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Université Paris-Sud
Orsay

Abstract

In this paper we study the graphs such that the deletion of
any edge does not increase the diameter. We give some upper
bounds for the order of such a graph with given maximum de-
gree and diameter. On the other hand construction of graphs
provide lower bounds. As usual, for this kind of problems, there
is often a gap between these two bounds.

1 Introduction

A A graph is said edge-non-vulnerable if its diameter is unchanged after
deletion of any one of its edges.

Such graphs do exist. For example the graph on 4 vertices on the left of
figure 1 has diameter 2, and the removal of an edge gives a graph isomorphic
to one of the other graphs in the picture, both have diameter 2.

Figure 1: A (toy) edge-non-vulnerable graph

An obvious upper bound for these edge-non-vulnerable graphs with
given maximum degree Δ and diameter D is the classical Moore bound,
namely 1 + Δ

∑D−1
k=0 (Δ − 1)k. But this can be easily improved, since the
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condition imposes that between any pair of distinct vertices at least two
paths of length ≤ D exist, and this implies the upper bound

n ≤ n(Δ,D) = 1 +
1

2
Δ

D−1∑
k=0

(Δ − 1)k

Clearly, no graph of diameter 1 (in other words no complete graph) is
edge-non-vulnerable, since the removal of the edge betwen x and y either
disconnects the graph (if its order is 2) or increases its diameter to 2 (if the
order is larger than 2.

2 Diameter 2, upper bound

For diameter 2, we have n(Δ,D) = 1+Δ2/2. This bound obviously cannot
be attained if Δ is odd! So what about (Δ2 + 1)/2? This number is odd,
therefore it is not compatible with a regular graph of degree Δ. Moreover,
if some vertex has degree < Δ, counting paths from that vertex decreases
the bound to 1+(Δ−1)2/2 ≤ (Δ2−1)/2. So, what about (Δ2−1)/2? The
toy graph of figure 1 shows that this bound (Δ2− 1)/2 can be obtained for
Δ = 3. For the next odd degree Δ = 5, the cartesian sum of K3 and K4

has the wanted property and order, namely 12 = (52 − 1)/2.

For even degrees, the bound is attained only if a distance-regular graph
(see [1]) with intersection matrix⎡⎣ 0 1 0

Δ 1 2
0 Δ− 2 Δ− 2

⎤⎦
The techniques of distance-regular graphs lead to the computation of the
eigenvalues: they are Δ and the two roots of X2 + X − +2 −Δ. Such an
eigenvalue λ = Δ has then multiplicity

1 + Δ2/2)

1 + λ2

Δ + (λ+1)2

Δ(Δ−2)/2)

that is also
(2 + Δ2)Δ(Δ− 2)

4(Δ − 1)2 + (4−Δ)λ
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Figure 2: The optimal graph for degree 4 and diameter 2

Since this should be an integer, we should have either Δ = 4 or λ integer,
and in this case, 2(2λ + 1 has to divide (λ2 + 2λ + 3)(λ2 + λ + 2)λ and
therefore 2(2λ + 1 has to divide 63. This allows only the values 2, 4, 14,
22, 112, 994 for Δ.

The case Δ = 2 is not interesting, the case Δ = 4 gives a graph shown
in figure 2 The case Δ = 22, n = 243 is known: it is the Berlekamp, van
Lint and Seidel graph, a Cayley graph on the group (Z/3Z)5 ([1, p. 360]).

The case Δ − 14, n = 99 is unsolved, according to G. Exoo’s list of
unknown strongly regular graphs ([4])

3 Diameter 3, upper bound

The condition of edge-non-vulnerability is then: each edge lies in some cycle
of length at most 4, each path of length 2 not already in a 4-cycle should
be in a 5-cycle, unless each of its edges is in a 3-cycle, and at last, each
path of length 3 should be in a cycle of length at most 6.

This provides the bound n = 1+Δ+Δ2 +Δ3, where Δ2 ≤ Δ(Δ− 1)−
�Δ/2� and Δ3 ≤ �Δ2(Δ− 2)/2�.

For Δ = 3, this improved bound is 10, and the cartesian sum of a 5-cycle
and K2 is convenient.: figure 3

For Δ = 4, the bound is 25. However, to attain this value it is necessary
that the edge set is partitioned into 4-cycles, this is clearly not possible in
a graph with 25 · 4/2 = 50 edges. The same obstruction occurs for all
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Figure 3: Optimal graph for Δ = 3, and D = 3

degrees multiple of 4. For Δ ≡ 7 or 9 (mod 8), the hand-shaking lemma
also indicates that is bound is still too high!

