Infinite families of 3**-numerical semigroups with arithmetic-like links**

Francesc Aguiló-Gost Universitat Politècnica de Catalunya Barcelona

Abstract

Let $S = \langle a, b, N \rangle$ be a numerical semigroup generated by $a, b, N \in$ N with $1 < a < b < N$ and $gcd(a, b, N) = 1$. The conductor of S, denoted by $c(S)$ or $c(a, b, N)$, is the minimum element of S such that $c(S) + m \in S$ for all $m \in \mathbb{N} \cup \{0\}$. Some arithmeticlike links between 3-numerical semigroups were remarked by V. Arnold. For instance he gave links of the form

$$
\frac{c(13,32,52)}{c(13,33,51)} = \frac{c(9,43,45)}{c(9,42,46)} = \frac{c(5,35,37)}{c(5,34,38)} = 2 \text{ or } \frac{c(4,20,73)}{c(4,19,74)} = 4.
$$

In this work several infinite families of 3-numerical semigroups with similar properties are given. These families have been found using a plane geometrical approach, known as L-shaped tile, that can be related to a 3-numerical semigroup. This tile defines a plane tessellation that gives information on the related semigroup.

1 Introduction and known results

A 3-semigroup $S = \langle a, b, N \rangle$ with $a, b, N \in \mathbb{N}$ and $1 < a < b < N$, is defined as $\langle a, b, N \rangle = \{m \in \mathbb{N} \mid m = xa + yb + zN; x, y, z \in \mathbb{N}\}.$ The values a, b and N are called the generators of S. The set $\overline{S} = \mathbb{N} \setminus S$ is called the set of gaps of S. If the cardinality of \overline{S} is finite, then S is a 3-numerical semigroup. It is well known that S is a 3-numerical semigroup if and only if $gcd(a, b, N) = 1$. The Frobenius Number of S is the value $f(S) = \max \overline{S}$. The conductor of S is the value $c(S) = f(S) + 1$. Given $m \in S \setminus \{0\}$,

the Apéry set of S with respect to m, $Ap(S, m) = \{s \in S \mid s - m \notin S\}$ S , contains significant information of S. In particular, it is well known that $f(S) = \max Ap(S, m) - m$. A 3-numerical semigroup $S = \langle a, b, N \rangle$ is minimally generated if the semigroups $\langle a, b \rangle$, $\langle a, N \rangle$ or $\langle b, N \rangle$ are proper subsets of S. You can find recent results on numerical semigroups in the book of Rosales and García-Sánchez [6]. Recent results mainly related on the Frobenius number can be found in the book of Ramírez Alfonsin $[4]$.

The equivalence class of m modulo N will be denoted by $[m]_N$. A weighted double-loop digraph $G(N; a, b; \mathfrak{a}, \mathfrak{b})$ is a directed graph with set of vertices $V(G) = \{ [0]_N, ..., [N-1]_N \}$ and set of weighted arcs $A(G)$ $\{[v]_N \stackrel{\mathfrak{a}}{\rightarrow} [v+a]_N, [v]_N \stackrel{\mathfrak{b}}{\rightarrow} [v+b]_N \mid [v]_N \in V(G)\}.$ The idea of using weighted double-loop digraphs as a tool in the study of the Frobenius number of 3 numerical semigroups was already used by Selmer [8] in 1977 and Rødseth [5] in 1978.

Each weighted double-loop digraph G has related several minimum distance diagrams (MDD for short) that periodically tessellates the squared plane. Each vertex $[ia + ib]_N$ of G is associated with the unit square of the plane $(i, j) \in \mathbb{N}^2$, that is the interval $[i, i + 1] \times [j, j + 1] \in \mathbb{R}^2$. An MDD is composed by N unit squares and has a geometrical shape like the (capital) letter 'L' or it is a rectangle (that is considered a degenerated L-shape), see [5, 3] for more details. Sabariego and Santos [7] gave an algebraic characterization of these diagrams in any dimension. Here we include this characterization in two dimensions.

