Infinite families of 3-numerical semigroups with arithmetic-like links

Francesc Aguiló-Gost Universitat Politècnica de Catalunya Barcelona

Abstract

Let $S = \langle a, b, N \rangle$ be a numerical semigroup generated by $a, b, N \in \mathbb{N}$ with 1 < a < b < N and gcd(a, b, N) = 1. The *conductor* of S, denoted by c(S) or c(a, b, N), is the minimum element of S such that $c(S) + m \in S$ for all $m \in \mathbb{N} \cup \{0\}$. Some arithmetic-like links between 3-numerical semigroups were remarked by V. Arnold. For instance he gave links of the form

$$\frac{c(13,32,52)}{c(13,33,51)} = \frac{c(9,43,45)}{c(9,42,46)} = \frac{c(5,35,37)}{c(5,34,38)} = 2 \text{ or } \frac{c(4,20,73)}{c(4,19,74)} = 4.$$

In this work several infinite families of 3-numerical semigroups with similar properties are given. These families have been found using a plane geometrical approach, known as L-shaped tile, that can be related to a 3-numerical semigroup. This tile defines a plane tessellation that gives information on the related semigroup.

1 Introduction and known results

A 3-semigroup $S = \langle a, b, N \rangle$ with $a, b, N \in \mathbb{N}$ and 1 < a < b < N, is defined as $\langle a, b, N \rangle = \{m \in \mathbb{N} \mid m = xa + yb + zN; x, y, z \in \mathbb{N}\}$. The values a, b and N are called the generators of S. The set $\overline{S} = \mathbb{N} \setminus S$ is called the set of gaps of S. If the cardinality of \overline{S} is finite, then S is a 3-numerical semigroup. It is well known that S is a 3-numerical semigroup if and only if gcd(a, b, N) = 1. The Frobenius Number of S is the value $\mathfrak{f}(S) = \max \overline{S}$. The conductor of S is the value $\mathfrak{c}(S) = \mathfrak{f}(S) + 1$. Given $m \in S \setminus \{0\}$, the Apéry set of S with respect to m, $\operatorname{Ap}(S,m) = \{s \in S \mid s - m \notin S\}$, contains significant information of S. In particular, it is well known that $\mathfrak{f}(S) = \max \operatorname{Ap}(S,m) - m$. A 3-numerical semigroup $S = \langle a, b, N \rangle$ is minimally generated if the semigroups $\langle a, b \rangle$, $\langle a, N \rangle$ or $\langle b, N \rangle$ are proper subsets of S. You can find recent results on numerical semigroups in the book of Rosales and García-Sánchez [6]. Recent results mainly related on the Frobenius number can be found in the book of Ramírez Alfonsín [4].

The equivalence class of m modulo N will be denoted by $[m]_N$. A weighted double-loop digraph $G(N; a, b; \mathfrak{a}, \mathfrak{b})$ is a directed graph with set of vertices $V(G) = \{[0]_N, ..., [N-1]_N\}$ and set of weighted arcs $A(G) = \{[v]_N \xrightarrow{\mathfrak{a}} [v+a]_N, [v]_N \xrightarrow{\mathfrak{b}} [v+b]_N \mid [v]_N \in V(G)\}$. The idea of using weighted double-loop digraphs as a tool in the study of the Frobenius number of 3-numerical semigroups was already used by Selmer [8] in 1977 and Rødseth [5] in 1978.

Each weighted double-loop digraph G has related several minimum distance diagrams (MDD for short) that periodically tessellates the squared plane. Each vertex $[ia + jb]_N$ of G is associated with the unit square of the plane $(i, j) \in \mathbb{N}^2$, that is the interval $[i, i + 1] \times [j, j + 1] \in \mathbb{R}^2$. An MDD is composed by N unit squares and has a geometrical shape like the (capital) letter 'L' or it is a rectangle (that is considered a degenerated L-shape), see [5, 3] for more details. Sabariego and Santos [7] gave an algebraic characterization of these diagrams in any dimension. Here we include this characterization in two dimensions.