4 Higher diameters, upper bound

It happens that the computation of improved upper bounds becomes more
and more complicated. Just an example: for D = 4 and Δ = 3, one has
between vertices at distance 2 from a vertex v at least two edges. Thus
at most 8 edges connect the sphere at distance 2 to the one at distance 3.
Since the paths of length 2 that are not already in a 5-cycle have to be in
a 6-cycle, the 7 sphere has at most 7 vertices, and the sphere at diatance
4 from v has at most 3. Thus a bound is 20. But the graph should then
have two pentagons through each vertex, this makes at least 8 pentagons.
If a vertex is on 3 pentagons, the bound becomes 19, and even 18 owing
to the hand-shaking lemma. There are 30 edges. If an edge belong to 3
pentagons, its endvertices do. Otherwise there are 10 edges belonging to 2
pentagons, some pentagon has at least two such edges: if these edges are
adjacent, their common vertex in on 3 pentagons, if the 10 edges are not
adjacent they form a matching. The last vertex of a pentagon that has
already 2 edges belonging to 2 pentagons is on 3 pentagons.

Thus the bound is now 18. It is easy to check that if the graph contains
a cycle of length 3 or 4, the bound is only 16. On the other hand one can
build convenient graphs on 16 vertices: figure 4.

Thus the optimal graph has 16 or 18 vertices.
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Figure 4: Graphs for degree 3 and diameter 4

5 Cartesian sums and categorical products

A first general construction is the cartesian sum of graphs,: the vertex
set of G1 � G2 has vertex set the product of the vertex sets, the edges of
GG1 � G2 are the pairs {(x, y), (x′, y)} where {x, x′} is an edge of G1 and
y avertex of G2 and the pairs {(x, y), (x, y′)} where x is a vertex of G1 and
{y, y′} an edge of G2.

The cartesian sum of G1 (diameter D1 , maximum degree Δ1) and G2

(diameter D2 , maximum degree Δ2) has maximum degree Δ1 + Δ2 and
diameter D1 + D2, and is edge-non-vulnerable provided if D1 + D2 > 2,

For example, the cartesian sum of K2 and Petersen graph has n = 20,
D = 3, Δ = 4, no so far from the (unaccessible) 25.

The categorical product of graphs (that may have loops) G1 and G2 has
vertex set the product of the vertex sets, the edges of G1×G2 are the pairs
(or loops) {(x, x′), (y, y′)} wher {x, x′} and {y, y′} are edges or loops of G1

and G2.

The maximum degree of G1×G2 is the product of the maximum degrees
in G1 and in G2. The distance between (x, y) and (x′, y′) is the minimum
between the lengths of paths (elementary or not) of same parity connecting
x, x′ and y, y′.

Figure 5 shows the product of the graph K+
2 made from an edge with

a loop at each end and first a 5-cycle with 3 loops and then with a triangle
(this gives a graph isomorphic to the octahedron).

The graph of figure 2 is the categorical product of two triangles, that is
K3×K3 or K×2

3 . It is also the cartesian sum of two triangles. The distance
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Figure 5: Examples od products with K+
2

between (x, y) and (x, y′) is 2 because there is a non-elementary path of
length 2 from x to itself and a path of length 2 from y to y′; the distance
between (x, y) and (x′, y′) is 1 because there is a path of length 1 from x
to x′ and a path of length 1 from y to y′; and so on.

6 Biplanes

A biplane is a bipartite distance-regular graph with intersection array (d, d−
1, d − 2; 1, 2, d), thus of order 2n = d2 − d + 2 The Bruck-Ryser-Chowla
theorem allows the existence of such graphs only if either n is even and
d−2 is a square or n is odd and x2 = (d−2)y2 +(−1)(n−1)/22z2 has integer
non null solutions ([1, p. 698]).

If a biplane has a polarity, the quotient has degree d (with loops counting
for 1), order (d2 +−d + 2)/2 and diameter at most 2, and each edge either
has a loop at its two endpoints, or lies in a triangle.

For d = 2, we have (with a bit cheating) the 4-cycle and its quotient
K+

2 .

For d = 3,we have the usual cube, and the quotients K4, K2,1,1 (the
toy graph of Figure 1 with loops on the vertices of degree 2, and C4 with a
loop at each vertex.

For degree 4, we have a graph with polarities, its quotient (that has
always 4 loops) is shown in Figure 6.

For degree 5 the quotient also has edges with two ends occupied by
loops (there are always 5 loops)

For degree 6, several quotients are possible, with 0 loops (K4 � K4 or
Shrikhande graph) or 16 loops (Clebsch graph), among other less symmetric
graphs; Eigenvalue considerations impose that the number of loops is a
multiple of 4.
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Figure 6: A quotient of a biplane of degree 4

For degree 9, one has a quotient with 37 vertices labeled with the ele-
ments of the field Z/37Z, and x, y are adjacent if their sum is one of the
non-null 4-th powers in the field, that is 1, 7, 9, 10, 12, 16, 26, 33, 34. Here
the vertices with loops are never adjacent.

For degree 11, there are several biplanes, with qoutients of order 56.
One of them has 56 loops: the Gewirtz graph. Other quotients, have a
number of loops congruent to 2 modulo 6.

The categorical products of these quotients with ErdHos-Rényi graphs
are convenient and for some degrees and diameter 2.

7 Diameter 2: lower bounds

The product of K+
2 with the ErdHos Rényi-graphs of degree d and order

d2− d + 1 (with their loops) has diameter 2, degree 2d, order 2(d2− d+ 1),
that is close to the upper bound ∼ d2/2.

