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EULER’S ANALYTICAL PROGRAM
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1.-Introduction.

“Read Euler, read Euler. He is the master of all us”. This famous exhorta-
tion, which Libri1 ascribes to Laplace, expresses Euler’s influence on eighteenth-
century mathematics very well. During his long and profitable activity Euler 
obtained an astonishing number of results, which were crucial in the develop-
ment of mathematics and fill over 70 volumes of his Opera omnia2: they concern 
all parts of eighteenth-century mathematics – both pure and applied –, ranging 
from number theory, infinite series, the theory of equations, combinatorics and 
probability, the differential and integral calculus, elliptic integrals, the calculus 
of variations, musical harmony, mechanics, theory of machines, optics, astron-
omy, naval science, and much else besides. Thus, today, the name of Euler can 
found in the history of almost all the branches of mathematics, even in the his-
tory of those branches that did not yet exist in the eighteenth century but boast 
of Euler as an ancestor, such as graph theory.

In this paper, however, my intention is not to deal with one or more of the 
many Eulerian results but to call attention on what I term as Euler’s analytical 
program, namely Euler’s attempts of transforming analysis into an autono-
mous discipline and reorganizing the whole of mathematics around analysis. 
The main aspects of this program can be summarized as follows:

1	 Libri, Gugliemo (1846) Review of FUSS, Paul Heinrich Correspondance mathématique et phy-
sique de quelque célèbres géomètres du XVIII ème siècle, Journal des Savants, Janvier 1846, 50–62; 
in particular 51.

2	 Leonhardi Euleri Opera omnia Berlin, Leipzig, Heidelberg, Zurich, and Basel: 1911– (afte-
rwards: Opera). The plan of Euler’s Opera omnia originally involved three series, containing 
the works that Euler personally prepared for publication. Between 1911 and 2006 seventy 
volumes of series 1, 2, and 3 were published. Volumes 26 and 27 of series 2 are expected 
to be published in 2010. The publication of series 4 began in 1985. It is devoted to Euler’s 
correspondence (series 4A) and manuscripts (series 4B). Series 4A is planned to consist of 
ten volumes (four volumes were published by 2006). Series B will contain Euler’s hitherto 
unpublished manuscripts, notebooks, and diaries. An online resource for Leonhard Euler’s 
original works and modern Euler scholarship is The Euler Archive, available from http://math.
dartmouth.edu/~euler.
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(a) the elimination of geometric and empirical evidence in the derivation 
of analytical propositions and the rise of analysis as an abstract, conceptual, 
and merely discursive theory;

(b) the construction of a set of abstract and general notions and proposi-
tions, which was thought to be the heart of mathematics (pure analysis);

(c) the application of pure analysis to geometry and mechanic so to trans-
form these branches of mathematics in a sort of applied analysis (later termed 
analytical geometry and analytical mechanics).

In section 2, I will discuss the conceptual background of Euler’s program. 
In sections 3 and 4, I will illustrate how Euler tried to carry out his program 
and its consequences on mechanics. Finally, in section 5, I give a glimpse on 
the reasons that led mathematicians, first, to share this program and, then, to 
reject it; I will also clarify why Euler’s analytical program can be considered 
his main legacy.

2. -Analysis and geometry.

In the Leibnizian and Bernoullian conception, analysis was not an autono-
mous and self-founding mathematical discipline: it was an instrument for 
solving geometric problems and investigated the relations between geomet-
ric quantities (such as ordinate, abscissa, arc length, subtangent, normal, 
areas between curves and axes). In his first papers, written under Johann 
Bernoulli’s influence, Euler followed this conception and dealt with typical 
problems of the Bernoullian school, such as isochronous curves3, tautochrone 
curves4, reciprocal trajectories5. In various cases Johann Bernoulli himself6 
suggested the topic of Euler’s research. For instance, in his De linea brevis-

3	 EULER, Leonhard (1726) “Constructio linearum isochronarum in medio quocunque resisten-
te”, Acta Eruditorum, 1726, 361-363 or Opera, ser. 2, vol. 6, 1-3.

4	 EULER, Leonhard (1727a) “Dissertatio de novo quodam curvarum tautochronarum 
genere”, Commentarii academiae scientiarum Petropolitanae (afterwards: Comm.), 2, 126-138 
or Opera, ser. 2, vol. 6, 4 - 14.

5	 EULER, Leonhard (1727b) “Methodus inveniendi traiectorias reciprocas algebraicas”, 
Acta Eruditorum, 1727, 408-412 or Opera, ser. 1, vol. 27, 1-5 and EULER, Leonhard (1727c) 
“Problematis traiectoriarum reciprocarum solutio”, Comm. 2, 90-111 or Opera, ser. 1, vol. 
27, 6-23.

6	  In his [1727b, 408], Euler stated that Johann Bernoulli was “the most renowned of mas-
ters” and that “not only was my teacher, greatly fostering my inquiries into such matters, 
but also looked after me as a patron”. 
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sima7, Euler stated: “The Celebrated Johann Bernoulli proposed this question8 
to me and urged me to write up my solution and to investigate these three 
kinds of surfaces …”9 However, already at the end of the 1720s, Euler played 
strong attention to the analytical instruments and attempted to improve 
them, since – he thought – analysis facilitated the understanding and solu-
tion of geometric and physical problems10. This was the starting-point of an 
evolutionary process that led him to a new idea of analysis, later expounded 
in a systematic way in Introductio in analysin infinitorum11, Institutiones calculi 
differentialis 12, and Institutionum calculi integralis13. 

The crucial aspect of Euler’s new conception was the separation of analy-
sis from geometry; in practice, this meant that diagrammatic representations 
were eliminated from the derivation of analytical propositions and that 
analysis changed into an abstract, conceptual, and merely discursive theory. 
To clarify this point, I briefly examine some remarkable passages from two 
of Euler’s articles, Methodus universalis14 and Inventio summae15. In both these 
papers, Euler tackled the problem of determining and approximating evalu-
ation of the n-partial sum of a series∑ na , but – he said – the method used 
in the former was geometric, whereas the method used in the latter was 
analytical:

“When I gave more precise consideration to the mode of summing 
which I had dealt with by using by the geometric method in the above 
dissertation [Methodus universalis] and investigated it analytically, I 

7	 EULER, Leonhard (1728a) “De linea brevissima in superficie quacunque duo quaelibet 
puncta iungente”, Comm. 3, 110-124 or Opera, ser. 1, vol. 25, 1-12. 

