unbiased MM-estimatbich takes
into account the distortion model (2), (3), is expressed as

San = So(My, £0) - u(My, My, 0,1)  ~  6p(M, &1) - (M, MG, &0, 1)
MM = A(mi, m;, 80, 81) ’ MM = A(m*5 m37 80’ 81)

. (9

where
0o =My —Ngg, Jg=N-M —Ney, p=mn-m,— (godp +Mer)(n- 1),

A = (1-&1-20) (Myn — mn — m%(n - 1)).

Theorem 5 The consistent and asymptotically unbiased ML-estimatioich takes into
account the distortion model (2), (3), can be derived by wippl the classical ML-
estimator to the filtered empirical probabilities

n

P? = Z un (0. £1) - Pi(g0. 81), (10)
1=0

where {P,, ..., P,} is the empirical probability distribution of the distorteshmple
{X1, X2, ..., X!}, anduvy are the elements of the inverted weight matrix W from Theorem
1:V = (vy) =W, def(W)=0.

Let us refer to the above estimators as the modified MM-estinf&MM-estimator)
and the modified ML-estimator (MML-estimator) respectwdt should be noted that
the filtration approach (Theorem 5) is not limited to the mawim likelihood technique,
it can also be used together with other known estimation otsttdeveloped for the
classical (non-distorted) beta-binomial distribution.gdod review of these methods
can be found in (Tripathet al.,, 1994).

Robust estimation in the case of unknown distortion levels. Let us now consider
a general case when both the BBM parametes and the distortion levelsg, £;
are unknown. For simultaneous consistent estimatiomn gfandeg, €1, two numerical
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algorithms are proposed; the first employs the method of mésnaend the second
utilizes the maximum likelihood approach.

For the method of moments, the simultaneous estimatiorigmoban be reduced to
the solution of the following system of two nonlinear eqaas for the third and fourth
order moments

m; = mg(a(eo, £1), (€0, £1), €0, £1), My = Mu(a(eo, 1), B(&0, £1), €0, €1),  (11)

where the functiong(eg, £1), B(eo, £1) are expressed explicitly (see Theorem 4) from
the equations for the first and second order moments

m; = my(a, B, 0, 1), M, = Mp(a, B, €0, £1). 12)

Hereny = k‘lZ!‘ZOX{, r = 1,23,4; while m(a,B,eo,e1) are the corresponding
theoretical moments for the DBBD with the parameterg,p, g, ¢1 that can be
computed using Theorem 1. To solve the equations (11), letppdy the modified
Newton method. Denote b¥ the 2x2 Jacobi matrix of the system (11) on the condition
that the equations for the first two moments (12) hold. Thentdrative procedure for
the solution of (11) is expressed as

(50) (% )oa-cpr( o el DA A )

£ &l m;, — my(a(el, €)), B(ep, ). &b, €1)

whered € (0,1] is the algorithm parameter that ensures the convergemcaiige
distortion levelseg, £1 (Demidovich and Maron 1970). All expressions required for
the numerical implementation of the procedure (13) arergivethe Mathematical
Appendix. As follows from the numerical experiments, thealsvalued = 1 (typical
for the classical Newton technique) provides poor converge so it is prudent to
start iterations with rather lom and gradually increase it so that it becomes close
to 1 in the neighborhood of the desired solution. It can beedoesing the recursive
sequencedy,: = A¢- (L-6)+ 6, where 1o and 6 are the tuning parameters. During
the computer simulations that will be discussed below, tite@s used the following
values:1y = 0.1, 6 = 0.05. Let us refer to the estimates of the model parametgss
and the distortion levels, £1 obtained using the procedure (13) as the MMS-estimates.
For the maximum likelihood approach, the simultaneousredton is reduced to the
following constrained maximization problem

n
(e, 8,80, 81) = ) T IN(Py (@, 8, £0, £1)) — Jmax, @peR’, eoe1€[01] (14)
r=0 Peoél

where{fo, f1,..., fy} are the frequencies for the distorted samiplg xo, ..., X}, and
the explicit expressions for the distorted beta-binomrabgbilitiesP,(.) are given in
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Theorem 1. This maximization problem is solved using theifitadion of the steepest
descent method. All the expressions required for the nwakimplementation are given
in Mathematical Appendix. Let us refer to the estimates,@f andeg, £, obtained from
(14) as the MLS-estimates.

Computer simulations. To demonstrate the robustness of the proposed estimators of
the BBM parameters, a series of four computer simulatiors dame. It was assumed
that the true values of the model parameters wére 0.5, 8° = 9.5, n=10. These
values are typical for the application area that the auttiead with (see Section 6).

Experiment 1This experiment was dedicated to assessing the sensdhtite beta-
binomial distribution to the distortions (Theorem 1). Téevere generatekl = 1000
realizations of the random variable from the DBBD with thegmaeters, «°, 58° and the
distortion levelssg = 0.01, &, = 0.02. For the generated sample, there were computed
the empirical probabilitie®;, r = 0,1,...,n, as well as the sample mean and variance.
Also, there were calculated the weight mati the theoretical probabilitieR, andP?,
the approximate value8? for P, (the asymptotic expansion (6)), and the theoretical
mean and variance for the BBD and DBBD.

As follows from the experiment results (Tables 1-3), thegioidl beta-binomial
distribution is quite sensitive to the distortions. For mexde, the relative dierence
between the non-distorteéf and distortedP, probabilities can go up to 24.9%, and
the mathematical expectation and variance cdfedby 17.0% and 3% respectively.
The corresponding weight matri%/ (see Table 3) has the dominated leading diagonal
and the adjacent elements, that explains why the lineaez@dessions (6) provide
an accurate enough approximation of the probabiliBesThis result validates using
of stochastic expansions for assessing the sensitivithefctassical estimation and
prediction techniques with respect to the distortion Isvel

Table 1. Comparison of the original, distorted and empirical meanl aariance.

Distribution type Mean Variance
Classical beta-binomial distribution 0.500 0.929
Distorted beta-binomial distribution 0.585 0.957
Empirical distribution 0.577 0.943

Table 2: Comparison of the original, distorted and empirical proliaies for the BBM.

r 0 1 2 3 4 5 6 7 8 9 10
x101 x101 %102 x102 x102 x10° x10° x10% x10% x10° x10°

P°| 693 187 7.23 292 115 430 146 434 106 191 191
P, | 630 234 840 324 125 454 150 436 104 180 173
P2l 6.28 239 822 321 124 452 150 435 103 180 172
P;| 632 234 833 319 117 500 095 250 150 0.00 191
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Table 3: Elements of the weight matrix W for the distortion levgls- 0.01, &; = 0.02.

0 1 2 3 4 5 6 7 8 9 10
0 | 0.9044 0.0183 0.0004~10° ~107 ~10° ~10%0 ~10%? ~10% ~10° ~10Y
1|0.0914 0.8969 0.0362 0.0011~10° ~10°% ~10% ~10%° ~10 ~10%8 ~10%
2 | 0.0042 0.0815 0.8891 0.0538 0.0022 0.000410° ~107 ~10° ~10% ~10%?
3 10.0001 0.0033 0.0717 0.8811 0.0710 0.0036 0.00810° ~107 ~10°% ~1071°
4 | ~10° 0.0001 0.0025 0.0621 0.8727 0.0879 0.0053 0.00830° ~107 ~10°8
5| ~10% ~10° 0.0001 0.0019 0.0527 0.8641 0.1044 0.0074 0.00840° ~10°
6 | ~0® ~10% ~10°® ~10° 0.0013 0.0435 0.8551 0.1206 0.0097 0.000610°
7| ~10%2 ~10° ~10® ~107 ~10° 0.0009 0.0344 0.8460 0.1363 0.0124 0.0008
8 |~10% ~101 ~10 ~10° ~107 ~10° 0.0005 0.0256 0.8366 0.1517 0.0153
9 | ~0Y ~10% ~10 <10 ~10° ~10° ~10° 0.0003 0.0169 0.8269 0.1667
10| ~10%° ~1018 ~10% ~10 ~10%2 ~101° ~10® ~10® 0.0001 0.0083 0.8171

Experiment 2 This experiment was devoted to assessing the bias of tlssicd
BBM parameter estimators that ignore the misclassificati@meorems 2, 3). There
were generated 100 independent random samples df siZE000 from the BBM with
the parametens, o°, 8°. It was assumed thap=e; €[ 0; 0.02] and they varied with the
step 0.002, and each sample was contaminated accordirgdestbrtion model (2), (3).
For each distorted sample and for each value of the distdeieel, the classical MM and
ML methods were applied. Then, for all valuesagfe;, the 95%-confidence intervals
of thea, B8 estimates were computed (using the common technique, valsgtmes that
the estimates follow the normal distribution). Finallyr tbe same distortion levels, the
theoretical biases were obtained using the stochasticeiqas (7), (8).