Definition 1 [Sabariego and Santos, [7]] A minimum distance diagram is any map $D : \mathbb{Z}_N \to \mathbb{N}^2$ with the following two properties:

- (a) For every $[m]_N \in \mathbb{Z}_N$, $D([m]_N) = (i, j)$ satisfies $ia + jb \equiv m \pmod{N}$ and $||D([m]_N)||$ is minimum among all the vectors in \mathbb{N}^2 with that property $(||(s,t)|| = s\mathfrak{a} + t\mathfrak{b})$.
- (b) For every $[m]_N$ and for every $(s,t) \in \mathbb{N}^2$ that is coordinate-wise smaller than $D([m]_N)$, we have $(s,t) = D([n]_N)$ for some $[n]_N$ (with $n \equiv sa + tb \pmod{N}$).

An MDD \mathcal{H} is denoted by the lengths of his sides, $\mathcal{H} = L(l, h, w, y)$, with $0 \leq w < l, 0 \leq y < h, \gcd(l, h, w, y) = 1$ and lh - wy = N, as it is depicted in the Figure 1. The vectors \boldsymbol{u} and \boldsymbol{v} define the tessellation of the plane by the L-shaped tile \mathcal{H} . These lengths fulfill the compatibility

F. Aguiló-Gost

Figure 1: Generic MDD tessellating the plane

equations, stated by Fiol, Yebra, Alegre and Valero [3] in 1987, related to the tessellation

$$la - yb \equiv 0 \pmod{N}, \quad -wa + hb \equiv 0 \pmod{N}. \tag{1}$$

Definition 2 [Tessellation related to S] Let $S = \langle a, b, N \rangle$ be a 3-numerical semigroup. A tessellation related to S is a tessellation of the plane generated by an L-shaped MDD of the weighted double-loop digraph G(N; a, b; a, b).

Let D be the map that appears in Definition 1 associated with G = G(N; a, b; a, b), that is $\mathfrak{a} = a$ and $\mathfrak{b} = b$. Then

$$Ap(S, N) = \{D([0]_N), ..., D([N-1]_N)\}\$$

and $D([m]_N)$ can be though as the length of a minimum path from $[0]_N$ to $[m]_N$ in G. Definition 2 gives a metrical view of some properties of S. A geometrical characterization of MDD related to S is needed for practical reasons. This characterization is given in the following result.

Theorem 3 (A., Miralles and Zaragozá, [1]) The L-shaped tile $\mathcal{H} = L(l, h, w, y)$ satisfying (1) with lh - wy = N and gcd(l, h, w, y) = 1 is related to $S = \langle a, b, N \rangle$ iff $la \geq yb$ and $hb \geq wa$ and both equalities are not satisfied.

Figure 2: Minimum distance diagram related to G(8; 3, 7; 3, 7)

Example 4 Consider the weighted double-loop digraph G = G(8; 3, 7; 3, 7) that is depicted in the Figure 2. An L-shaped MDD related to G is $\mathcal{H} = L(5, 2, 2, 1)$. Note that the lengths of \mathcal{H} , (l, h, w, y) = (5, 2, 2, 1), fulfill the conditions gcd(l, h, w, y) = 1 and lh - wy = N, the compatibility equations (1) and Theorem 3. The left-hand side of Figure 2 shows a piece of the first quadrant of the squared plane and how \mathcal{H} tessellates the plane. It also shows the periodic distribution of the equivalence classes modulo 8, where each unit square (i, j) is labelled by the class $[3i + 7j]_8$. The right-hand side of this figure shows the same piece of the first quadrant, however each unit square (i, j) is labelled now by $||D([3i + 7j]_8)|| = 3i + 7j$ (D is the map of Definition 1). Note that the labels inside the grey L-shape (the one that contains the unit square (0, 0)) form the set $Ap(\langle 3, 7, 8 \rangle, 8)$. In particular, we have $\mathfrak{f}(\langle 3, 7, 8 \rangle) = 13 - 8 = 5$.