8	 The problem of finding “the shortest line between two points on a surface”.
9	 Euler (1728:§. 2).
10	 For instance, he usually considered curves and surfaces as long as their nature can be 

expressed by equations (cf. EULER (1728b, 112).
11	 EULER, Leonhard (1748) Introductio in analysin infinitorum, Lausannae, M. M. Bousquet 

et Soc., or Opera, ser. 1, vols. 8-9.
12	 EULER, Leonhard (1755a), Institutiones calculi differentialis cum eius usu in analysi finitorum 

ac doctrina serierum, Petropoli, Impensis Academiae Imperialis Scientiarum, or Opera, ser. 
1, vol. 10.

13	 EULER, Leonhard (1768-70) Institutionum calculi integralis, Petropoli, Impensis Academiae 
Imperialis Scientiarum or Opera, ser. 1, vols. 11-13.

14	 EULER, Leonhard (1736a) “Methodus universalis serierum convergentium summas 
quam proxime inveniendi”, Comm. 8, 3-9 or Opera ser. 1, vol. 14, 101-107.

15	 EULER, Leonhard (1736b) “Inventio summae cuiusque seriei ex dato termino generali”, 
Comm. 8, 9-22 or Opera, ser. 1, vol. 14, 108-123.
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discovered that what I had derived geometrically could be deduced from 
a peculiar method for summing that I mentioned three years before in a 
paper16 on the sum of series”17.

      The method of Inventio summae was analytical because it was only based 
on the manipulation of formulas. Indeed, Euler assumed that the n-th term 
an of a given series ia∑  was a function X=a(n) of n18 and, through a long 
sequel of calculations and formal manipulations, derived the so-called Euler-
Maclaurin sum formula19.

3 5 7 9 11 13 15

3 5 7 9 11 13 15

3 5 691 35 3617
 

2 3 2 5 6 7 6 9 10 11 6 13 210 15 2 17 30

X dX d X d X d X d X d X d X d X
S( n ) Xdn ...
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This formula allowed him to evaluate the n-partial sum
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= ∑ .

On the contrary, Euler defined the method of Methodus universalis as geo-
metric because it was based on a geometric representation of a decreasing 
series ∑ na . Euler considered the diagram shown in Fig. 1, where aA=a1, 
bB=a2, cC=a3, dD=a4, …, pP=an, qQ=an+1 and AB=BC=CD=DE=…=PQ=1. An 

inspection of the diagram shows that 

dn)n(aa
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i
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+

=

>
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.21

16	 EULER, Leonhard (1732-33) “Methodus generalis summandi progressiones”, Comm. 6, 
68-97 or Opera, ser. 1, vol. 14, 42-72.

17	 EULER (1736b: 9).
18	 On Euler’s derivation of the Euler-Maclaurin sum formula, see FERRARO, Giovanni (1998) 

“Some Aspects of Euler’s Theory of Series. Inexplicable functions and the Euler-Maclaurin 
summation formula”, Historia mathematica,, 25, 290-317.

19	 EULER (1736b: §. 19).

20	 By a similar diagram, Euler derived 
1 1
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21	 By a similar diagram, Euler derived 
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Fig. 1

Euler noted that the integral
1

1

n

a( n )dn
+

∫  approximated the sum of the given series 

and that this approximation could be improved by observing that the curvilinear 

triangles abβ, bcγ, …, pqρ  were greater than the rectilinear triangles abβ, bcγ,…, pqρ 

(the curved line aq is convex, at least for large enough n). Since the sum of the areas 

of the rectilinear triangles abβ, bcγ ,…, pqρ  is 
2

( Aa - Qq )AB
, he obtained 
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Then, Euler considered the secant bc (Fig. 2) and approximated the arc ab 
by an appropriate arc of a parabola. By a series of geometric considerations 
based upon Fig. 2 and implicitly assuming the convexity of the curve, he 
obtained the following approximating formula for the sum of the series

1
1 1 21 1 2
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22	 Analogously, he obtained 11
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Fig.2

According to Euler, the geometric method of Methodus universalis hinged 
on using appropriate geometric figures and some steps of the deduction 
were inferred by scrutinizing these figures; instead, the analytical method of 
Inventio summae dispensed with the diagrammatic representation. If, how-
ever, we look carefully at Methodus universalis and Inventio summae, we note 
that both papers are based upon similar concepts and, in effect, it would be 
easy to translate Methodus universalis into analytical symbols: the crucial dif-
ference between the analytical and geometric methods was merely the pres-
ence of the diagrams.

This is puzzling to modern eyes; nowadays, the diagrammatic representa-
tion of Methodus universalis might seem a dispensable tool for facilitating the 
comprehension of the proof, since in modern geometry figures improve the 
understanding of reasoning but are unessential. Modern proofs are merely 
linguistic deductions derived from explicit axioms and inference rules. This 
is not true for the classical conception of Euclidean geometry, where the refer-
ence to figures plays a crucial role23. Euler shared this concept of geometry, 
and it is just this concept that makes clearer the meaning of certain Euler’s state-
ments, such as the following from the preface of Institutiones calculi differentialis:

23	 On the use of diagrams in Greek geometry, see NETZ, Reviel (1999) The Shaping of 
Deduction in Greek Mathematics, Cambridge, Cambridge University Press.
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“I mention nothing of the use of this calculus in the geometry of curved 
lines, because its absence will be least felt, since it has been investigated 
so comprehensively that even the first principles of differential calculus 
are, so to speak, derived from geometry and, as soon as they had been suf-
ficiently developed, were applied with extreme care to this science. Here, 
instead, everything is contained within the limits of pure analysis so that 
no figure is necessary to explain the rules of this calculus”24.

When Euler claimed the absence of geometric figures in his analytic trea-
tises, he asserted the absence of inference derived from the mere inspection 
of a figure (inspectio figurae), which was crucial in classical geometric proofs. 
In Euler’s opinion, analysis was as a system of merely conceptual and medi-
ated notions; it functioned in a discursive way along abstract ideas. Geometry 
instead was a line of reasoning applied to figures that were shown in the 
concrete form of a diagram: geometry was entrusted, to a certain extent, to 
the intuitive immediacy of an inspection of the figure and the perception of 
the relationships shown in the diagram.

In conclusion, the crucial difference between analysis and geometry did 
not consist of the fact that analysis used symbols but depended on the fact 
symbols were the instruments by which analysis developed as an abstract 
conceptual, and merely discursive theory, which did not rely on the mate-
rial, whereas geometry was concrete (or more concrete) and relied on the aid 
of figures. For this reason, the analytical method can be described as a non-
figural method whereas the geometric one was figural25.

3.- Analysis as algebraic analysis.