The results of the experiment are presented in Figure 1,eyieris the relative
bias (i.e Aa/a® or AB/B%). As follows from the figure, the stochastic expansions(g)),
provide good approximation of the parameters biases caogdle distortions with
the levelsegg, &7 < 0.01. Besides, the classical estimators are quite sensiivae
distortions. For example, for the distortion levels= ¢, = 0.01, the relative errors for
the parameters, 8 are respectively 50%, 22.7% for the the MM-estimator and%.
28.0% for the ML-estimator.

d Method of maximum |,
180 likelihood
(parameter B)

' Method of maximum
likelihood :,
(parameter cr)

Method of moments |} !
(parameter P) e e 80
7

Figure 1: The biases of the classical MM- and ML-estimators of the BBk&meters, which ignore the
misclassifications: gray tubes —experimental 95% confidéntervals; solid lines— approximation via the
asymptotic expansions (7), (§)—the relative biasg— the distortion leveldy=¢;).

However, for practical applications, it is also importamtanalyze the sensitivity of
another BBM parametrization (Prentice 19863 a/(a +f), v = 1/(a+ ), wherern is
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the average response probability, gnd a measure of the inter-group correlation. For
this parametrization, the relative errors of the MM and Miti@ators for the parameters
n,y are 20.9%, 19.4% and 17.7%, 22.6% respectively. It meansgharing response
misclassifications leads to quite large errors when asgpssith the average response
probability for the clusters and the inter-group corr@atbetween units. This numerical
result emphasizes the importance of the research topic atidates development of
new robust estimators, which take the distortion model attcount.

It should be noted that Neuhaus (1999, 2002) performed ainsbmputer
simulations for the binary regression, as well as for theuytstpn-averaged and the
mixed-dfects logistic models. In his simulation, Neuhaus was isteck in the bias
of the regression cdigcients and made a conclusion that the biases due to response
misclassifications were negligible for small values of thstaition levels and were
substantial only wherzg,e; > 0.10. Since our experiments yielded qualitatively
different results (see Figure 1), this fact should be explaiméeetails.

For the comparison purposes, the beta-mixed hierarchicaemconsidered in
this paper (both BBM and BLM) can be reformulated as a specsse of the
generalized linear mixed model (GLMM), which is an extensaf the generalized
linear model (GLM) to the longitudinal or clustered dataecaghe reformulation can
be done by introducing dummy constant covariates for eac$tegiunit, and choosing
an appropriate link function and a randorffeets distribution. Then the regression
codficients can be considered as the beta-mixed hierarchicaélnpadameters, and
their sensitivity to the distortions can be investigatethgigechnique employed in
this paper. Hence, the above model conversion can be treatadspecific nonlinear
re-parametrization of the beta-mixed hierarchical mouddiich leads to completely
different meaning of the model parameters.

For this re-parametrization, the parameter estimator ithatys w.r.t. the
misclassifications may increase, depending on the trueesabfi the parameter. For
instance, for small values ot (which are typical for our application area), the
misclassifications essentially influence the estimasenceE{x;/n} = go(1-1)+(1-&1)7.
Thus, whenr = 0.05 andgg = &1 = 0.01 the expectation ok /n is equal to 0.059,
i.e. misclassifications cause 18% increase of the correlpomparameter value. This
justifies the qualitative dierence of the Neuhaus’ and ours simulation results.

Therefore, the obtained results show that the beta-bilomizdel parameter
estimators are less robust to the response misclassifisatmmpared to the estimators
for the models investigated by Neuhaus. This emphasizeg#earch topic importance
and motivates development of robust estimators for the BBMghould be also noted
that the robust estimation approach for the logistic-ndmmzdel that was employed by
Neuhaus (2002) can not be applied to the BBM since he usedfisg@operties of the
logistic link function that the beta-binomial distributi@loes not possess.

Experiment 3 This experiment was aimed at the performance evaluatiothef
proposed robust estimators in the case of known distorguel$ (Theorems 4, 5). It
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was assumed thaty = ¢; = 0.01, and the developed MMM and MML-estimators
were compared to the classical MM and ML-estimators by a&sgsthe biases,
standard deviations, and histograms. As follows from theedrnent results (Figure
2), the proposed estimation methods allow essentiallyedesing the bias of the, 8
estimates and lead to the smaller standard deviation whitepared to the classical
estimators. In particular, the MMM-estimator yields thdatiwe biases 2.0%, 2.1%
for the parameters, 8 respectively against 47.7%, 25.2% obtained by applying the
classical MM technique. The MML-estimator ensures thetradabiases 0.9%, 1.1%

in contrast to 54.2%, 30.3% for the classical ML method. Ehessults confirm the
robust performance of the proposed estimators.

Classical MM-estimators Modified MM-estimators

S 30 =o7as=om 1
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Modified ML-estimators

S 5=96,0-153
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Figure 2: Histograms of the classical and proposed estimators of Bl Parameters for known distortion
levels: f —empirical frequency— sample meanr —sample standard deviation; the circles denote the true
parameter values.

Experiment 4 This experiment focused on the performance evaluationhef t
proposed robust estimators in the case of unknown distoféieels. It was assumed
thateg = &1 = 0.01, and the developed MMS and MLS-estimators were compared t
the classical MM and ML-estimators by assessing the biaséstandard deviations.
As follows from the experiment results (Table ), the propbsstimation techniques
allow essentially decreasing the bias of thg estimates, while the standard deviation
increases compared to the classical estimators. In pktithe MMS-estimator yields
the relative biases 2.0%, 3.2% for the parametefyespectively against 46.0%, 24.3%
obtained by applying the classical MM technique. The MLS8restor ensures the
relative biases 6.0%, 1.2% in contrast to 52.0%, 29.3% #cthssical ML method. On
the other hand, the standard deviation increases up to twicgared to the classical
methods that ignore the misclassifications. Thisa is caused by the identification of
two extra parameteks, 1 in addition toa, 8 that normally leads to extra variation.

Advantages of the developed methods were also confirmedditiadhl numerical
research aimed at the identifiability analysis, which waseldaon computing of the
determinant and condition number for the relevant Jacokrices. For the MMS-
estimator, there were examined both the fullldJacobian of the system (11), (12) and
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the reduced 2 2 Jacobian, which is used in the numerical procedure (13)inDuhe
simulation, the determinant of the full Jacobian was fanfrmero and varied from 0.01
to 0.10 that confirms the identifiability. However, the cepending condition number
was rather high (from B-10° to 1.4-10°), that validates using of the proposed iterative
procedure (13), which employs inversion of the2matrix with much better condition
number (from 55.4 to 73.8). For the MLS-estimator, there @asmined the ¥4 matrix
of the second derivatives for the log-likelihood functidd). Its determinant was greater
then 16 that indicates the identifiability of all model parametést the corresponding
condition number varied from.3-10° to 7.8-1C® that explains slow convergence of
the optimization routine (approximately 85 times sloweerttior the MMS-estimator)
due to the ravine structure of the objective function. Nthaless, the MLS technique
gives better estimation results in comparison with the MhS18% of simulation runs,
the MLS biases were smaller then the MMS biases for all fovampaters, in 27% of
runs —for three parameters, in 19% of runs— for two parareeter5% of runs —for
one parameter, and only in 1% of runs the MMS dominated owemMhS for all the
parameters). These results confirm both the identifiatalitg the robust performance
of the developed estimators.

Table 4: Comparison of the classical and proposed estimators of 8l Bor unknown
distortion levels.