V. Arnold [2] in 2009 commented that his 1999 calculations of Frobenius numbers provided hundreds of empirical properties. He remarked some strange arithmetical facts like

$$\frac{c(13,32,52)}{c(13,33,51)} = \frac{c(9,43,45)}{c(9,42,46)} = \frac{c(5,35,37)}{c(5,34,38)} = 2, \quad \frac{c(4,20,73)}{c(4,19,74)} = 4.$$
(2)

It was shown in [1] that if $\mathcal{H} = L(l, h, w, y)$ is related to $S = \langle a, b, N \rangle$, then the Frobenius number is

$$\mathfrak{f}(\langle a, b, N \rangle) = \max\{(l-1)a + (h-y-1)b, (l-w-1)a + (h-1)b\} - N. (3)$$

Therefore, from the identities c(S) = f(S) + 1 and (3), arithmetic-like links between conductors as those appearing in (2) can be though as geometricallike relations between related L-shaped MDD tiles. When the semigroup is 2-minimally generated, that is $S = \langle a, b \rangle$ with gcd(a, b) = 1, it is well known that his Frobenius number is

$$\mathfrak{f}(\langle a,b\rangle) = ab - a - b. \tag{4}$$

Although this result was published by Sylvester [9] in 1884, it seems to be true that (4) was given first by Frobenius in his lectures. Therefore, the conductor is given by the expression $c(a, b) = f(\langle a, b \rangle) + 1 = (a - 1)(b - 1)$.

In this work, several infinite families of pairs of 3-numerical semigroups are given such that each pair fulfills a (2)-like relation.

2 Computer assisted numerical remarks

Properties in (2) suggest looking for semigroups like

$$\frac{\mathbf{c}(\alpha, n, m)}{\mathbf{c}(\alpha, n-1, m+1)} = k,$$
(5)

where $\langle \alpha, n, m \rangle$ and $\langle \alpha, n-1, m+1 \rangle$ are 2 and 3 minimally generated numerical semigroups respectively, for different natural numbers n and m and fixed values of α and k.

α k	1	2	3
4	11	0	0
5	0	109	0
6	4	0	1
7	0	55	6
8	4	0	1
9	5	13	3
10	2	0	1

Table 1: Cardinalities of some sets $P(\alpha, k, 100)$

Let us consider the set

$$P(\alpha, k, \ell) = \{ \langle \alpha, n, m \rangle \mid \frac{\mathbf{c}(\alpha, n, m)}{\mathbf{c}(\alpha, n-1, m+1)} = k, \ m \le \ell \}$$

where $\langle \alpha, n, m \rangle$ and $\langle \alpha, n-1, m+1 \rangle$ are 2 and 3 minimally generated. A computer search reveals the cardinality of some sets $P(\alpha, k, 100)$. These cardinalities are included in Table 1.

Let us consider now the set $Q(\alpha, k, \ell)$, defined as $P(\alpha, k, \ell)$ but now both semigroups $\langle \alpha, n, m \rangle$ and $\langle \alpha, n - 1, m + 1 \rangle$ are 3-minimally generated. The cardinalities of $Q(\alpha, 1, 100)$, with $\alpha = 4, ..., 10$, are 276, 5, 0, 15, 0, 218 and 4, respectively. We have now $Q(\alpha, k, 100) = \emptyset$ for $(\alpha, k) \in \{4, ..., 10\} \times \{2, 3\}$. Let us denote the sets

$$P(\alpha,k) = \bigcup_{\ell \geq \alpha+2} P(\alpha,k,\ell) \text{ and } Q(\alpha,k) = \bigcup_{\ell \geq \alpha+2} Q(\alpha,k,\ell)$$

We use the numerical data of this section to search infinite families of pairs of semigroups belonging to $P(\alpha, k)$ or $Q(\alpha, k)$, for some values of α and k.

3 Infinite families

In this section we use the L-shaped tile technique included in Section 1 for finding infinite families of 3-numerical semigroups that belong to P(4, 1), P(7, 3) and Q(9, 1).

Theorem 5 Let us consider the 3-numerical semigroups $S_t = \langle 4, 4t + 3, 8t + 6 \rangle$ for $t \ge 1$. Then $\{S_t\}_{t\ge 1} \subset P(4, 1)$.