In this section, I will examine how Euler carried out his program. The 
key-word is abstract quantity: in Euler’s opinion, analysis was the science 
of general or universal quantities. Indeed, following a traditional point of 
view, Euler defined mathematics as “the science of quantity or, the science 
which investigates the means of measuring quantity”26 and gave the name of 

24	 EULER, Leonhard (1755a: 9).
25	 See FERRARO, Giovanni (2001) “Analytical symbols and geometrical figures in eighteenth-

century calculus”, Studies in History and Philosophy of Science Part A, vol. 32, 535-555.
26	 EULER, Leonhard (1770) Vollständige Anleitung zur Algebra , Opera, ser. 1, vol. 1, §. 2.
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magnitude or quantity to “whatever is capable of increase or diminution”27. 
However, according to Euler, there existed many different kinds of quantity 
and this was “the origin of the different branches of mathematics, each being 
employed on a particular kind of quantity”28. In his opinion, a quantity was 
investigated in mathematics insofar as it could be measured and the opera-
tion of measuring quantity consisted:

(a) in fixing at pleasure upon any one known magnitude of the same 
species with that which was to be determined, and considering it as the 
measure or unity; 
(b) in determining the relation of the given magnitude to this measure.

Euler stated that this relation was always expressed by numbers29; so he 
seems to reduce quantity to number. It, however, is to be emphasized that 
he did not possess a notion a number independent of that of quantity. Euler 
did not have the concept of the set of real numbers; he merely gave the name 
“number” to the result of the process of measuring any quantity – a process 
that expresses the relation between the quantity and the unity –, without 
explaining what this process is and how measurement can be performed and, 
therefore, without explaining what the relation between the quantity and the 
unity is.

Euler’s concept of number remained at very intuitive level30; however, 
the number was the most important tool for treating quantity and, therefore, 
“the foundation of all the mathematical sciences must be laid in a complete 
treatise on the science of numbers, and in an accurate examination of the dif-
ferent possible methods of calculation”31. According to Euler, this science of 
numbers was analysis or algebra32.

27	 EULER (1770: §. 1).
28	 EULER (1770: §. 2).
29	 EULER (1770: §. 4).
30	 In effect, Euler gave the name of number to any symbolic entity which can be manipu-

lated in a similar way to natural numbers. On Euler’s concept of number, see FERRARO, 
Giovanni (2004) “Differentials and differential coefficients in the Eulerian foundations of the 
calculus”, Historia Mathematica, vol. 31, 34-61.

31	 EULER (1770: §. 5).
32	 “Analysis or Algebra is the fundamental part of mathematics that investigates numbers and 

methods of calculation” (EULER, 1770, §. 5). In his (1770) Euler did not make a distinction 
between analysis and algebra. Instead, according to d’Alembert, analysis “is properly the 
method for solving mathematical problems by reducing them to equations …. In order to 
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However, since all quantities could be expressed by numbers, all parts of 
mathematics dealt with numbers and it was necessary to provide a charac-
terization of algebra or analysis with respect to the other parts of mathemat-
ics. Thus, in his Algebra, Euler explained that numbers are taken into account 
in analysis as they represented quantities considered in general, without 
regard to the differences between the special types of quantities33. The notion 
of quantity in general or universal quantity was discussed by Euler in the 
Introductio, where he stated that the idea of a general or universal quantity 
was generated from particular geometric quantities by means of a process of 
abstraction: a general quantity was what was common to all quantities, just 
as “redness” was possessed by all red particular objects. Using an explicitly 
philosophical language, Euler stated that “in the same way as the ideas of spe-
cies and genera are formed from the ideas of individuals, so a variable quantity is the 
genus, within which all determinate quantities are included”34.

In Euler’s opinion, analysis was the science that investigated the pure 
concept of quantity (general or universal quantity) without no concrete deter-
mination; whereas the other branches of mathematics concerned the specific 
types of quantities35; more precisely, geometry and mechanics dealt with 
geometric and physical quantities (which could be represented by a diagram 
and had empirical evidence). Consequently, geometry and mechanics were 
more particular and specific disciplines with respect to analysis, which was 
the most general and abstract part of mathematics.

This approach had important consequences on the internal relationships 
among the different branches of mathematics. While a result valid for abstract 
quantities was also valid for geometric and mechanical quantities, the inverse 
was not true: the less general and more concrete notions of geometry and 
mechanics (lines, areas, times, forces,…) could not be used in analytical 
demonstrations. Mathematics was conceived of as a building whose heart 
was analysis, which investigated mathematical objects in all their general-
ity and abstractness and, in this way, provided the method for other parts 
of mathematics. Thus, the other branches of mathematics, such as geometry 

solve problems, Analysis resorts to Algebra, or the calculus of magnitudes in general: thus, 
these two words, Analysis and Algebra, are often regarded as synonyms” (d’Alembert, 
Jean Baptiste Le Rond, “Analyse”, Encyclopédie, ou dictionnaire raisonné des sciences, des arts et 
de métiers, Paris, Briasson, David l’aîné, le Breton, Durand, 1751-80, vol. 1, 400b.

33	 EULER (1770: §. 6).
34	 EULER (1748: 17).
35	 EULER (1770: §. 6).
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and mechanics, became fields of application of pure analysis: a sort of applied 
analysis. As a result of this conception, Euler’s analytical program originated 
two subprograms aiming to do geometry and mechanics in an analytical way 
so to transform them into two new branches of analysis: these subprograms 
were of fundamental importance in the history of mathematics and, later, led 
to the rise of analytical geometry and analytical mechanics (see section 4).

As concerns arithmetic, Euler stated that it investigated numbers in the 
proper sense of the term and dealt with the common way of calculating with 
numbers, namely it investigated the operations between specific numbers 
that were not represented by means of letters. Analysis or algebra was more 
general than arithmetic since it comprehended all the cases that existed “in 
the doctrine and calculation of numbers”36; therefore, algebra was a generali-
zation of arithmetic, where the usual arithmetic operations were generalized 
and applied to all kinds of numbers and to symbols, such as a, b, …, that rep-
resented indeterminate (unspecified) numbers or variable quantities.

***

Analysis or algebra was subdivided into different parts. The first and 
more elementary subdivision was between “ordinary algebra” or “analysis 
of finite quantities” and “analysis of infinite quantities”. Not only did these 
two branches of analysis differ for the use of infinity but also for meaning of 
the symbols. In ordinary algebra the symbols a, b, … stood for indeterminate 
numbers or unknown numbers; they were not variables. Indeed, the con-
cept of quantity was essential to define the number, but once that numbers 
were introduced they were sufficient to develop ordinary algebra: ordinary 
algebra merely treated numbers in their indeterminate form a, b, .... Instead, 
the analysis of infinite quantities required the use of variables: according to 
Euler, a variable was merely a general quantity37. In other words, analysis of 
infinite quantities investigated the capability of quantity of being increasing 
or decreasing, while ordinary algebra investigated fixed determinations of 
quantity (substantially numbers even if these numbers could be treated in 
indeterminate form).