Parameter @ B

(true value 0.5) (true value 9.5)
Method MM ML MMS MLS MM ML MMS MLS
Mean 0.73 0.76 049 053 1181 12.28 9.20 9.39
Standard deviation 0.12 0.11 0.21 0.22] 2.01 1.97 2.63 0.71

4 Robust estimation of the beta-logistic model

Robustness of the classical M L-estimator. Leta®, b? be the true unknown values of the
BLM parameters, and let&(sq, £1), Ab(eo, £1) be the biases of the parameter estimators
that ignore the misclassifications with the levejse;. The following theorems evaluate
the robustness of the classical ML-estimator via its biag.wthe distortion levels.

Theorem 6 The bias of the classical ML-estimator of the BLM paramet&rkich
ignores the misclassifications, satisfies the followingrgstptic expansion

(8] (2) mparafd) o

under the assumption that the covariates Belong to the countable set
{91,92,...,9q} C R™ i =1,2,...,k all vectors{dq} are equiprobable, and the clusters
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with the same covariatek, have equal group size%, wherelyy, is a vector of ones of
size2m, and H, G arg2m x 2m), (2mx 2) matrices given in Mathematical Appendix.

As follows from the theorem, the classical ML-estimator loé BLM parameters
becomes biased and inconsistent under the distortionseEsipn (15) allows assessing
the sensitivity of this estimator to the misclassificatiqi33. Let us now propose
consistent and unbiased estimators that take into accoemlistortion model (2).

Robust estimation in the case of known distortion levels. Consider the case when
the distortion levelgy, €1 are known a priori. First, let us obtain a stochastic expgansi
for the biases that ders from (15) by taking into account an observed sample
{X1, X2, ..., X}

Theorem 7 For the observed sample X, the bias of the classical ML-estinof the
BLM parameters, which ignores the misclassificationss§ias the following asymptotic
expansion

A& _ 1
(AB) = J71(@° b°, X) - ge(@®, b°, X, €0, £1) + 1om (0(80, £1) + OP(TT())’ (16)
where the(mx m)-matrix J(.) and the m-vector g.) are defined in Mathematical
Appendix.

Then, the expansion (16) allows constructing a bias congtengsprocedure for the
classical ML-estimator

@Y = @&, bYT — - IHE, BY, X) - g, B, X, &0, £1), 17)

where t is the iteration number and is the algorithm parameter that ensures
convergence. The parametéris selected in the similar way as for the numerical
procedure (13) from Section 3l = A;-(1—-6) +6. In the given below computer
simulations, the authors used valugs = 0.1, 8 = 0.05. Let us refer to the bias-
corrected ML-estimator (17) as the modified ML-estimat®isAL).

Robust estimation in the case of unknown distortion levels. Let us now consider
a general case when both the BLM parametets and the distortions levelsy, &1
are unknown. For simultaneous consistent estimation, bfand &g, €1, @ maximum
likelihood based numerical algorithm is proposed.

Using results from Section 3, the log-likelihood functioor fthe BLM that
accommodates the distortion model (2), (3) may be expressed

k nj
(@b X eo.e0)= Y log| > wh(e0.22)-Pi(a.b) | (18)
i=1 j=0
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where

B(ai(@)+].Bi(b)+ni—j)
B(ei(@).8i(b))

Pan-(] ) oi(@) = exp@la). i(b) = exp')

B(.) is the complete beta function, arwl“ are the weights of the distorted beta-
binomial distribution with the parameteng «;(a), 8i(b), £0, £1 (see Theorem 1). Then,

the simultaneous estimation of the BLM parameters and tterdion levels is reduced

to the following constrained maximization problem

l.(a,b, X, e0,£1) » max, abeR", &,& €][0,1]. (19)

ab.eo.e1

The problem (19) is solved using the gradient descent methddthe required
expressions are given in the Mathematical Appendix. Letefisrito the estimates of
a, b andeg, €1 obtained from (19) as the MLS-estimates.

Computer simulations. To demonstrate the robust performance of the developed
methods for the estimation of the BLM, a number of computeusitions was done. It
was assumed that the true values of the parametersaerg, b°=2, Vi,n = 10, k=
1000, and the covariate&g € R were uniformly distributed on the segmentq11.1].
This range of the covariates corresponds to the interuats[2.7; 3.0], B € [7.4; 9.0]
that is typical for the application area the authors dedah\{gee Application Example).
The simulations included three experiments.

Experiment 1 This experiment was devoted to assessing the bias of tksicdh
ML-estimator of the BLM parameters that ignores the misifasations (Theorem 6).
There were generated 100 independent random samples df siz&000 from the
BLM with the parameters®, b°. It was assumed thap=¢;€[0; 0.05] and they varied
with the step 0.01, and each sample was contaminated angdodihe distortion model
(2), (3). For each distorted sample and for each value ofigtertion level, the classical
ML method was applied. Then, for all values &f, 1, the 95%-confidence intervals
of the a,b estimates were computed (assuming that the estimatesvftii® normal
distribution). Finally, for the same distortion levelsettheoretical biases were obtained
using the stochastic expansion (15).

As follows from the experiment results (Figure 3), the samtit expansion (15)
provides good approximation of the parameters biases ddus¢he distortions with
the levelseg, 1 < 0.05. Besides, the classical ML-estimator is quite sensttivehe
distortions. For example, for the distortion levels= &, = 0.05, the relative errors
for the parameters,b are 39.2%, 12.1% respectively. It should be noted that the
higher parameter biases in comparison with the results afhbies (1999) for the
binary regression are due to the specific nonlinear parazagtn of the beta-mixed
hierarchical models (for details, see the above discudsidinle Computer Simulation
subsection for the BBM).
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Figure 3: The biases of the classical ML-estimator of the BLM paramet#hich ignores the
misclassifications: gray tubes —experimental 95% confidémervals; solid lines— approximation via the
expansion (15)Aa, Ab —the relative biass— the distortion leveldy=¢,).

Experiment 2 This experiment was aimed at the performance evaluatiothef
proposed robust estimator in the case of known distortival$e(Theorem 7). It was
assumed thafy=¢; =0.03, and the developed bias-corrected estimator was coohfzare
the classical ML-estimator by assessing the biases, stdwésaiations, and histograms.
As follows from the experiment results (Figure 4), the pregu estimation method
allows essentially decreasing the bias of thé estimates and leads to the similar
standard deviations. In particular, the bias-correct¢ichasor yields the relative biases
2.3%, 1.1% for the parametegb respectively against 23.1%, 8.2% obtained by
applying the classical ML technique.

The identifiability of the model parameteasb and convergence of the numerical
procedure (17) are determined by the properties of tle2 2matrix of the second
derivativesJ for the BLM log-likelihood function (which does not take inaiccount
the distortion model). Additional numerical research gadéd that the determinant of
this matrix was greater then 3,Gvhile the corresponding condition number varied from
38.4 to 51.7. These results confirm both the identifiabiliyg ¢he robust performance
of the bias-corrected estimator.

Classical ML-estimators Modified ML-estimators

I3

n=123,6=0.1

n=098,0=0.10 7 n=1986=0.10

20

7

Figure 4. Histograms of the classical and proposed estimators of thd Barameters for known distortion
levels: f —empirical frequency— sample meany —sample standard deviation; the circles denote the true
parameter values.

Experiment 3 This experiment focused on the performance evaluationhef t
proposed robust estimator in the case of unknown distofggals. It was assumed
thateg = &1 = 0.03, and the developed MLS-estimator was compared to theicts
ML-estimator by assessing the biases and standard densgatis follows from the
experiment results (Table 5), the proposed estimationnigale allows essentially
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decreasing the bias of tleeb estimates, while the standard deviation is approximately
the same in all cases. In particular, the MLS-estimatordgi¢he relative biases 4.1%,
1.6% for the parametegs b respectively against 23.0%, 7.5% obtained by applying the
classical ML technique.

To analyze the identifiability of the parametexd, €9, €1 and the convergence of
the developed MLS estimation algorithm, there was examthex 4 matrix of the
second derivatives for the log-likelihood function (18)hiah takes into account the
distortion model. Its determinant was greater theh th@t indicates the identifiability
of all model parameters. But the corresponding conditianiner varied from B-10° to
5.1-10* that explains relatively slow convergence of the optimi@atoutine due to the
ravine structure of the objective function. However, thenpating time is acceptable
for practical applications. These results confirm both trentifiability and the robust
performance of the developed MLS-estimator.