Definition 1 [Sabariego and Santos, [7]] A minimum distance diagram is any map $D : \mathbb{Z}_N \to \mathbb{N}^2$ with the following two properties:

- (a) For every $[m]_N \in \mathbb{Z}_N$, $D([m]_N) = (i, j)$ satisfies $ia + jb \equiv m \pmod{N}$ and $||D([m]_N)||$ is minimum among all the vectors in \mathbb{N}^2 with that property $(\|(s,t)\| = s\mathfrak{a} + t\mathfrak{b}).$
- (b) For every $[m]_N$ and for every $(s,t) \in \mathbb{N}^2$ that is coordinate-wise smaller than $D([m]_N)$, we have $(s, t) = D([n]_N)$ for some $[n]_N$ (with $n \equiv sa + tb \pmod{N}$.

An MDD H is denoted by the lengths of his sides, $\mathcal{H} = L(l, h, w, y)$, with $0 \leq w < l$, $0 \leq y < h$, $gcd(l, h, w, y) = 1$ and $lh - wy = N$, as it is depicted in the Figure 1. The vectors u and v define the tessellation of the plane by the L-shaped tile H . These lengths fulfill the *compatibility*

Figure 1: Generic MDD tessellating the plane

equations, stated by Fiol, Yebra, Alegre and Valero [3] in 1987, related to the tessellation

$$
la - yb \equiv 0 \pmod{N}, \quad -wa + hb \equiv 0 \pmod{N}.
$$
 (1)

Definition 2 [Tessellation related to S] Let $S = \langle a, b, N \rangle$ be a 3-numerical semigroup. A tessellation related to S is a tessellation of the plane generated by an L-shaped MDD of the weighted double-loop digraph $G(N; a, b; a, b).$

Let D be the map that appears in Definition 1 associated with $G =$ $G(N; a, b; a, b)$, that is $\mathfrak{a} = a$ and $\mathfrak{b} = b$. Then

$$
Ap(S, N) = \{ D([0]_N), ..., D([N-1]_N) \}
$$

and $D([m]_N)$ can be though as the length of a minimum path from $[0]_N$ to $[m]_N$ in G. Definition 2 gives a metrical view of some properties of S. A geometrical characterization of MDD related to S is needed for practical reasons. This characterization is given in the following result.

Theorem 3 (A., Miralles and Zaragozá, [1]) The L-shaped tile $\mathcal{H} =$ $L(l, h, w, y)$ satisfying (1) with $lh - wy = N$ and $gcd(l, h, w, y) = 1$ is related to $S = \langle a, b, N \rangle$ iff $l a \geq y b$ and $h b \geq w a$ and both equalities are not satisfied.

Figure 2: Minimum distance diagram related to $G(8; 3, 7; 3, 7)$

Example 4 Consider the weighted double-loop digraph $G = G(8, 3, 7, 3, 7)$ that is depicted in the Figure 2. An L-shaped MDD related to G is $\mathcal{H} =$ $L(5, 2, 2, 1)$. Note that the lengths of H , $(l, h, w, y) = (5, 2, 2, 1)$, fulfill the conditions $gcd(l, h, w, y) = 1$ and $lh - wy = N$, the compatibility equations (1) and Theorem 3. The left-hand side of Figure 2 shows a piece of the first quadrant of the squared plane and how H tessellates the plane. It also shows the periodic distribution of the equivalence classes modulo 8, where each unit square (i, j) is labelled by the class $[3i + 7j]_8$. The right-hand side of this figure shows the same piece of the first quadrant, however each unit square (i, j) is labelled now by $||D([3i + 7j]_8)|| = 3i + 7j$ (D is the map of Definition 1). Note that the labels inside the grey L-shape (the one that contains the unit square $(0,0)$ form the set $Ap(\langle 3, 7, 8 \rangle, 8)$. In particular, we have $f(\langle 3, 7, 8 \rangle) = 13 - 8 = 5$.

V. Arnold [2] in 2009 commented that his 1999 calculations of Frobenius numbers provided hundreds of empirical properties. He remarked some strange arithmetical facts like

$$
\frac{c(13,32,52)}{c(13,33,51)} = \frac{c(9,43,45)}{c(9,42,46)} = \frac{c(5,35,37)}{c(5,34,38)} = 2, \quad \frac{c(4,20,73)}{c(4,19,74)} = 4.
$$
 (2)

It was shown in [1] that if $\mathcal{H} = L(l, h, w, y)$ is related to $S = \langle a, b, N \rangle$, then the Frobenius number is

$$
f(\langle a, b, N \rangle) = \max\{(l-1)a + (h-y-1)b, (l-w-1)a + (h-1)b\} - N. (3)
$$

Therefore, from the identities $c(S) = f(S) + 1$ and (3), arithmetic-like links between conductors as those appearing in (2) can be though as geometricallike relations between related L-shaped MDD tiles.