36	 EULER, L. (1770:§. 7).
37	 See FERRARO, Giovanni (2000a) “Functions, Functional Relations and the Laws of 

Continuity in Euler”, Historia mathematica, 27, 107-132.
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Despite these differences, Euler conceived analysis as a unitary theory 
based upon the step-by-step extensions of arithmetical rules38. He assumed 
that the methods of calculation used to natural and rational numbers could 
be applied to numbers of any kind, to indeterminate numbers represented 
by letters and even to abstract quantities39. For this reason, Euler’s analytical 
program was a reductionist program, according to which the rules of analy-
sis were conceived of as a generalization of the rules of arithmetic except for 
some necessary adjustments.

Of course, after Leibniz and Newton, the heart of analytical methods was 
constituted by the algorithm of the calculus and, therefore, Euler’s program had 
to reduce the algorithm of the calculus to an appropriate extension of algebra 
of finite quantities. In other terms, Euler had to reduce some crucial notions of 
the calculus – namely, the notions of power series, differentiation, and integra-
tion – to algebraic notions (here the adjective “algebraic” is to be understood in 
the restrict sense of analysis of finite quantities or ordinary algebra40).

Following Newton and Leibniz, Euler thought that the notion of power 
series could easily be reduced to algebraic concepts; indeed, a power series 
was conceived of as an infinite polynomial, upon which one could apply the 
rules that were valid for finite polynomials. For instance, the common rule 
for the division of polynomials was used to expand a function into a power 
series. Thus, to expand c/(b+x), one divided c by b+x and obtained the quo-

tient c/b and the remainder c
x

b
− . By dividing the remainder by b+x, one had 

the quotient 
2

c
x

b
 and the remainder 2

2

c
x

b
− . By continuing ad infinitum one 

derived the series 2
2 3

c c c
x x ...

b b b
− + − , which was the development of c

b x+
.
41

38	 See PANZA, Marco (1992) La forma della quantità. Analisi algebrica e analisi superiore: il problema 
dell’unità della matematica nel secolo dell’illuminismo, vols. 38–39 of the Cahiers d’Historie et de 
Philosophie des Sciences, pp. 701-702 and JAHNKE, Hans Niels (1993) “Algebraic analysis in 
Germany, 1780–1840. Some mathematical and philosophical issues”, Historia Mathematica, 20, 
265–284 (in particular,  281).

39	 See FERRARO (2004).
40	 It is appropriate to make clear that this use of the term “algebraic” is not due to Euler. As 

we saw (footnote n. 31), Euler, in principle, considered algebra and analysis as synonyms; 
however, the fact he entitled his 1770 treatise as Vollständige Anleitung zur Algebra (Complete 
instruction in algebra) seems to be the sign of a trend to use the term “algebra” in place of 
“ordinary algebra”.

41	 For a detailed investigation of Euler’s theory of series, I refer to FERRARO, Giovanni (2000b) 
“The value of an infinite sum. Some observations on the Eulerian theory of series”, Sciences et 
techniques en perspective, 4, 73–113 and FERRARO, Giovanni (2008a), The rise and development 
of the theory of series up to the early 1820s, New York, Springer (in particular Part 2).
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More generally, one can state that the procedures applied to power series 
were based upon the following principle, which was one of the cornerstones 
of Euler’s reductionist program:

-P1. if a rule R was valid for finite expressions or if a procedure P depended 
on a finite number n of steps S1, S2, S3, …, Sn, then it was legitimate to 
apply the rule R and the procedure P to infinite expressions and in an 
unending number of steps S1, S2, S3, ….42

While series were not problematic, differentials were very difficult to be 
treated coherently to the principles of algebraic analysis: the notion of differ-
entials was felt obscure and not algebraic43. For this reason, Euler developed a 
strategy aiming to reduce the use of differentials to a minimum. This strategy 
can be summarized as follows.

1) Analysis of infinite quantities was subdivided into two parts: 
    • the introduction of the analysis of infinities or algebraic analysis44, 
    • the calculus. 

The introduction of the analysis of infinities was a corpus of knowledge 
that avoided the notion of differentials and could be treated using only the 
infinite extension of the rules valid in the algebra of finities: it investigated 
functions, their transformations and their expansions into series. Instead, the 
calculus was the part of analysis of infinities where the operations of differ-
entiation and integration were investigated45.

2) Euler attempted to make the notion of differentials as more arithmetical 
as possible and to reduce their use to the definition and determination of the 
differential ratios. Indeed, he defined differentials as evanescent quantities or 

42	 For more details, see FERRARO, Giovanni (2007a) “The foundational aspects of Gauss’s 
work on the hypergeometric, factorial and digamma functions”, Archive for History of Exact 
Sciences 61, 457-518 (in particular 464).

43	 The same difficulty occurred for the theory of limits, since the notion of limits was also con-
sidered non-algebraic. In Euler’s opinion, limits could only provide an intuitive justification 
for the rules of the calculus.

44	 The expression “algebraic analysis” is due to Lacroix (cf. LACROIX, Silvestre François 
(1797-1798) Traité du calcul différentiel et du calcul intégral, 2 vols., Paris, Duprat).

45	 On the different parts of analysis, see FERRARO, Giovanni (2007b) “Euler’s treatises on 
infinitesimal analysis: Introductio in analysin infinitorum, Institutiones calculi differentialis, 
Institutionum calculi integralis”, in BAKER, Roger (ed.) Euler Reconsidered. Tercentenary Essays, 
Heber City, UT, Kendrick Press, 39-101 (in particular, 44-45).
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zero or nothing: a differential dx was only a way of denoting that a variable x 
vanished (namely, it tended to zero) and the numerical value of dx was zero. 
By means of a calculus of these evanescent quantities or zeroes, he attempted 
to reduce infinities and infinitesimals to a new kind of numbers46. This was 
not sufficient to transform differentials into an algebraic notion; thus, Euler 
stated that the differential calculus did not concern with investigating dif-
ferentials – which are equal to 0 – but regarded with defining their mutual 
ratio – which had a determinate value –47. He claimed that functions were the 
genuine subject-matter of the differential calculus and that differentials were 
mere tools for dealing with functions. For example, given the function y=x2 
whose differential is dy=2xdx, the calculus studied the differential coefficient 

2
dy

x
dx

=  and not the differential 2xdx48. Therefore, the operation of differen-

tiation involved finite quantities since it transformed a finite quantity y into 
the finite quantity dy/dx. However, differentials remained essential in defin-
ing this operation and Euler was fully aware of this49.