Table 5: Comparison of the classical and proposed estimators of thé #r unknown
distortion levels.

Parameter a b

(true value 1.0) | (true value 2.0)
Method ML MLS ML MLS
Mean 1.23 1.04 2.15 2.03
Standard deviation 0.11 0.12 0.11 0.11

5 Robust forecasting for beta-mixed hierarchical models

Robustness of the classical Bayes predictor. First, let us analyze the robustness of the
classical Bayes predictor (1), which incorporates thevalees of the model parameters
ozio, ﬁio, assuming that the predictor inpt= Z?i:l éij is contaminated by the distortions
with known levelseg, €1 (here, the subscrigt denotes the index of the cluster, for
which the forecast is performed). The following theoremleates the robustness of the
classical Bayes predictor w.r.t. the distortion levels gyessing the increase of the mean
square error of forecasting.

Theorem 8 If the classical Bayes predictor (1) uses the true model UMrSQiO, IO
then the mean square error of the forecast, which is basdtimisclassified responses,
is expressed as

M (8080 + aler) + NEI((BY)24e2 — 209808051 + (a?)P1e2)
0 0 0 0
(a’i + B; )[2+](ai +5; + ni)2
where g is the error in the non-distorted cagey =&, =0)
(2 “ioﬁ?
U (e + BRI + 0+ )

=2 .2
i =Tp

(20)
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Then, let us consider the case when the true values of thenp&EESa ﬁo are
unknown, so their estimates, 3, (biased because of the distortions) are used for
the prediction. The following theorem evaluates the rabess$ of the classical Bayes
predictor in this case.

Theorem 9 If the classical Bayes predictor (1) uses the biased esésiat j; of the
model parameters, then the mean square error of the foreedsth is based in the
misclassified responses, is expressed as

2oz, (B0 -€0 + afny 1) n[2 (ﬁo[2+] — 2290 £0eq + a/ &2)
B (a +,30)(CV| +,3| + n|)2 (ai +,8i0)[2+ (@i +,3i + )2

. (21)

wheref is the error in the case of the non-distorted responses lebihised parameter
esimates 2] 2]

+] A AN +] 5
nia?B° + O a2 — 220806 + o B?

=2
o = (@ +BO)R(G + fi + )2 ’ 22
the cogficientsn?, 7/ are
- B, 0
=1+ (Q’ + 1)ﬁ| (@i + 1),B , 77|ﬂ 14 (ﬂ +1)ai - (Bi + L)y , 23)

a’+p0+1 a?+p0+1
and the ascending and descending factorials are denoted®$ =vv(v + 1), W2 =
v(v—1).

As follows from these theorems, the classical Bayes predioses its optimality
under the distortions (in the sense of the mean square effroforecasting).
Expressions (20), (21) allow assessing the sensitivitynefdlassical predictor to the
misclassifications (3). Let us propose now the robust ptedibat takes into account
the distortion model (2).

Robust prediction under distortions. Since the results from the previous sections allow
obtaining the unbiased estimates of the model parametensethsas the probability
distribution of the misclassified responses, there can tresdithe optimal predictor that
minimizes the &ect of the misclassifications in the forecast input datas phedictor is
defined in the following theorem.

Theorem 10 The optimal Bayes predictor, which takes into account thstodiion
model (2), (3), is expressed as the weighted sum

a+r
Pi(x) = E(pilx, g0, 61} = Zﬁ I (24)
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where x is the sum of the distorted binary observations feritth cluster, and the
weighting cogicientsd!,, are computed from

n -1
ﬁ;r:(’:‘ )w’x, B(ey +r.80+ni—r) (Z(T' )le B(a/i0+l,,8i0+ni—l)] (25)

1=0
using expressions forywgiven in Theorem 1.

It can also be proved that the corresponding mean square @rforecasting is
computed as

+ N N 2 r+ ni—r)+
(2(fy) = (@?)2 —Z[(Zﬁixr 0a/io+r ] V\'ixr(ni)(a?)[ 1)K )]],

(@ + B2+ om0 & +B0 4 20 X (@ +p)in+l
(26)

and the p.d.f. of this forecast is
& i 0 0
fo(PIX 20, 1) = > B - Blal+r, B+ —r) L p (1 — gL (27)
r=0

As follows from expressions (24), (27), the proposed ptedis a weighted sum of
the classical predictors for the beta-hierarchical modéh whifted parameters. Also,
the expression for the weight®, are based on the Bayes formula, afig can be
treated as the posteriori probability that the distorteldiea was originated from the
sum of the non-distorted binary observatianén contrastw,, are the corresponding
a priori probabilities). Since for the weight matri¥'{), there can be obtained the
asymptotic expansion similar to (5), it is prudent to derdwveapproximate expression
for the proposed predictor (24), which is valid for smallued ofeg, ;.

Robust prediction for small distortion levels. If values of gg,&; are small, then
the sums in expressions (24), (25) can be reduced to threws ey eliminating the
weighting codficients other thew!, . ., 9} ,, 9\, for (24) andw, ., W, W,
for (25). Then the robust predictor can be expressed as #ssichl Bayes predictor

multiplied by the correction factor

0
@ +X  l+yo-eo-v1-¢

A~ 1
i(X) = : + 0(&o, £1), 28
pl() Q’io+ﬁi0+ni 1+§0‘80—§1'81 (80 81) ( )
where
o= (@ + B%)x - afn; e (@ +BY)x—af

0 0 -
@) + X B)_+ni—x
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(ag_ + ﬁio)x - aﬁ_ n; . (a/i0 + ﬁﬁ_)x - ozioni
0= 0 , 1= 0 ‘
o)+ X BY_+ 1M =X

anda)_ = ol -1, B_ =B -1 o, = o + 1. Expression (28) allows essentially
simplifying the complexity of the robust forecasting aligom and can be used in
practical applications, for which the computing time isaial.

Computer simulation. To demonstrate the robust performance of the developed
forecasting technique, the following computer simulatioias done. There was
considered the beta-binomial model, and it was assumethiirtuie values of the model
parameters were®=0.5, 8°=9.5, n=10. For thisa®, 8°, there were generatda- 1000
realizations of the beta random varialgg p», ..., px (the corresponding mean value
wasp = 0.05). Then, for each cluster with the success probahplitg random Bernoulli
sample of sizen was obtained. Next, every sample was distorted using theessgion

(2) for eg = &1 € [0; 0.05] varying with the step 0.01. Using these data, the ML- and
MLS-estimates of the, 8 parameters were computed. For each cluster, two types of the
forecast was done: (i) the classical prediction (1) baseti@ML-estimates, and (ii) the
proposed prediction (24) based on the MLS-estimates. ligjfiat every distortion level,

the 95%-confidence intervals of the mean square error oféstang were computed for
the both predictors (assuming that the errors follow thenabdistribution).

As follows from the experiment results (Figure 5), the depeld prediction
technique based on the proposed MLS-estimation algorithsares essentially lower
mean square error of forecasting when compared to the c#hssstimation and
prediction methods.

0.075

Classical predictor

0.065

0.055

1

1

0.045 :
0 0.01 0.02 0.03 0.04 0.05

Figure 5. Comparison of the classical and proposed predictors: grdes — experimental 95% confidence
intervals, solid lines— theoretical mean square errorsaé€asting; r — mean square erraf,— distortion
level (go=¢1).
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For example, for the distortion levetg = ¢, = 0.05, the classical procedures lead
to the erromr = 0.071 againsty = 0.047 for the non-distorted case, while the proposed
robust methods ensure the errce 0.054 (note that Figure 5 showsagainste, while
the above expressions are given féy. Hence, for the average response probability
p = 0.05, the increment of the forecast errdr = r —rg reduces from 0.026 to
0.007. It should be stressed that the increm@nicaused the misclassifications can
not be compensated completely (as follows from the Bayescésting theory), but
the obtained value = 0.054 is the lowest for these model parameters and distortion
levels. These results confirm the robust performance of #veldped estimation and
forecasting techniques.

6 Application example

The developed methods of robust estimation and predictiere wised for forecasting

TV audience behaviour. This problem arises in mediaplaniiBissors and Lincoln

1994), which focuses on optimizing of advertising schesliéking into account the

target consumer groups (defined by age, sex, income, etthuget constraints. For
this application area, statistical forecasting of futuneliance behaviour using records
from the past is a key issue, since it definféicegency of the advertising spending.