Proof: Let us consider S_t and $T_t = \langle 4, 4t + 2, 8t + 7 \rangle$. First, we check that S_t and T_t are numerical semigroups for $t \ge 1$, that is gcd(4, 4t + 3, 8t + 6) = gcd(4, 4t + 2, 8t + 7) = 1,

$$gcd(4, 4t + 3, 8t + 6) = gcd(4, 3, 6) = gcd(3, 2) = 1,$$

$$gcd(4, 4t + 2, 8t + 7) = gcd(4, 2, 7) = gcd(2, 7) = 1.$$

Second, we have to see that S_t and T_t are 2 and 3 minimally generated, respectively. To this end, note that $8t + 6 = 2 \times (4t + 3)$ and so $S_t = \langle 4, 4t + 3, 8t + 6 \rangle = \langle 4, 4t + 3 \rangle$, that is a 2-minimally generated semigroup because 4t + 3 can not be a multiple of 4. Consider now $T_t = \langle 4, 4t + 2, 8t + 7 \rangle$, we have that neither 4t + 2 nor 4t + 7 are multiples of 4; also 8t + 7 is not a multiple of 4t + 2. Let us see also that $8t + 7 \notin \langle 4, 4t + 2 \rangle$, that is $8t + 7 \neq c_t \times 4 + d_t \times (4t + 2)$ with $c_t, d_t \in \mathbb{N}$, for $t \geq 1$; if so, the even number $c_t \times 4 + d_t \times (4t + 2)$ would equalize the odd one 8t + 7, a contradiction.

Third, we have to see the identity $c(S_t) = c(T_t)$, for all $t \ge 1$. The conductor $c(S_t)$ is easy to compute because S_t is 2-generated and we can apply (4), that is c(a, b) = f(a, b)+1 = (a-1)(b-1). So, $c(S_t) = (4-1)(4t+3-1) = 12t + 6$. To compute the conductor $c(T_t)$, we use the expression (3). To this end, we have to find the related sequence of L-shaped minimum distance diagrams.

Let us see that T_t has related the L-shaped MDD $\mathcal{H}_t = L(5t+4, 2, 2t+1, 1)$, for all $t \geq 1$. Obviously gcd(5t+4, 2, 2t+1, 1) = 1. Set $N_t = 8t+7$, $a_t = 4$, $b_t = 4t+2$, $l_t = 5t+4$, $h_t = 2$, $w_t = 2t+1$ and $y_t = 1$. It is easily checked that $l_th_t - w_ty_t = (5t+4) \times 2 - (2t+1) = N_t$ and the compatibility equations (1)

 $l_t a_t - y_t b_t \equiv 0 \pmod{N_t} \Leftrightarrow 20t + 16 - 4t - 2 = 16t + 14 \equiv 0 \pmod{N_t},$ $h_t b_t - w_t a_t \equiv 0 \pmod{N_t} \Leftrightarrow 8t + 4 - 8t - 4 = 0 \equiv 0 \pmod{N_t}.$

 \mathcal{H}_t is also an MDD because Theorem 3 is fulfilled, that is $l_t a_t > y_t b_t$ and $h_t b_t = w_t a_t$, for all $t \ge 1$. Therefore \mathcal{H}_t is related to T_t and we can use the expression (3) to compute the conductor $c(T_t)$

$$c(T_t) = f(T_t) + 1 = \max\{(5t+3) \times 4 + 0, (3t+2) \times 4 + 4t + 3\} - 8t - 7 + 1 = 12t + 6.$$

Hence, $c(S_t) = c(T_t)$ as it is stated. \Box

Theorem 6 Consider the 3-numerical semigroups $S_t = \langle 7, 7t + 7, 14t + 9 \rangle$ for $t \ge 1$. Then $\{S_t\}_{t>1} \subset P(7,3)$.

Proof: Consider S_t and $T_t = \langle 7, 7t+6, 14t+10 \rangle$. We have gcd(7, 7t+7, 14t+9) = gcd(7, 7t+6, 14t+10) = 1, so S_t and T_t are numerical semigroups. The semigroup S_t is minimally 2-generated and $S_t = \langle 7, 14t+9 \rangle$, so his conductor is $c(S_t) = (7-1)(14t+9-1) = 84t+48$.