3) As concerns the operation of integration, Euler thought that the use of differ-

entials could be avoided by defining integration as the inverse operation of differen-

tiation, namely, the integral ∫f(x)dx of the function f(x) was a function F(x) such that 

dF=f(x)dx. By integration, one returned from the differential to the function generat-

ing the differential50.

In Euler’s opinion, once the differential ratios were introduced, both the 
differential and integral calculus were not understood as calculi concerning 
differentials but as calculi concerning functions and their differential ratios – 
which were finite quantities –: the differential calculus was the direct calcu-
lus that led from functions to differential ratios; the integral calculus was the 
inverse calculus that led from the differential ratios to the functions generat-
ing that differential ratio.

***

46	 See FERRARO, G. (2004).
47	 EULER (1755: 5).
48	 EULER (1768-1770, vol.1: 6).
49	 FERRARO (2004).
50	 EULER (1768-70, vol. 1, 5). On Euler’s concept of integration, see FERRARO, G. (2008b) “The 

integral as an anti-differential. An aspect of Euler’s attempt to transform the calculus into an 
algebraic calculus”, Quaderns d’història de l’enginyeria, 9, 25-58.
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Functions were the main technical instruments used by Euler to carry out 
his analytical program; however, the meaning Euler gave to the term “func-
tion” is very different from the modern one51. Indeed, in Euler’s works, when 
the word “function” was used in its proper sense, it has to be understood in 
this way: a function is given by one only analytical expression constructed 
from variables in a finite number of steps using exponential, logarithmic and 
trigonometric functions, algebraic operations, and composition of functions52. 
In other words, a function, in the proper sense of the term, was an elementary 
function53. 

This notion of a function was closely connected with:
(a) the above-described concept of analysis as a theory based upon the 
step-by-step extensions of arithmetical rules, 
(b) the idea that functions could be considered as the basic and proper 
objects of analysis only if they were known objects.

As concerns point (a), I observe that elementary functions were thought 
to result from the generalization and symbolic representation of arithmeti-
cal operations54, whereas other quantities, such as transcendental quantities 
expressed by means of integrals, were not felt as the direct generalisation of 
arithmetical operations.

As regards (b), I note that, according to Euler, analysis had to offer a meth-
odology by which one could solve problems concerning any branch of math-
ematics. However, a problem is solved when one exhibited a known object; 
therefore a function, in the proper sense of the term, had to be a known object, 
so that it could be exhibited as the solution to a problem55. Only elementary 
functions seemed to satisfy these two conditions. I refer to my (2000a) for a 
detailed treatment of Euler’s concept of a function; now I limit myself to men-

51	 See FRASER, Craig (1989) “The Calculus as Algebraic Analysis: Some Observations on 
Mathematical Analysis in the 18th Century”, Archive for History of Exact Sciences, 39, 317-335 
and FERRARO (2000a).

52	 On the use of equations, such as f(x,y)=0, to define functions, see FERRARO (2000a). 
53	 On the use of functions different from the elementary ones in Euler’s mathematics, see 

FERRARO (2000a) and FERRARO (2007a).
54	 This idea even made the introduction of trigonometric functions problematic. Indeed, they 

were introduced later, when their link with the exponential function had been established 
and it had been highlighted that they occurred as solutions to certain differential equations 
(see KATZ, V. J. (1987) “The Calculus of the Trigonometric Functions”, Historia Mathematica, 
vol. 14, 311-324).

55	 See FERRARO (2000a: 115).
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tion two aspects of this concept that were of great importance in establishing 
the causes of the crisis of Euler’s analysis.

First, Eulerian functions were characterised in an essential way by the use 
of a formal methodology that it made possible to operate upon analytical 
expressions, independently of their meaning and was grounded upon princi-
ple P1 and the following principle of the generality of algebra:

P2. If an analytical formula was derived by using the rules of algebra, then 
it was thought to be valid in general56 

For this reason, if a certain property of the function f(x) was proved to be 
valid for a certain interval of the values of the variable x, then it was gener-
alized beyond the bounds of its original validity and was assumed to hold 
for any value of the function x – real, complex and also infinite or infinitesi-
mal57.

Second, in Euler’s conception, a power series was viewed as the expansion 
of generating functions and always presupposed a function that generated 
them58. For this reason, a series could not be used to define a function. In the 
same way, since an integral was anti-differential, it could be used to define 
a function59. In FERRARO (2007a) I showed that this conception was a huge 
obstacle to the growth of analysis in the second part of eighteenth century60. 

4.- Analysis and mechanics.

The third point of Euler’s analytical program was the reconstruction of 
the edifice of mathematics around analysis. Euler carried out this objective 
transforming geometry and mechanics into a sort of applied analysis: his treat-
ment of geometry and mechanics can be considered as the starting point of 

56	 See FERRARO (2007a: 563).
57	 On the principle of the generality of algebra, see FERRARO (2000a : 121-123).

58	 For instance, the sum of ∑
∞

=
−

0i

ii x)1(  was 1/(1+x) since the function 1/(1+x) could be expand-

ed into ∑
∞

=
−

0i

ii x)1( . On this question, see FERRARO (2000b) and (2008b: chapter 19).

59	 On the nature of transcendental quantities f ( x )dx∫  or 
b

a
f ( x )dx∫  in Euler’s calculus, see 

FERRARO (2008b).
60	 FERRARO (2007a, 467 ff).
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the process that led to the rise of analytical geometry (in a modern sense of 
the term61) and analytical mechanics.

Euler’s main contribution to analytical geometry is the second book of the 
Introductio, which was just written to give a proof of the power and efficacy 
of the application of the analytical method. For the sake of brevity, I do not 
dwell upon this treatise62 but prefer to deal with some of several papers Euler 
devoted to the attempt of making mechanics an analytical discipline.