Grouped binary data in mediaplanning. In TV mediaplanning, the binary responses
arise as a result of exposing advertising commercials toragfarv audience (the
representative sample of the target group) during predéfivebreaks, where 1 means
that a person saw the commercial and vice versa. These datagstered by special
electronic devices (people-meters) and are grouped inw@alavay with respect to
every person and break type (defined by week day, day timeinaaij program genres,
etc.).

The misclassifications that may contaminate these dataased by improper use of
the people-meters, which automatically register a TV cleébaing viewed, but require
manual registration of household members watching the T bbvious that there
exists a small probability of using a wrong registrationtbatthat leads to distortions of
the recorded observations. The statistical propertielseo¥iewing data are traditionally
described by the beta-binomial model (Danaher 1992), vihédenisclassificationfiect
is usually ignored.

In frames of the paper notation, the TV viewing data may berpreted as follows:
I§ij is thei-th person response tpth commercial break of the certain typejs the
number of persons in a target group, amds the number of the breaks that théh
person was exposed to. It assumed that the target group eakl type uniquely define
the covariateg;, and each person’s viewing behaviour for this break typeescdbed
by the success probability that follows the beta distribution with the parameiérﬁio.
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For the case studies below, there were examined two datbosetse of the German
TV channels for the year 2000. The first of them focuses on awipg the model
adequacy, while the second one deals with increasing teedsting accuracy.

Viewing data modelling. To demonstrate the advantages of the developed distorted
beta-binomial model (DBBM), which takes into account theschassifications and
employs the proposed robust estimation techniques, there wonsidered the TV
viewing data for eleven commercial breaks= 11) corresponding to “World News”
showed on Saturday prime time. There were investigateésgpet groups with dierent
sex (M,W) and age (14-29, 30-49, BOwith sizek varying from 1025 to 2488.

The results of the model adequacy analysis are presenteabie ©, which shows
that the proposed DBBM and the relevant robust estimatigorathms significantly

Table 6: Adequacy analysis of the classical (BBM) and the proposé&B(3) models
for describing the TV audience behaviour using Pearsgf’goodness-of-fit statistics.

Target group \ M14-29 M30-49 M58 W14-29 W30-49 W56
Data characteristics
Group sizek 1137 2011 2281 1025 2084 2488
Sample mean 12102 49102 36102 21.102 38102 47-102
Overdispersion 1.66 3.33 2.75 2.05 2.54 3.27
Classical beta-binomial model (MM-estimator)
p-value 0.41 0.96 0.01 0.82 0.10 0.05
y?-statistics 9.30 3.14 21.7 5.16 14.6 17.1
Parametex 0.17 0.16 0.17 0.18 0.21 0.16
Parameteg 13.9 3.14 4.56 8.33 5.27 3.25
Classical beta-binomial model (ML-estimator)
p-value 0.45 0.97 0.02 0.80 0.10 0.05
y>-statistics 8.88 2.87 20.0 5.43 14.6 16.9
Parameten 0.17 0.17 0.19 0.19 0.24 0.17
Parameteg 13.5 6.55 5.08 8.81 5.78 3.47
Distorted beta-binomial model (MMS-estimator)
p-value 0.28 0.99 0.32 0.89 0.84 0.14
y?-statistics 10.9 1.00 10.4 4.35 4.99 13.5
Parametew 0.09 0.13 0.14 0.13 0.15 0.15
Parameteg 9.57 5.58 3.88 7.07 4.00 3.14
Distortion levelgg 0.003 0.002 0.003 0.003 0.006 0.001
Distortion levele; 0.060 0.000 0.042 0.000 0.060 0.004
Distorted beta-binomial model (MLS-estimator)
p-value 0.63 0.98 0.77 0.88 0.83 0.50
y?-statistics 7.11 2.46 5.67 4.40 5.04 8.34
Parametew 0.11 0.15 0.10 0.15 0.15 0.11
Parameteg 9.12 6.39 3.14 7.51 4.31 2.36
Distortion levelgg 0.001 0.002 0.007 0.002 0.006 0.004
Distortion levele; 0.048 0.015 0.068 0.008 0.020 0.111
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increase the modelling accuracy. For example, for the taygeip M 50+ (men of age
50 and older), the classical BBM yields tipevalues 0.01 for the MM-estimator and
0.02 for the ML-estimator, while the proposed DBBM ensuralsigs 0.32 and 0.77 for
the MMS and MLS estimators respectively. This confirms thaiagbility of the paper
results to the modelling of the TV audience behaviour.

Forecasting of audience behaviour. To illustrate the accuracy of the developed
forecasting technique, there were considelgd= 31 commercial breaks of fierent
types exposed in December 2000 for the target group WiBQ@he frames of a single
adverting campaign. Based on the past data for the simitaldsr(for three preceding
months, September—November, 2000), there were obtairedigwing behaviour
models based on the proposed DBBD distribution. Then, usiegroposed prediction
method, for all persons and all breaks, there were genetatdorecastsr;, (the
probability that thei-th person watched the break of type Similar forecasts were
also obtained for the classical model based on the BBD.

The accuracy for the obtained forecast was evaluated uséngpecific performance
measures adopted in mediaplanning, Reachand GRP (Danaher 1992). The first of
them,Reach describes the audience fraction (within the target growp)ch have seen
the advertising commercial at least once during the wholeiding campaign:

Reach= k? Zk: [1 - ﬁ(l - mz)] .
i z=1

i=1

The second performance measufeRP (Gross Rating Points), defines the sum
of the above fractions throughout the campaign (withoutsaiering the audience
duplication):

k N
GRP= k‘lz Ty .
1

i=1 z=

Using these expressions, there were obtainedRis@ch-GRP curves via considering
smaller advertising campaigns composed of the considessks (with break number
from 1 toN,). In practice, such curves are the primary tool for medaapkrs who use
them for assessing the economicii@ency of adding extra break to the campaign.

Figure 6 compares thireachk-GRPcurves for the BBM and DBBM-based forecasts
with the real data curve calculated using the December 2@@0rds. As follows
from the figure, the proposed forecasting technique ensomesh more accurate
approximation of thd&keach-GRPrelation than the classical BBM method. In particular,
the maximum relative error of thReach-GRP approximation using the BBM-based
forecast is about 21%, while the proposed DBBM-based teglenénsures the relative
error less then 4.2%. This confirms the practical value ofresults.
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Figure 6: Comparison of the Reach—GRP curves based on the classiBM)Bnd the proposed (DBBM)
models against the curve obtained from the real data.

7 Conclusion

The paper proposes new robust estimation and forecastihgitpies for the grouped
binary data in the case of response misclassifications dabigestochastic additive
distortions. It is assumed that the data are described byb#ta-binomial or the
beta-logistic model that belong to the class of the betaenhikierarchical ones. For
these models, it is examined thffext of ignoring the misclassifications and there are
obtained expressions for the biases of the method-of-mtmag maximum likelihood
estimators, as well as expressions for the increase in tha sguare error for the Bayes
predictor. These expressions allow assessing the setysitfthe classical techniques
w.r.t. the distortion levels and decide on their appliaapih practice.

To minimize the misclassificationffects, there were developed new consistent
estimators and a new Bayes predictor, which take into adcihendistortion model.
There were considered two cases (of known and unknown tastdevels), for which
explicit expressions and numerical algorithms were pregdisat allow constructing the
small-sensitive estimators of the model parameters andrttedl-sensitive forecasting
procedures. The robustness of the developed techniquesvavdied by computer
simulations, and the practical value was confirmed by a lifealease study. The
proposed algorithms were implemented as a MATLAB toolbox.

Future work will deal with the minimax robust estimation dodecasting for the case
of known upper and lower bounds of the distortion levels, @lsd with the problem of
small sample performance for the developed methods.
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Mathematical Appendix

Basic notation. P{.} is the probability of a random everi{.} is the mathematical
expectation of a random variabl¢{.} is the variance of a random variablgl*] =
y(y-1)...(y—z+1),y**1 = y(y+1)...(y+z-1),y € R ze N are the incomplete factorials,
CL=(}) is the binomial cofficient. Definition ofOp: for two random sequencés, Z,,
Yn = Op(Z,) means tha¥e > 0 Ik, N, that 0< k. < +00, 0 < N, < +o0 and for
n> N, P{IYn/Znl <k} >1-€.