When the semigroup is 2-minimally generated, that is $S = \langle a, b \rangle$ with $gcd(a, b) = 1$, it is well known that his Frobenius number is

$$
\mathfrak{f}(\langle a,b\rangle) = ab - a - b. \tag{4}
$$

Although this result was published by Sylvester [9] in 1884, it seems to be true that (4) was given first by Frobenius in his lectures. Therefore, the conductor is given by the expression $c(a, b) = f(\langle a, b \rangle) + 1 = (a - 1)(b - 1)$.

In this work, several infinite families of pairs of 3-numerical semigroups are given such that each pair fulfills a (2)-like relation.

2 Computer assisted numerical remarks

Properties in (2) suggest looking for semigroups like

$$
\frac{c(\alpha, n, m)}{c(\alpha, n - 1, m + 1)} = k,
$$
\n(5)

where $\langle \alpha, n, m \rangle$ and $\langle \alpha, n - 1, m + 1 \rangle$ are 2 and 3 minimally generated numerical semigroups respectively, for different natural numbers n and m and fixed values of α and k .

\boldsymbol{k} α	1	$\overline{2}$	3
4	11	0	$\boldsymbol{0}$
$\overline{5}$	$\boldsymbol{0}$	109	$\overline{0}$
$\overline{6}$	$\overline{4}$	$\overline{0}$	$\mathbf{1}$
7	$\boldsymbol{0}$	55	6
8	$\overline{4}$	$\overline{0}$	$\mathbf{1}$
9	$\frac{5}{2}$	13	3
10		$\overline{0}$	1

Table 1: Cardinalities of some sets $P(\alpha, k, 100)$

Let us consider the set

$$
P(\alpha, k, \ell) = \{ \langle \alpha, n, m \rangle \mid \frac{c(\alpha, n, m)}{c(\alpha, n - 1, m + 1)} = k, \ m \le \ell \}
$$

where $\langle \alpha, n, m \rangle$ and $\langle \alpha, n-1, m+1 \rangle$ are 2 and 3 minimally generated. A computer search reveals the cardinality of some sets $P(\alpha, k, 100)$. These cardinalities are included in Table 1.

Let us consider now the set $Q(\alpha, k, \ell)$, defined as $P(\alpha, k, \ell)$ but now both semigroups $\langle \alpha, n, m \rangle$ and $\langle \alpha, n - 1, m + 1 \rangle$ are 3-minimally generated. The cardinalities of $Q(\alpha, 1, 100)$, with $\alpha = 4, ..., 10$, are 276, 5, 0, 15, 0, 218 and 4, respectively. We have now $Q(\alpha, k, 100) = \emptyset$ for $(\alpha, k) \in \{4, ..., 10\} \times \{2, 3\}.$ Let us denote the sets

$$
P(\alpha, k) = \bigcup_{\ell \ge \alpha + 2} P(\alpha, k, \ell) \text{ and } Q(\alpha, k) = \bigcup_{\ell \ge \alpha + 2} Q(\alpha, k, \ell).
$$

We use the numerical data of this section to search infinite families of pairs of semigroups belonging to $P(\alpha, k)$ or $Q(\alpha, k)$, for some values of α and k.

3 Infinite families

In this section we use the L-shaped tile technique included in Section 1 for finding infinite families of 3-numerical semigroups that belong to $P(4, 1)$, $P(7,3)$ and $Q(9,1)$.

Theorem 5 Let us consider the 3-numerical semigroups $S_t = \langle 4, 4t + \rangle$ 3, $8t + 6$ for $t \geq 1$. Then $\{S_t\}_{t>1} \subset P(4,1)$.