In 1736 Euler published a treatise on kinematics and dynamics of a point-
mass, Mechanica sive motus scientia analytice exposita63, where analytic meth-
ods were, for the first time, applied to mechanics in a systematic way. He 
explained the reasons of his approach as follows:

“[W]hat distracts the reader the most, is the fact that everything is 
carried out synthetically, with the demonstrations presented in the man-
ner of the old geometry, and the analysis hidden, and recognition of which 
is given only at the end of the work. Hermann’s work is not a great deal 
different also, from the manner of the composition of Newton’s Principia 
Mathematica Philosophiae, from which the science of motion has benefited 
the most. But what pertains to all the works composed without analysis, 
is particularly true for mechanics. In fact, the reader, even though he is 
persuaded about the truth of the things that are demonstrated, nonetheless 
cannot understand them clearly and distinctly. So he is hardly able to solve 
with his own strengths the same problems, when they are changed just a 
little, if he does not inspect them with the help of analysis and if he does 
not develop the propositions into the analytical methods. This is exactly 
what happened to me, when I began to study in detail Newton’s Principia 
and Hermann’s Phoronomia. In fact, even though I thought that I could 
understand the solution to numerous problems well enough; I could not 
solve problems that were slightly different. Therefore I strove, as much as 
I could, to get at the analysis behind those synthetic methods in order, for 
my purposes, to deal with those propositions in terms of analysis. Thanks 
to this procedure I perceived a remarkable improvement of knowledge. 
Thus I have endeavoured or a long time now, to use the old synthetic 

61	 FERRARO (2007b: 50 ff).
62	 For a discussion of the second book of the Introductio, see FERRARO (2007b : 50-55).
63	 EULER, Leonhard (1736c) Mechanica sive motus scientia analytice exposita. Tomus I. Petropoli: 

ex typ. Academiae Scientiarum, 1736, in Opera: Ser. 2, vol.1.
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method to elicit the same propositions that are more readily handled by 
my own analytical method, and so by working with this latter method I 
have gained a perceptible increase in my understanding. Then in like man-
ner also, everything regarding the writings about this science that I have 
pursued, is scattered everywhere, whereas I have set out my own method 
in a plain and well-ordered manner, and with everything arranged in a 
suitable order”64.

The Mechanica originated from Leibniz’s program to reformulate Newton’s 
Principia in terms of the Leibnizian calculus65 and can be considered “as a work 
of systematization of results achieved mainly in the Bernoullian school”66. 
However, Euler went beyond the intention of previous mathematicians, none 
of them had showed awareness of the possibility of transforming analytical 
methods into a new and autonomous field of mathematics. In the two books 
of the Mechanica analytical methods were conceived as the peculiar method-
ology of a general and abstract discipline (analysis), which, just because it 
was abstract and general, could be applied to a more specific and concrete 
discipline (mechanics). In this sense the Mechanica can be considered the start-
ing point of the process that led, first, to the transformation of mechanics in 
applied analysis and, then, to what is now called analytic mechanics.

In practice, the application of analytical methods consisted of a wide use 
of differential and integral calculus – above all differential equations –. For 
example, Euler expressed Newton’s second law67 in the form68:

64	 EULER (1736, 1: 38-39).
65	 On this topic, see GUICCIARDINI, Niccolò (1999) Reading the Principia: the debate on 

Newton’s mathematical methods for natural philosophy from 1687 to 1736, Cambridge, Cambridge 
University Press.

66	 GUICCIARDINI (1999: 248).
67	 At the beginning of Book I of his Principia, Newton formulated the second law of motion as 

follows: “the change of motion is proportional to the motive force impressed, and it takes 
place along the right line in which that force is impressed” (cf. NEWTON, Isaac (1687) 
Philosophiae Naturalis Principia Mathematica, Londini, Josephi Streater, p. 12). In modern 
terms, this definition corresponds to F=∆(mv), where mv is the motion (momentum). The 
expression “change of motion” (mutatio motus) is not univocal in Newton and, elsewhere, 
Newton states that a centripetal force is proportional to the motion that it generates it in a 
given time: this sounds as F=ma (see MALTESE, Giulio (2002) “On the Changing Fortune 
of the Newtonian Tradition in Mechanics”, in Kim Williams (ed.) Two Cultures Essays in 
Honour of David Speiser, Basel, Birkhäuser, 97-113). Some mathematicians use Newton’s law 
in Cartesian form; however, it was Euler who based the mechanics of rigid bodies and fluid 
mechanics on this principle.

68	 EULER (1736, I : §. 154).
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(1)		     
npdt

dc
A

= , 

(where A is the body and its mass, p is the force, c the velocity, t the time, 
n is a constant of proportionality depending on the unity of measure)69. From 
equation (1) Euler was able to derive all differential equations necessary to 
describe the motion of a point-mass. 

In Mechanica, however, Euler used an intrinsic coordinates system. He 
decomposed speeds and forces according to directions that depended upon 
the intrinsic nature of the problem70: this limited the generality of proce-
dures. Some years later, a new, and more general approach appeared, first, 
in Recherches sur le mouvement des corps célestes en général71 and, then, in 
Découverte d’un nouveau principe de Mécanique72. In these papers, Euler used an 
extrinsic references frames (a system of three orthogonal Cartesian axes) and 
formulated the second law of motion in this way:

(2)		  2Mddx=Pdt2, 2Mddy=Qdt2, 2Mddz=Rdt2,

where M is the mass and P, Q, and R the components of the force on the 
axis (the coefficient 2 depended on the unity of measure). In particular, in 
his (1750), Euler applied (2) to continuum mechanics: he stated that a physi-
cal continuum could be subdivided into elementary particles and one could 
apply differential equations (2) to these elementary particles (the mass M 

69	 The use of the differential calculus in mechanics was criticized in England. For instance, 
Benjamin Robins wrote: “I have no design to charge this author [Euler] with haste or negli-
gence on account of these errors; but I consider them solely, as the effect of that inaccuracy 
in conception, to which the differential calculus is disposed to betray its admirers ... In the 
beginning of the third chapter, which treats of right-lined motion, Mister Euler has given 
Galileo’s theory of falling bodies, in its own nature no difficult subject; but it is here so com-
pounded with differential computations, that this subject may be much better learned from 
what has been writ in a more simple manner by others” (ROBINS, Benjamin, “Remarks on 
Mr. Euler’s Treatise of Motion”, in Mathematical Tracts of the late Robins, Benjamin … , edited 
by J. Wilson, London, J. Nourse: 1761,,  197-221, on 203 and 205.)

70	 MARONNE, Sébastien and PANZA, Marco (2010) “Newton and Euler”, in Mandelbrot, 
Scott and PULTE, Helmut (eds.) The reception of Isaac Newton in the European Enlightenment, (2 
vols.), London, Continuum, to appear.

71	 EULER, Leonhard (1747) Recherches sur le mouvement des corps célestes en général, Mémoires de 
l’académie des sciences de Berlin 3, 93-143 or Opera, ser. 2, vol. 25, 1 – 44.

72	 EULER, Leonhard (1750) “Découverte d’un nouveau principe de Mécanique”, Mém., 6, 185-
217 or Opera, ser. 2, vol. 5, 81 - 108
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could also be an infinitesimal quantity). In his opinion, this fact constituted 
a new and fundamental principle of mechanics and any other principles or 
law of mechanics could be derived from it: mechanical problems could be 
formulated in a general, analytical way by means of an appropriate applica-
tion of (2).