Proof of Theorem 1Let r be a realization of the DBBD random variable. Denote by
{Hrs),r =0,1,...,n, apartition complete set of disjoint events, whelre means that the
distorted value was obtained via the distortions (2) from the original pgsitesponses
counts. Then using the total probability formula

n
PI’(80981) = Z P{Hrs} : P(S)’r = 0, 1,. R O
s=0

To find the probabilityP{H,s}, denote byzy, z; the number of the distorted zeros and
ones in the original data. Then combinatorics yields to thiewing expression

Wrs(€0, £1) = P{H;s} = Z Creg(l—so) " ®el(1-)"?, s—-z+2z="r.
20,21

Denotingl =s+zy=r+z leadstol >r, | <s+r, | >s, | <n, which is equivalent to
max(s r) <1 < min(n, s+ r), that proves the theorem. O

Remark. The standard approach for investigating the propertieb@Estimators that
are fitted to the misspecified model is based on the resultshitie{/1982) that involve
Kullback-Leibler divergence. For Theorems 2, 3, 6, the arghemploy a dferent
approach that allows using the specific DBBD properties ttiobelegant proofs.
However, one can check that using the Kullback-Leiblerdjeace leads to the exactly
the same results.

Proof of Theorem Z2The classical MM-estimator of the BBM parameters is exmess
as (Johnsoet al. 1996):

_ (-%-¢RX . (-X-/R(n-)

MM = n—On” PMM T T &@x xin—1n

(29)

wherex is the sample average arsdl is the sample variance. Let(so, 1), d(so, £1)
be the mean and variance of the DBBD with the parametes?,8°, co, &1 (see
Theorem 1). Since, s* are unbiased and consistent estimators\apd = d(eo, £1)/K,
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= O(1/Kk) (Ivchenko and Medvedev 1984), then="m(co, £1) + Op(1/ VK), & =
d(eo, £1) + Op(1/ VK). Using these expressions together with the properti€3s¢1) to
modify (29), we get

(N = m(eo, £1) — d(e0, £1)/M(&0, £1)) M(€0, £1)
(d(0, £1)/mM(&0, £1) + M(&0, £1)/N = 1)n

(n — m(eo, £1) — d(eo, £1)/M(e0, £1)) (N — M(go, £1))
(d(eo, £1)/M(g0, £1) + M(e0, £1)/N = 1) N
Employing the expressions fan(eo, £1), d(€o, 1) and the linear term of the Taylor
expansion with the Peano remainder for the above functibsg e, proves the theorem.

m|

+ Op(1/ VK),

amm(eo, 1) =

+ Op(1/ VK).

Bum(o, €1) =

Expressionsfor Theorem 3. In the theorem statement, the following notation is used:

S
Pg’s = Pg(ao,ﬂo), Pg(so, £1) = Z Pr(ao,ﬂo, £0,€1), $=0,1,...,n,

l n-1 n-1
- P%(0,0 P%(0,0 1
S ()7%22 00 g $ |
(a®+9)? Bo°+n-s—1y L (a®+p0+ 9?2

s=0
- 0
j n- s) - _"Zi(s+l)POS+1 S :”Zi (n—- 9Py
» Tep aO+s PP B+n-s-1
s=0 s=0 s=0

-1 (s+ 1)PO
oS ey
s=0
H = {Hij}ox2, G ={Gij}ox2, Hi1= S~ Sa,

Hiz = Ha1 = Sup, Haz = Sup—Sp, G11=Sap, Gi2=S;, = Sz, = G21, Goz = Spp.

Proof of Theorem 3The ML-estimator for the BBM is defined as a solution of the
following system of two equations (Johnsetal. 1996)

n-1 K — Fr n-1 Kk n-1 Fr n-1 Kk
S =

whereF, = fo+f1+. . +f,, and{fs} are the empirical frequencies. The system has a single
solution that maximizes the likelihood function (Johnsbm@l. 1996). By definition, the
frequencies are the binomial random variables with therpatarsk, Ps(a®,°, o, £1).
Since for a discrete probability distribution, the relatif/requenciesﬂfvS = fg/k are
unbiased and consistent estimators of the correspondeuydtical probabilities, and
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V{fs} = Py(®, B0 e0.£1)(1 = Ps(a®. 8% 20, £1)) /K, thenTs = fs/k = Py(a®, 5, 0, 51) +
Op(1/VK), s=0,1,....n. As a result, the system (30) can be expressed as

n-1
1-Pr (g0, £1) Z (i):o,
a+r = a+ﬂ+r vk

P n-1

Z (0. &1) 1, Op i) 0.

4 B+n-r— 1  a+p+r vk
Let us linearize the obtained system by,e; in the neighborhood of the point
(@%,°,0,0), then

-1

3

_‘
Il
o

A2A5ML(80, 81) + AEA,EML(go, 81) + ASOSO + Aglsl + 0(80) + 0(81) + Op(l/ \/R) =0

B A@wmL (g0, £1) + BJABuL(20. £1) + B 80 + B, &1 + 0(0) + 0(e1) + Op(1/ Vk) =0

where the cofiicients are the corresponding derivatives. Expressing\th@ (<o, £1),
ABwmL (&0, £1) in terms ofeg, 1 from this system proves the theorem. O

Proof of Theorem 4Using Theorem 1, one can show that the MM-estimator of thi¥IBB
parameters, B that takes into account the distortions model (2) is defirgea solution
of the following system of two equations

a Jé; a
m+ a+ﬁ'80—na+ﬂ'81, (31)

i} e ol 4 ﬁ[2+]8 + a[2+]8 — 2aBeo — aPHle; — 2a/ﬁ8081
m, = m; +n

(32)

@A
Using the substitution
o« v a+1l a_u(l—v) _(1-v)(1-u)
Ca+fB a+pB+1 Cov—u T v-u

transforms the above system into
m; = nu+(1-ueg—uer), m; =m+n(n—1)(Vu(l-eo—e1)+ gg + 2ugo(1— g0 —£1)).

Solving this system with respect tp v and changing the variables backdag3 proves
the theorem. O

Proof of Theorem 5The empirical probabilities vectd¥(co, £1) satisfies the following
asymptotic expression (see the proof of TheorenPRko, £1) = P, (g0, £1)+Op(1/ VK),
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r = 0,1,...,n. Using the result of Theorem 1, one g&igso, 51) = W(eo, £1) - P° +
Op(1/ VK). Using the properties dbp(1/ Vk) and the notation (10) concludes the proof.
i

MM S-estimator of BBM parameters. The Jacobi matrix for the iterative procedure
(13) is calculated ag§ = H -G + S, where

o3l 2
Huy = n® (a+,8)[3+]z(a/+l a/+,8+|)

B4 2 -1

Hip = nB1—2 .

12 (a+,8)[3+]§ a+B+i)’
[4+] 3 1

Hpy = n¢1 2 - 6-H

2 (a+,8)[4+]; a+i a+p+i 11’
44 3 1

v :
Hzz = (a+ﬂ)[4+]Z(a/+ﬁ+i)+6H12’

Gu=-(2+28+1), Gr=-a(e+1)/B
Ga=-BB+1) /e, Gp=-(20°++1),

[2+] [3+]
Sll = 3n[3_] _( a,+—ﬁ)€3+] R 812 = 3n[3 ] ( iﬁ)[3+] ,
a a
B+l al4] -
Spr=14n41 L P 6.5, Sy = dant] +6-Sy.
21 (@ + B) +0b-on 22 @+ ﬂ)[4 ] 12

ML S-estimator of BBM parameters. The partial derivatives of the log-likelihood
functionl(a, B, &9, £1) are computed as

P(a, B) /0

Z ZWH (g0, €1) - Pr(a B, g0, 1))’

P°(a, B)/B

Z ZWYI (20, £1) - Pr(a’ B.eo€1) )’

o OWi(e0.21) _ Pi(@.f)
a—go—z[frz o) D)

r i=0

¢ $ Wi (€0, £1) P(a. )
rl 681 Pr(a,ﬂ,So,b“l) ’