Proof: Let us consider S_t and $T_t = \langle 4, 4t + 2, 8t + 7 \rangle$. First, we check that S_t and T_t are numerical semigroups for $t \geq 1$, that is $gcd(4, 4t + 3, 8t + 6) =$ $gcd(4, 4t + 2, 8t + 7) = 1$,

$$
gcd(4, 4t + 3, 8t + 6) = gcd(4, 3, 6) = gcd(3, 2) = 1,
$$

\n
$$
gcd(4, 4t + 2, 8t + 7) = gcd(4, 2, 7) = gcd(2, 7) = 1.
$$

Second, we have to see that S_t and T_t are 2 and 3 minimally generated, respectively. To this end, note that $8t + 6 = 2 \times (4t + 3)$ and so $S_t = \langle 4, 4t + 3, 8t + 6 \rangle = \langle 4, 4t + 3 \rangle$, that is a 2-minimally generated semigroup because $4t + 3$ can not be a multiple of 4. Consider now $T_t =$ $\langle 4, 4t + 2, 8t + 7 \rangle$, we have that neither $4t + 2$ nor $4t + 7$ are multiples of 4; also $8t+7$ is not a multiple of $4t+2$. Let us see also that $8t+7 \notin \langle 4, 4t+2 \rangle$, that is $8t + 7 \neq c_t \times 4 + d_t \times (4t + 2)$ with $c_t, d_t \in \mathbb{N}$, for $t \geq 1$; if so, the even number $c_t \times 4 + d_t \times (4t + 2)$ would equalize the odd one $8t + 7$, a contradiction.

Third, we have to see the identity $c(S_t) = c(T_t)$, for all $t \geq 1$. The conductor $c(S_t)$ is easy to compute because S_t is 2-generated and we can apply (4), that is $c(a, b) = f(a, b)+1 = (a-1)(b-1)$. So, $c(S_t) = (4-1)(4t+1)$ $3-1$) = 12t + 6. To compute the conductor $c(T_t)$, we use the expression (3). To this end, we have to find the related sequence of L-shaped minimum distance diagrams.

Let us see that T_t has related the L-shaped MDD $\mathcal{H}_t = L(5t + 4, 2, 2t +$ 1, 1), for all $t \ge 1$. Obviously $gcd(5t + 4, 2, 2t + 1, 1) = 1$. Set $N_t = 8t + 7$, $a_t = 4, b_t = 4t + 2, l_t = 5t + 4, h_t = 2, w_t = 2t + 1$ and $y_t = 1$. It is easily checked that $l_t h_t - w_t y_t = (5t+4) \times 2 - (2t+1) = N_t$ and the compatibility equations (1)

 $l_t a_t - y_t b_t \equiv 0 \pmod{N_t} \Leftrightarrow 20t + 16 - 4t - 2 = 16t + 14 \equiv 0 \pmod{N_t},$ $h_t b_t - w_t a_t \equiv 0 \pmod{N_t} \Leftrightarrow 8t + 4 - 8t - 4 = 0 \equiv 0 \pmod{N_t}.$

 \mathcal{H}_t is also an MDD because Theorem 3 is fulfilled, that is $l_t a_t > y_t b_t$ and $h_t b_t = w_t a_t$, for all $t \geq 1$. Therefore \mathcal{H}_t is related to T_t and we can use the expression (3) to compute the conductor $c(T_t)$

$$
c(T_t) = f(T_t) + 1 = \max\{(5t+3) \times 4 + 0, (3t+2) \times 4 + 4t + 3\} - 8t - 7 + 1 = 12t + 6.
$$

Hence, $c(S_t) = c(T_t)$ as it is stated. \Box

Theorem 6 Consider the 3-numerical semigroups $S_t = \langle 7, 7t + 7, 14t + 9 \rangle$ for $t \geq 1$. Then $\{S_t\}_{t>1} \subset P(7,3)$.

Proof: Consider S_t and $T_t = \langle 7, 7t + 6, 14t + 10 \rangle$. We have $gcd(7, 7t + 1)$ $7, 14t + 9$ = gcd(7, 7t + 6, 14t + 10) = 1, so S_t and T_t are numerical semigroups. The semigroup S_t is minimally 2-generated and $S_t = \langle 7, 14t + 9 \rangle$, so his conductor is $c(S_t) = (7-1)(14t+9-1) = 84t+48$.

Let us see that T_t is 3-minimally generated. We have $7/7t+6$, $7/14t+10$ and $7t + 6/14t + 10$, for all $t \ge 1$. We have to see now $14t + 10 \notin \langle 7, 7t + 6 \rangle$. If $7 \times m_t + (7t + 6) \times n_t = 14t + 10$ with $m_t, n_t \in \mathbb{N}$, then $0 \leq n_t \leq 1$ (if $n_t \geq 2$ then $n_t \times (7t+6) > 14t+10$. If $n_t = 0$, the identity can not be satisfied, hence $n_t = 1$. So the equality turns to be $7m_t = 7t + 4$ that has no solution for $m_t \in \mathbb{N}$ because $7m_t \equiv 0 \pmod{7}$ and $7t + 4 \equiv 4 \pmod{7}$. Therefore, the semigroup T_t is 3-minimally generated.