Later, in 1765, Euler introduced the concept of moment of inertia of a rigid 
body and decomposed the motion into the rectilinear motion of the centre of 
mass and the rotational motion about the centre of mass73; in 1775, he com-
pleted the construction of general equations of dynamics by formulating a 
system of six equations determining the motion of any body, which (except 
for an additional coefficient) he wrote in this way74:

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

                                       

      

d x d y d z
dM P, dM Q, dM P,

dt dt dt
d y d z d z d y d x d y

zdM ydM S, xdM zdM T , ydM xdM U .
dt dt dt dt dt dt

= = =

− = − = − =

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

In his attempt to transform mechanics into a field of analysis Euler 
followed different paths75 and dealt with all branches of mechanics. For 

73	 EULER, Leonhard (1765) Theoria motus corporum solidorum seu rigidorum ex primis nostrae 
cognitionis principiis stabilita et ad omnes motus, qui in hujusmodi corpora cadere possunt, accom-
modata, Rostochii et Gryphiswaldiae litteris et impensis A. F. Röse.

74	 EULER, Leonhard (1775) “Nova methodus motum corporum solidorum rigidorum deter-
minandi”, Novi Commentarii academiae scientiarum Petropolitanae (afterwards: Novi Comm.) 20, 
208-238 or Opera, ser. 2; vol. 9, 99 – 125.

75	 I limit myself to mentioning the use of variational principles, which allowed Euler to pass 
from a geometric-based study of concrete particular system to an analytical treatment of any 
sort of systems based on a unique and general equation. In 1744 Euler published a funda-
mental book on the calculus of variation, where he faced “the method of finding curved lines 
that enjoy some maximum and minimum property, or solution of isoperimetric problems 
in the broadest accepted sense” and obtained the so-called Euler-Lagrange equation (see 
EULER, Leonhard (1744), Methodus inveniendi lineas curvas maximi minimive proprietate gaud-
entes, sive solutio problematis isoperimetrici latissimo sensu accepti, Lausannae, M. M. Bousquet 
et Soc., or Opera, ser. 1, vol. 24). In Methodus inveniendi Euler approached the question in an 
geometric way; however he stated that the problem of finding the curved line which enjoys 
some maximum and minimum property can be formulated analytically and so transformed 
into the problem of finding the function between x and y which enjoys some maximum and 
minimum property. In chapter 4 of the treatise, he even showed how the basic variational 
problem and its solution could be interpreted analytically. Euler (1744: 14) also called for 
the development of a simple method or an algorithm to obtain variational equations. This 
algorithm was developed by Lagrange, who recognized the dual usage of the symbol dy in 
Methodus inveniendi, where Euler denoted both the differential dy of y with respect to x and 
the variation of the curve y(x). Euler immediately accepted Lagrange’s presentation of the 
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instance, as concerns fluid mechanics76, Euler considered the mass of the 
fluid as composed by three-dimensional infinitesimal parallelepipeds: so, he 
could to express the components of the force acting on the element of volume 
dxdydz as Pqdxdydz, Qqdxdydz and Rqdxdydz, where R, Q, P are the compo-
nents of forces acting on the elementary parallelepiped with one corner at 
the point Z of coordinates x, y, z and with dimensions dx, dy , dz, and q is the 
body density77. By assuming that, during the time dt, the element of fluid at 
the point Z is carried to a point Z’ of coordinates x+udt, y+vdt, z+wdt (w, v, u 
are the components of the velocity of the fluid element that is at point Z) and 
that the pressure is p, Euler succeeded in finding the differential equations of 
fluid motion and continuity78:

                       

1

1

1

0

p u u u u
P u v w

q x t x y z

p v v v v
Q u v w

q y t x y z

p w w w w
R u v w

q z t x y z

q qu qv qw
.

t x y z

∂ ∂ ∂ ∂ ∂− = + + +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂− = + + +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂− = + + +
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

These equations, as well as equations (2), show an important aspect of the 
process towards an analytical mechanics: the rise of the calculus of functions of 
several variables. This was one of novelty of Euler’s analysis. However, Euler 
was unable to insert the calculus of the function of several variables in his pro-
gram in organic way and this was one of the limits of his analytical program.

5.-The legacy of Euler’s program.
In conclusion of this paper I discuss the legacy of Euler’s analytical pro-

gram on nineteenth and twentieth-century mathematics.

calculus of variation and following it in the appendix of the Institutionum calculi integralis. 
76	 On p. 274 of a paper presented to the Berlin Academy in 1755 and published in 1757, Euler 

stated: “I hope to emerge successful at the end, so that if difficulties remain they will not 
be in the field of mechanics, but entirely in the field of analysis” (EULER, Leonhard (1755b) 
“Principes généraux du mouvement des fluides”, Mémoires de l’académie des sciences de Berlin, 
(afterwards: Mém.) vol. 11, 274-315 or Opera, ser. 2, vol. 12, 54 – 91.

77	 See, e. g., EULER, Leonhard (1755c) “Principes généraux de l’état d’équilibre des fluides”, 
Mém., vol. 11, 217-273 or Opera, ser. 2, vol. 12, 2 – 53 (in particular. 227 ff.).

78	 EULER, Leonhard (1756-57) “Principia motus fluidorum”, Novi Comm. 6, 271-311 or Opera, 
ser. 2, vol. 12, 133 - 168.
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In section 1, I pointed out that the starting-point of Euler’s analytical 
program was the elimination of diagrammatic and empirical evidence in 
the derivation of analytical propositions and the idea that analysis could be 
developed as an abstract, conceptual, and merely discursive theory, which 
did not rely on the material. In Euler’s opinion, analysis was methodological-
ly different from geometry and other parts of mathematics. Today, all math-
ematical theories are thought to be sets of propositions derived from explicit 
and arbitrary axioms by means of accepted rules of derivations: intuitive 
considerations, linked to the observation of diagram or other material objects, 
cannot be used to derive a theorem. Nowadays all mathematical theories are 
analytical in the sense Euler used this term, namely all mathematical theories 
(even modern synthetic geometry) developed in an abstract, conceptual, and 
merely discursive way without relying on a diagrammatic representation: a 
theory that unloads a part of reasoning on diagrams (as ancient geometry) 
is merely considered as a non-mathematical theory. For this reason, one can 
state that the whole modern mathematics presupposes Euler’s analytical pro-
gram and all parts of modern mathematics are analytical in Euler’s sense: the 
whole modern mathematics (not only modern analysis) has to be considered 
as the heir of Euler’s analytical program.