=0
oy
681 e

r i=0
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where . .
P ' is 1
%_Pi(a’ﬁ) [Jz:a/ +j _]Z_(;a+ﬁ+j]’
aplo n-i-1 n-1
—L = PY%q,B) -
B (@h) (Zoﬁﬂ Jzoa+ﬁ+1
OWi _ mif%‘”) C_I—rcl—i_ ((| _ i)gl—l 1(1 SO)n I _ (n |)8 (l 80)“ I- l) I- r(l s )|+|’ |
deo | L °
OW _ mir%i”) C-l_rcl ISI I(l—é‘ )n—l ((I _ r)g'_r_l(l— e )i+r—l _ (| +r— |)8I_r(1—8 )i+r—l—l)
91 i ~n-i®0 0 1 1 1 1 :

l=maxi.r)

Expressionsfor Theorem 6. In the theorem statement, the following notation is used:

d Fa-lrq _ 1 fa-lr 1 _ 4 1
His= ) qiqsty ( Lo .]— ( T R JO]
° Z e q{; ag+j A+ Z(ag+j)2 @9+ +j2)°

g=1 j=0
l,s=1,..., m,

d 5 fg—1 7'[? 1 fg—1 71'? 1 "
His= ﬁlﬁsao( [ o .]— [ 5 }H]
° qZ:; arasa ; Bi+hg—j—-1 G3+B9+] J; (B+hg—j-12 (@q+83+j)?)

,s=m+1,...,2m,

d fg—1
- 1
HS|:H|S= ’ﬂqrﬁqsélo 0 <A <n . I=1,...,m, S=m+l,,2m,
2,1 ) G T
nqlv . .+1
A > V —
G|1—Zl9q| +JP Gp=- Zﬁql qZ“0+J j+1° l=1,...,m,
fg— A . fg—1 j+1
Gu=-) g8 ———P Go=) 95 ), P
; Z; -1/ Z_: gﬁq+nq j-1 7

I=m+1,...,2m,
j

. . B3 + ), B3+ Mg — |
n_(jq _ Z Pg(ao, bO)’ P(J_q(ao’ bo) — C% ( q Jvﬁoq — q J)
ey q B(a’q’,Bq)

~0 OTﬁ OTﬂ
., g = . po=€,

Proof of Theorem 6T he log-likelihood function for the BLM is expressed as (Btaet
al. 2000)

k Xi—1 ni—x—1
I(a.b)= Zl In(Cy) + ;In(ai(aw i)+ g Insi(b) + ) —Zln(a.(a) + i) + )|
(33)
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Under the theorem assumptions, the functi@nb) can be rewritten as

d Kk yi-1 g-yi-1 -1
lab)=> > |n(cyt) + Z In(iq(@) + j) + INBa(b) + 1) = " In(éq(@) + fa(b) + 1) |

¢=1 t=1 = =0 j=0
where ky is a number of clusters with factors vectdg, k = Zgzlkq, y{ is the
observed number of successes for the cluster typé = ngl{y(f,yg, . ..,yﬂq}, and

aq(a) = e Vo ﬁq(a) = &% Then, transforming the sum bysing approach of Johnson
et al. (1996) for the BBM likelihood system derivation yields

d fg-1
l@b)=2+ > ke > (A= F{)-In(@q(a) + ) + F{ - n(3(0) + fig - | - 1) - In(g(@) + Ba(b) + 1)),
g=1 j=0
where 1 is some constantF? = Yl £ and f is a relative frequency of the
value z occurrence in a samplg?, ygyﬂq} Let us use the following asymptotic
property of f;' (Ivchenko and Medvedev 1984J;' = P} + Op(1/ kq), whereP} is
the corresponding theoretical probability. Then, using pnoperties 0ofOp(.) and the

assumption that the factofsy, 9o, ..., 94} are equiprobable, it can be proved that for
k — o0, the ML-estimator maximizes the following function

d hg-1
h(ab)=>" " ((1-#)-In(Eq(@)+ ]) + 7}-I(Bg(b) +Tg— j— 1) - In(d(2) +Bo(b) + J))+op( \/E)

g=1j=0

where 77 = ) PY@0, 00, &0, £1), and PY(@0, b0, s0,£1) are the elements of the
j =0
probability row for the DBBD with the parametensg, aq,Bq, &0, €1 (see Theorem 1):

My min(fiq.z+j) ) ) ‘
P, 0, 0,e1) = > Wi(eo, 81) - PR DY), W= D CIPCL) ep (1 - g0 e KL - 2a) 7.
=1 l=max( j)

Besides, it can be proved that the following asymptotic espens forPJ hold

PE=PL+((g-2+ 1P, - (Rg=2P3) o+ ((2+ VP, — 2P3) ex+ole) +0(e), 2= 0.1, Tg, (34)

where Pq = Pq = 0. Since the ML-estimator is a solution of the optimization
problemll(a, b) 5 max then the corresponding partial derivable are equadio. z

1-7j(ab, o, 1) 1 1
Zﬂqaq(a)z e E Bq(b)+j]+1m-op(\—&):om, (3)




M. A. Pashkevich, Yu. S. Kharin 155

Zﬁ ()nqzl( T@beoe) L )+1 .o(_)—o (36)
bald Bo@ +Mg—j—1 dq(@)+pBa(b) + ] meer vk

where O, is a vector of zeros of sizen. Linearizing this system w.r.tAa(eg, £1),
Ab(eo, 1) and expressing the biases from the linearized systemutesithe proof.
O

Expressionsfor Theorem 7. In the theorem statement, the following notation is used:

‘]Aa JAb T a T
‘] = JBa JBb ’ (gé‘) = (g 7g ) s
where
k -1 xi—1 1 n-1 1
=) 72" Y — - ( - ,
: Z;‘ " 'S“'[Z JZSG.O+,30+J “ Z_;(a?ﬂ)z ,Z:;(a?w?ﬂﬁ])
-1 ni—1 ni—x—1 ni—1
1 1 1
Zy\ZiB — B —|I,
Z o '( gﬁoﬂ %a?+ﬁio+l | Jz(ﬂ 0+ )2 ,Zj(a?w?ﬂ)z]}
k ni—1 1
JAP = gBa — 1ZsaB Y ——————  1,s=1,2,....m

k 0
g?=ZZnozi°( >q(oﬁ. i >29)80+ : ni — % 81)’
i (a7 + % — 1) B +nm—-x-1

« X L (= x)(@P +x%)
Z "B'( 0% -1 0 @4 x -1 1)

i=1

Proof of Theorem Using the asymptotic expansion (34) and the propertiessoBBD
(Johnsoret al. 1996), the log-likelihood functioh.(a, b, X, €9, £1) can be expressed in
the following asymptotic form

l-(a b, X, £0,1) = I(a, b, X) + &(a b, X, £0, £1) + 0(£0) + 0(£1),

where

k
ﬁ.(b)+n. Xi (@) + X;
e(a,b, X, 50, 51) = Z(( pilen o (i—m))~so+((ni—m)ﬁ—i(b)m_m_l—m)-sl),
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andl(.) is defined by (33). Let us note that, when ignoring the digins, the ML-
estimatora(X, &g, £1), b(X, &0, 1) is the solution of the optimization probletta, b)
— max. However, when taking the distortions into account, Mk-estimator
8%(X, g0, £1), B2(X, &0, £1) is the solution of another problerhy(a,b) — max. Let us
denote

= =0 (0}
y:(‘;‘), y(x,eo,el)=(§&j§jjg), v°<x,so,81>=(E‘o&jgjjg), y°=(§o)-

It can be proved that, in the neighborhood/f 2 (yo) +J(F) - (F-F°) +o(T-F°) = Oom.
On the other han%‘(yo) = —0e(Y°) + 1om(o(s0) + 0(81)) where

Xi—1

@b X) < 1 p= 1
m ;Z'“'(a)(; 2@ L@ A@e j]’ D

ni—1 1

al(a,b X)
Zzﬁ'(a) Z ] 2@ p@i)

Then, using the abov~e expressions and the asymptotic pyopiethe ML-estimator
80=a0+1,-Op(1/ VK), b2 =b%+1,-Op(1/ VK) completes the proof. O

(38)

ML S-estimation of BLM parameters. The partial derivatives of the log-function
[(a, b, X, g9, £1) are computed as

Z Z W, (€0, £1) - 9P (a. b) /92y a K i W, (€0, £1) - 9P} (a, b) /b
Zt:O xit(SO, £1) - Plt(as b) abr - Ls Z?I:o W.)qt(SO, £1) - Pit(a, b) '

i=1 j=0 i=1 j=0

Z Z (so £1)/0¢eo - P (ab) gl Z Z (80, £1)/0eg - P! (& b)
660 = Zt:o W (e0.61) - Pi(ab) ~ de1 & = ztzo W (g0, £1) - Pi(a, b) ’

where
oPab) o109 1
o = Pj(a, b)Z; i(a) (IZ.: ai(@) + 1 lZ.: m] ’
9P (a,b) "&

|
andow /dsg, OW /de; are defined above (see the MLS-estimator for the BBM).