For some degrees we have special constructions

• degree 6, some quotients of a biplane

• degree 8 the categorical product K3 ×K3 ×K3
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• degree 9, some quotients of a biplane.

Let us summarize our results for small degrees in table 1.

Table 1: Some results for diameter 2

Δ 3 4 5 6
n 4 9 12 16

K1,1,2 K3 ×K3 K3 � K4 K4 � K4

Δ 7 8 9 10
n 20 27 37 42

K5 � K4 (K3)
×3 quot. bipl. K+

2 ×ER(5)

Δ 12 14 16
n 63 84 117

K×2
3 × ER(3) K4× ER(5) K×2

3 × ER(4)

Δ 18 20 22
n 146 189 243

K+
2 ×ER(9) (K3)

×2× ER(5) BvLS

8 Twisted products

Since the cartesian sum clearly spills some edges with an excessive number
of 4-cycles, we may improve things here and there.

• product G � C5. The vertex set is the product of the vertex sets of G
and C5, the edges are the pairs {(g, a), g(, a′)} with g vertex of G and {a, a′}
an edge of C5, and then G is endowed with an orientation, and C5 with a
permutation π exchanging the edges and non-edges of C5, and we add the
edges {(g, a), (g′ , π(a))} (in other words, each edge of G is replaced by a
Petersen graph). This gives a graph with diameter D(G) + 1, maximum
degree Δ(G) + 2, that is edge-non-vulnerable provided that D(G) ≥ 3 and
vertices at distance D in G are connected by two internally disjoint paths
of length D.

• product G � P (4t + 1), where P (4t + 1) is the Paley graph on 4t + 1
vertices. The diameter is D(G)+1, and the maximum degree Δ(G)+2t, and
the graph is edge-non-vulnerable provided that D(G) ≥ 3 and vertices at
distance D in G are connected by two internally disjoint paths of length D.

• product G×C13, a similar construction, Δ(G×C13) = Δ(G)+2, and
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4 5

1 2

6
3 The edges of the graph and their images by the

involutive vertex permutation (1)(2)(36)(45)
are all the edges of K6.

Figure 7: The graph A6 to be used in twisted products

D(G × C13) = D(G) + 2 under the same condition. Endowing C13 with
the labels in Z/13Z so that edges are labeled {a, a + 1}, the permutation π
sends the vertex i to the vertex 5i (so that π2 is an isomorphism of C13.

In the same vein, G�A6, a similar construction, Δ(G×A6) = Δ(G)+2,
and D(G × A6) = D(G) + 2 under the same condition. Here A6 and its
permutation π are represented in figure 7.

9 Line graphs

The line-graph L of a bipartite graph of degree d ≥ 3, order n and diameter
D has diameter D, degree 2d − 2 and order dn/2; each edge of L is in a
triangle, and each pair of vertices of L at distance D is connected by 2
paths of length D. Thus the graph is non-edge-vulnerable.

The well-known large cubic bipartite graphs give for diameters 2, 3, 4
and 6 graphs of order 9 (the one we have already seen, from K3,3), 21 (from
Heawood graph), 45 (from Tutte’s 8-cage), 189 (from Tutte’s 12-cage).
Besides the cubic bipartite graph of diameter 5 and order 56 described by
Bond and Delorme [2] provides an edge-non-vulnerable graph on 84 vertices.
having degree 4 and diameter 5. Some of these graphs are represented on
figure 8. For diameters 3, 4 and 6, the line graphs of bipartite Moore graphs
give some results.

10 A small census

We collect some results in the table 2.

This graph on 56 vertices of Figure 10 is the graph 56.2 in the list of M.
Conder. Hea denotes Heawood graph, and TC Tutte-Coxeter graph; the
Ok’s are the so-called odd graphs
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Figure 8: Large bipartite cubic graphs of diameters 2, 3, 4, 5

Figure 9: An edge- non-vulnerable graph on 30 vertices
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Table 2: Some lower bounds

Δ\D 3 4 5 6

3 10 16 30 56
C5 � K2 fig. 4 fig.9 fig. 10

4 21 45 84 189
LG LG LG LG

5 30 70 182 390
Pet.�K3 Hea. �C5 Hea. �C13 TC. �C13.

6 52 175 462 1456
LG O4 � C5 O6 LG

7 72 210 630 1716
24 � K3 O4 � A6 O5 � C5 O7

8 105 425 756 6825
LG LG O5 � A6 LG

Figure 10: An edge- non-vulnerable graph on 56 vertices
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11 Conclusion

We have given some indications on the large graphs with maximum degree
and diameter whose diameter is unchanged after deletion of an edge. In the
related problem with vertex deletion, the sufficient (but not necessary: see
the line graphs of cubic graphs) condition that every path of length � ≥ 1
should be in a cycle of length at most � + D is replaced by the slightly
weaker: every path of length � ≥ 2 should be in a cycle of length at most
� + D. Thus some of our graphs also provide solutions for the vertex-non-
vulnerability, although not always as large as possible. See for example the
survey paper by Fàbraga, Gómez and Yebra [5]
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