Let us see that T_t is 3-minimally generated. We have $7 \not/ 7t + 6$, $7 \not/ 14t + 10$ and $7t + 6 \not/ 14t + 10$, for all $t \ge 1$. We have to see now $14t + 10 \notin \langle 7, 7t + 6 \rangle$. If $7 \times m_t + (7t + 6) \times n_t = 14t + 10$ with $m_t, n_t \in \mathbb{N}$, then $0 \le n_t \le 1$ (if $n_t \ge 2$ then $n_t \times (7t + 6) > 14t + 10$). If $n_t = 0$, the identity can not be satisfied, hence $n_t = 1$. So the equality turns to be $7m_t = 7t + 4$ that has no solution for $m_t \in \mathbb{N}$ because $7m_t \equiv 0 \pmod{7}$ and $7t + 4 \equiv 4 \pmod{7}$. Therefore, the semigroup T_t is 3-minimally generated. The semigroup T_t has related the L-shaped MDD $\mathcal{H}_t = L(5t+4, 4, 2t+2, 3)$, that is gcd(5t+4, 4, 2t+2, 3) = 1, his area is 14t + 10 and \mathcal{H}_t fulfills the compatibility equations (1) and Theorem 3. Therefore, by using (3), his conductor is

 $c(T_t) = \max\{(5t+3) \times 7+0, (3t+1) \times 7+3 \times (7t+6)\} - 14t - 10 + 1 = 28t + 16.$ So $c(S_t) = 3c(T_t)$ as it is stated. \Box

Theorem 7 Consider the 3-numerical semigroups $S_t = \langle 9, 9t + 7, 9t + 12 \rangle$ for $t \ge 1$. Then $\{S_t\}_{t>1} \subset Q(9, 1)$.

Proof: Consider S_t ad $T_t = \langle 9, 9t+6, 9t+13 \rangle$. From the identities gcd(9, 9t+7, 9t+12) = gcd(9, 9t+6, 9t+13) = 1, the semigroups S_t and T_t are numerical semigroups. Let us see that both semigroups are 3-minimally generated.

From 9 $\not|9t+7, 9t+6, 9t+12, 9t+13$ and 9t+7 $\not|9t+12$ and 9t+6 $\not|9t+13$, we have to see $9t+12 \notin \langle 9, 9t+7 \rangle$ and $9t+13 \notin \langle 9, 9t+6 \rangle$. Let us assume that $9 \times m_t + (9t+7) \times n_t = 9t+12$ with $m_t, n_t \in \mathbb{N}$ and $0 \le n_t \le 1$ (if $n_t \ge 2$ then $n_t \times (9t+7) > 9t+12$). Then $n_t = 1$ because 9 $\not|9t+12$ and so we have the identity $9m_t = 5$ for $m_t \in \mathbb{N}$, that is a contradiction. A similar argument proves that $9t+13 \notin \langle 9, 9t+6 \rangle$.

It can be checked that S_t and T_t have related the L-shaped minimum distance diagrams L(3t+4, 3, 2t+1, 0) and L(4t+5, 3, 3t+2, 1), respectively. Therefore, from (3), we have $c(S_t) = c(T_t) = 36t + 30$. \Box

Acknowledgement

Work supported by the Comisión Interministerial de Ciencia y Tecnología MCYT ref. MTM2008-06620-C03-01/MTM and the Catalan Research Council under the projects DURSI 2005SGR00256 and 2009SGR1387.

References

- F. Aguiló, A. Miralles and M. Zaragozá. Using Double-Loop digraphs for solving Frobenius' Problems. *ENDM*, 24:17–24, 2006.
- [2] V.I. Arnold. Geometry of continued fractions associated with Frobenius numbers. Funct. Anal. Other Math., 2:129–138, 2009.

- [3] M.A. Fiol, J.L.A. Yebra, I. Alegre and M. Valero. A discrete optimization problem in local networks and data alignment. *IEEE Trans. Comput.*, C-36:702–713, 1987.
- [4] J.L. Ramírez Alfonsín. The Diophantine Frobenius Problem. Oxford Univ. Press, Oxford, 2005, ISBN 978-0-19-856820-9.
- [5] O.J. Rødseth. On a linear diophantine problem of Frobenius. J. Reine Angewandte Math., 301:171–178, 1978.
- [6] Rosales, J. C. and García-Sánchez, P. A. Numerical semigroups. Developments in Mathematics, 20. Springer, New York, 2009, ISBN 978-1-4419-0159-0.
- [7] Sabariego, P. and Santos, F. Triple-loop networks with arbitrarily many minimum distance diagrams. *Discrete Math.*, 309(6):1672–1684, 2009.
- [8] E.S. Selmer. On the linear diophantine Problem of Frobenius. J. Reine Angewandte Math., 293/294(1):1–17, 1977.
- [9] J. J. Sylvester. Mathematical questions and their solutions. *Educa*tional Times, 41:21, 1884.