J o - 1 B n-1 1
b, = Pj(as 0)Z; ﬁl(a‘)( - ﬁi(a) + Z(; a’i(a) +,8i(a) + I)’
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Proof of Theorem 8Jnder the distortions, the mean square error of forecafinthe
classical Bayes predictor can be expressed as

P2 = E{(pi — (@ + X)/(@? + B2 + m))?),

where p; is the beta random variable with the paramet@?s@?, and the variable
X (the distorted sum of binary responses) follows the DBBDhvilte parameters
ni, a?, B2, e0, 1. Simplifying the latter expression leads to

QPE{p} + Elxp} % + 20PE(x} + EpR)

i
+
0 0 0 0
Q; +ﬁi + N (ai +18i +ni)2

2 = E{p?} - 2 , (39)

whereE{pi} = a?/(e? + B°), E{p?} = (a® + 1)/((e? + B))(af + B + 1)), and the
mathematical expectations of the random variaklesp;, X2 are

E{X} = neo + n(1-g0—&1)-E{pi}, E{xp} = neo-E{pi} + n(1-go—&1)-E{p?}, (40)

E() = E{x} + n(n— 1)(e§ + 2e0(1-s0—&1)-Epi} + (1-20—21)-E(p?}).  (41)

Substituting these formulas to (39) and simplifying theresponding expression proves
the theorem. o

Proof of Theorem 9Following the proof of Theorem8, the mean square error of
forecasting for the classical Bayes predictor under théodiens (when using the
estimatesy, 5;) can be expressed as

5 ElD 52 L o5 2
'|72 = E{pz} _ ZQ'EA{Q}:'_ E{Xp} n @; +A20'IEA{X} + E{X }’ (42)
ai + i+ n (@ +Bi + i)

where the mathematical expectatioBiéx}, E{xp}, E{x?} are defined by expressions
(40), (41). Then, collecting the cfigients ofeg, £1 ande3, soe1, €3 in expression (42)
taking into account the notation (22), (23) proves the tegor O

Proof of Theorem 10Using the Bayes formula and Theorem 1, the posterior p.@.f. o
the random variableg; is expressed as:

Yo Wer(go. £1) - CRX (1= )0 - B(af, B0) x" (L - )
fo (XIS 0, 1) = ———— I 0 [0y-1,0-1 014\,
fo 2o sr(€0, €1) - eriyr(l — x)-n.. B(a’i B )Ly (1 -y tdy
Simplifying this formula using the properties of the betatdbution (Johnsoret al.

1996) leads to the expression for the forecast p.d.f. (2fgnT calculating the mean
of this distribution taking into account the properties loé DBBD gives the predictor



158 Robust estimation and forecasting for beta-mixed hierarchical models of grouped binary data

(24). The mean square error of forecasting (26) is derivatguse technique given in
the proof of Theorem 8 for the obtained predictor. ]

8 References

Agresti, A., Booth, J. G., Hobert, J. P. andffidéaB. (2000). Random feects modeling of categorical
response dat&ociological Methodologya0, 27-80.

Brooks, S. P. (2001). On Bayesian analysis and finite migtfwe proportions Statistics and Computing
11, 179-190.

Collet, D. (2002) Modeling Binary DataLondon: Champton and HAZRC.

Coull, B. A. and Agresti, A. (2000). Randontfects modeling of multiple binomial responses using the
multivariate binomial logit-normal distributiomiometrics 56, 73-80.

Copas, J. B. (1988). Binary regression models for contai@ihdataJournal of Royal Statistical Society
50B, 225-265.

Danaher, P. J. (1992). Some statistical modeling problemthe advertising industry: a look at media
exposure distributiong’he American Statisticigd6, 241-253.

Demidovich B. P. and Maron, I. A. (197@asics of Computational Mathematiddoscow (in Russian).

Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. LO@0 Analysis of Longitudinal DataOxford :
University Press.

Gaba, A. and Winkler, R. L. (1992). Implication of errors imgey data: a Bayesian modélanagement
Science.38 (7), 913-925.

Gill, P. S. (2001). A robust mixed linear model analysis fonditudinal dataStatistics in Medicingl9,
975-987.

Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M. and Stahd|, (1986). Robust StatisticsNew York:
John Wiley and Sons.

Heckman, J. J. and Willis, R. J. (1977). A beta logistic mofelthe analysis of sequential labor force
participation by married womedournal of Political Economy85 (11), 27-58.

Huber, P. J. (1981Robust StatisticiNew York: Wiley.

Ivchenko, G. I. and Medvedey, U. |. (198Mjathematical StatisticsMoscow (in Russian).

Johnson, N. L., Kotz, S. and Kemp, A. W. (199&)nivariate Discrete DistributionsWiley-Interscience,
New York.

Kharin, Yu. (1996)Robustness in Statistical Pattern Recognitidtuwer Academic Publishers, Dordrecht.

Kordzakhia, N., Mishra, G. D. and Reiersolmoen, L. (20019b&st estimation in the logistic regression
model.Journal of Statistical Planning and Inferenc@8, 211-223.

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data a&s& using generalized linear models.
Biometrikg 73, 13-22.

Nathan, D. (1999). A beta-logistic model of presidentidluience on voting on civil rights issues in the
house of representatives, 1960-1988dwest Annual Meeting Methodology Panel Working Papers
32-37.

Neuhaus, J. M. (1999). Bias andfieiency loss due to misclassified responses in binary reagress
Biometrikg 86, 843-855.

Neuhaus, J. M. (2002). Analysis of clustered and longitalditbinary data subject to response
misclassificationBiometrics 58, 675-683.

Pearson, E. S. (1925). Bayes' theorem in the light of expemial samplingBiometrika 17, 338-442.

Pfeifer, P. E. (1998). On using the beta-logistic model tdaip response probabilities given nonresponse.
Journal of Interactive Marketingl2 (2), 23-32.



M. A. Pashkevich, Yu. S. Kharin 159

Prentice, R. L. (1988). Correlated binary regression withiaciates specific to each binary observation.
Biometrics 44, 1033-1048.

Prentice, R. L. (1986). Binary Regression Using an Exterigktd-Binomial Distribution, With Discussion
of Correlation Induced by Covariate Measurement Errdmirnal of the American Statistical
Association81, 321-327.

Ruckstuhl, A. F. and Welsh, A. H. (2001). Robust fitting of tiieomial model.The Annals of Statistics
29,1117-1136.

Sissors, J. and Lincoln, B. (1994 dvertising Media PlanningNTC Business Books. Lincolnwood.

Skellam, J. G. (1948). A probability distribution derivemrin the binomial distribution by regarding the
probability of success as a variable between the sets t. tiurnal of the Royal Statistical Society
10B, 257-261.

Slaton, T. L., Piegorsch, W. W. and Durham, S. D. (2000). rEstion and testing with overdispersed
proportions using the beta-logistic regression model addean and WillisBiometrics 56(1), 125-
133.

Swartz, T., Haitovsku, Y., Vexler, A. and Yang, T. Bayesiarderitifiability and misclassification in
multinomial dataThe Canadian Journal of Statistic32, 2004, to appear.

Tripathi, R. C., Gupta, R. C. and Gurland, J. (1994). Estiomadf parameters in the beta binomial model.
Ann. Inst. Statist. Math46, 317-331.

White, H. (1982). Maximum Likelihood Estimation of Misspiéed Model. Econometrica50(1), 1-26.

Zeger, S. L. and Karim, M. R. (1991). Generalized linear nmdeth random &ects: A Gibbs sampling
approachJournal of the American Statistical Associati@®, 79-86.