At the same time, it also clear that the foundations of modern mathemat-
ics and, in particular, of modern real analysis are entirely different from the 
foundations of Euler’s analysis. Thus, the idea of analysis as a step-by-step 
construction based upon a mere generalization of arithmetic rules is no long-
er accepted and, in any case, the tools Euler used to carry out his program (for 
instance, the concept of abstract quantity and his notion of a function) have 
been rejected or have deeply been modified. The decline of Euler’s founda-
tions of analysis has often attributed to the lack of rigour (e.g., the question of 
divergent series) and the consequent rise of Cauchy’s rigorous mathematics; 
but this opinion did not grasp the core of the problem. Indeed, the crisis of 
Euler’s foundations of analysis was mainly due to the fact these foundations 
failed in reaching their fundamental objective, the realization of the analytical 
program, namely Euler’s foundations of analysis did not make possible the 
reorganization of mathematics around analysis, the latter being intended as a 
theory that did not rely upon geometric concepts79. 

Already around 1750, Euler’s concepts of functions, series, differentia-

79	 For a discussion of the decline of eighteenth formal methodology, see FERRARO (2008a, Part IV).
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tion, and integration showed strong insufficiencies. For instance, the concept 
of functions was too restricted and not apt to the analytical investigation of 
natural phenomena80. In effect, if one followed Euler’s foundations, it was 
impossible to provide a coherent theory that went beyond the restricted 
domain of elementary functions and their power series (see section 3). At 
the eighteenth century and the beginnings of the nineteenth century, Euler’s 
concept of analysis was no longer sufficient for the needs of astronomy, prob-
ability, physics, etc. These sciences required the mathematical investigations 
of new kind of transcendental functions and the introduction of new meth-
ods that allowed giving a better interpretation to certain new objects, such 
as trigonometric series and partial differential equations. In other terms, the 
basic notions Euler used to carry out his analytical program led to a substan-
tial failure of the program itself.

Euler was aware of the fact that analysis was not sufficiently developed 
theory at his time; he felt the need to introduce new mathematical objects 
in analysis so to obtain a complete analytical theory apt to mathematize the 
physical sciences. However, he believed that he had already determined 
essential parts of such a complete analytical theory: it should be sufficient to 
continue to develop his program according to the path he had shown to reach 
the final objective. In other terms, new chapters of the analytical theory could 
be added to the original theory without changing the foundations of analysis. 
Euler made various attempts to enlarge the domain of analysis adding new 
topics, such as trigonometric series or new kinds of functions. Unfortunately, 
these additions to old theory were not well integrated and often assumed 
the aspect of ad hoc arguments. For instance, this occurred in the case of the 
introduction of discontinuous functions (in Euler’s sense, namely quantities 
that did not have an analytical expression or that were analytically expressed 
by means of more than one analytical expression). While D’Alembert rejected 
the use of discontinuous functions, since they were not coherent with the 
notion of a function as a single closed analytical expression, Euler accepted 
them since their rejection would have impeded the growth of mathematics 
and its capacity to interpret physical phenomena. However, Euler did not 
changed the old concept of a function as a single analytical expression, rather 
he merely added the new discontinuous functions to old functions without 
making the old and new functions compatible each others. As a result, the 

80	 See FERRARO (2000a) and (2007a).



197

Euler’s analytical program	 volum xi 	 2 0 1 0

discontinuous functions never entered in Euler’s analysis as function in the 
proper sense of the term and Euler was never able to use them adequately81. 
The same thing occurred as concerns the gamma and beta functions82 and 
elliptic integrals83.

At the end of the eighteenth century, the process of construction of analy-
sis, accordingly Euler’s foundations, led to a poorly coherent construction. 
The structure of analysis retained the theory of elementary functions and 
its formal principles while the various attempts to extent its subject-matter 
lacked any adequate systematisation and were often supported by extra-
analytical considerations84. Even the starting-point of Euler’s program, the 
separation of analysis from geometry, did not reach to its natural conclusion 
and geometric principles were implicitly (and sometimes explicitly) used in 
analysis85. Thus, at the start of the nineteenth century, Bolzano was forced to 
observe that there were demonstrations of analytical theorems that depend 
“on a truth borrowed from geometry”; he even claimed that it was “an intol-
erable offence against correct method to derive truths of pure (or general) 
mathematics (i.e., arithmetic, algebra, analysis) from considerations which 
belong to a merely applied (or special) part, namely, geometry”86.

The last statement almost seems an Eulerian one: in effect, it expresses 
basic features of Euler’s program very well. Thus Bolzano’s innovative proof 
of the intermediate value theorem can be viewed as an attempt to carry out 
Euler’s program, rather an attempt to reject it. Bolzano’s proof does imply 
new foundations for mathematics but these new foundations seem to be a 

81	 See FERRARO (2000a).
82	 See DELSHAMS, Amadeu and MASSA ESTEVE, Mª Rosa (2008) “Consideracions al voltant 

de la Funció Beta a l’obra de Leonhard Euler (1707-1783) Quaderns d’Història de l’Enginyeria, 
9, 59-82; MASSA ESTEVE, Mª Rosa and DELSHAMS, Amadeu (2009) “Euler’s beta integral 
in Pietro Mengoli’s works”, Archive for History of Exact Sciences, 63, 325-356.

83	 See FERRARO (2008b : §. 3).
84	 For instance, in FERRARO (2008b), I showed that in investigating gamma and beta func-

tions, Euler used definite integration, but when he was forced to give the properties of 
definite integration he resorted to the geometric interpretation of the integral (namely, he 
conceived the integral as an area and referred to a diagram).

85	 This also occurred because, as shown in my (2000a, 120-121), some Eulerian notions had an 
intrinsic geometric nature and the use of the symbolic representation (namely, by means of 
algebraic symbols) instead of the diagrammatic one hid but did not eliminate.

86	 BOLZANO, Bernard (1817) Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey Werthen, 
die ein entgegengesetzes Resultat gewaehren, wenigstens eine reele Wurzel der Gleichung liege, Prague, 
Enders. English translation in RUSS, Steve (1980) “A Translation of Bolzano’s Paper on the 
Intermediate Value Theorem”, Historia Mathematica 7, 156–185, in particular 157.
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tool to save the core of Euler’s analytical program.
The same thing is true for Gauss87 and Cauchy88. These two mathemati-

cians changed the foundation of analysis in a radical way; however, both 
Gauss and Cauchy saved the concept of analysis as an abstract, conceptual, 
and merely discursive theory and the idea that analysis had to be the main 
instrument to investigate geometric and mechanical objects. In this sense (but 
only in this sense), Gauss and Cauchy were Eulerian.

87	 On Gauss’s re-thinking of the fabric of eighteenth-century analysis in order to move beyond 
the restricted domain of Eulerian functions, see FERRARO (2007a).

88	 On Cauchy’s rejection of eighteenth-century theory of series, see FERRARO (2008a, chapter 33). 