The semigroup T_t has related the L-shaped MDD $\mathcal{H}_t = L(5t + 4, 4, 2t +$ 2, 3), that is $gcd(5t + 4, 4, 2t + 2, 3) = 1$, his area is $14t + 10$ and \mathcal{H}_t fulfills the compatibility equations (1) and Theorem 3. Therefore, by using (3), his conductor is

 $c(T_t) = \max\{(5t+3)\times7+0,(3t+1)\times7+3\times(7t+6)\}-14t-10+1 = 28t+16.$ So $c(S_t) = 3c(T_t)$ as it is stated. \Box

Theorem 7 Consider the 3-numerical semigroups $S_t = \langle 9, 9t + 7, 9t + 12 \rangle$ for $t \geq 1$. Then $\{S_t\}_{t \geq 1} \subset Q(9,1)$.

Proof: Consider S_t ad $T_t = \langle 9, 9t + 6, 9t + 13 \rangle$. From the identities $gcd(9, 9t + 7, 9t + 12) = gcd(9, 9t + 6, 9t + 13) = 1$, the semigroups S_t and T_t are numerical semigroups. Let us see that both semigroups are 3-minimally generated.

From 9 $\int 9t+7, 9t+6, 9t+12, 9t+13$ and $9t+7$ $\int 9t+12$ and $9t+6$ $\int 9t+13$, we have to see $9t + 12 \notin \langle 9, 9t + 7 \rangle$ and $9t + 13 \notin \langle 9, 9t + 6 \rangle$. Let us assume that $9 \times m_t + (9t + 7) \times n_t = 9t + 12$ with $m_t, n_t \in \mathbb{N}$ and $0 \leq n_t \leq 1$ (if $n_t \geq 2$ then $n_t \times (9t+7) > 9t+12$. Then $n_t = 1$ because 9 $\sqrt{9t+12}$ and so we have the identity $9m_t = 5$ for $m_t \in \mathbb{N}$, that is a contradiction. A similar argument proves that $9t + 13 \notin \langle 9, 9t + 6 \rangle$.

It can be checked that S_t and T_t have related the L-shaped minimum distance diagrams $L(3t+4, 3, 2t+1, 0)$ and $L(4t+5, 3, 3t+2, 1)$, respectively. Therefore, from (3), we have $c(S_t) = c(T_t) = 36t + 30$. \Box

Acknowledgement

Work supported by the Comisión Interministerial de Ciencia y Tecnología MCYT ref. MTM2008-06620-C03-01/MTM and the Catalan Research Council under the projects DURSI 2005SGR00256 and 2009SGR1387.

References

- [1] F. Aguiló, A. Miralles and M. Zaragozá. Using Double-Loop digraphs for solving Frobenius' Problems. ENDM, 24:17–24, 2006.
- [2] V.I. Arnold. Geometry of continued fractions associated with Frobenius numbers. Funct. Anal. Other Math., 2:129–138, 2009.
- [3] M.A. Fiol, J.L.A. Yebra, I. Alegre and M. Valero. A discrete optimization problem in local networks and data alignment. IEEE Trans. Comput., C-36:702–713, 1987.
- [4] J.L. Ramírez Alfonsín. *The Diophantine Frobenius Problem.* Oxford Univ. Press, Oxford, 2005, ISBN 978-0-19-856820-9.
- [5] **O**.J. Rødseth. On a linear diophantine problem of Frobenius. J. Reine Angewandte Math., 301:171–178, 1978.
- [6] Rosales, J. C. and García-Sánchez, P. A. Numerical semigroups. Developments in Mathematics, 20. Springer, New York, 2009, ISBN 978- 1-4419-0159-0.
- [7] Sabariego, P. and Santos, F. Triple-loop networks with arbitrarily many minimum distance diagrams. Discrete Math., 309(6):1672–1684, 2009.
- [8] E.S. Selmer. On the linear diophantine Problem of Frobenius. J. Reine Angewandte Math., **293/294**(1):1–17, 1977.
- [9] J. J. Sylvester. Mathematical questions and their solutions. Educational Times, 41:21, 1884.