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Abstract

A (v, b, r, k) combinatorial configuration can be defined as a con-
nected, (r, k)-biregular bipartite graph with v vertices on one
side and b vertices on the other and with no cycle of length
4. Combinatorial configurations have become very important
for some cryptographic applications to sensor networks and to
peer-to-peer communities. Configurable tuples are those tuples
(v, b, r, k) for which a (v, b, r, k) combinatorial configuration ex-
ists. It is proved in this work that the set of configurable tuples
with fixed r and k has the structure of a numerical semigroup.
The semigroup is completely described whenever r = 2 or r = 3.
For the remaining cases some bounds are given on the multiplic-
ity and the conductor of the numerical semigroup. This leads to
some concluding results on the existence of configurable tuples.

1 Introduction

Combinatorial configurations are a particular case of so-called incidence
structures which have been recently used for defining peer-to-peer commu-
nities for preserving privacy of users in front of search engines [2, 3]. Other
applications of configurations related to sensor networks can be found in
[12].

A (v, b, r, k)-configuration is a set of v “points” P = {p1, . . . , pv} and a
set of b “lines” L = {l1, . . . , lb}, such that there are k points on each line,
through each point pass r lines and no two points are joined by more than
one line. There is a natural bijection between combinatorial configurations
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and connected bipartite biregular graphs with girth larger than 5. Observe
that since these graphs are bipartite, the girth is always even and therefore
larger than or equal to 6. In the present work we will treat configurations
as such graphs.

One problem when using configurations is the limited number of known
configurations, specially for large v and b. We refer the reader to [7, 6] for
previously known results on the existence of combinatorial configurations.

In [3] larger configurations are constructed by combining smaller config-
urations; a (v, b, r, k)-configuration is obtained with parameters of the form
b = b′ + b′′ and v = v′ + v′′, from existing configurations with parameters
(v′, b′, r, k) and (v′′, b′′, r, k). In this article we interpret this result as giving
structure to the set of parameters of existing configurations.

A numerical semigroup is a subset of N0 that contains 0, is closed under
addition and has finite complement in N0.

Fix r > 1, k > 1. We will show that the set of all tuples (v, b, r, k) such
that there exists a (v, b, r, k) configuration has the structure of a numerical
semigroup. This semigroup can be explicitly described if r = 2 or r = 3.
For the general case we give bounds on the multiplicity and the conductor of
the numerical semigroup. The new results on the existence of configurable
tuples deduced from this work are summarized in Theorem 30.

2 The semigroup of combinatorial configurations

2.1 Previous results on the existence of configurations

Definition 1 An incidence structure is a triple S = (P,L,I), where P is a
set of “points”, L a set of “lines” and I ⊂ (P×L)∪ (L×P) is a symmetric
incidence relation.

In this article, no geometric meaning is attached to the terms point and
line.

Definition 2 A (v, b, r, k)-configuration is an incidence structure (P,L,I),
which has

• v points,

• b lines,

• r lines through any point,
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• k points on any line,

and in which any two different points are incident with at most one line,
or equivalently, any two different lines are incident with at most one point.

Two general references on geometric and combinatorial configurations
are [7, 6].

In the following we will suppose that v ≤ b. This can be done without
loss of generality, since if v > b we can take the dual configuration.

Proposition 3 The conditions vr = bk and v ≥ r(k− 1)+1 are necessary
for a non-trivial configuration (v, b, r, k) to exist [6].

For some values of r and k, more is known.

Theorem 4 For k = 3 the necessary conditions of Proposition 3 are suffi-
cient [5].

There has not been found any example on parameters v, b, r, such that a
(v, b, r, 4)−configuration fails to exist as long as the parameters satisfy the
necessary conditions. Regarding symmetric configurations, that is, vk−con-
figurations, for which r = k and v = b, it is known that for r = k = 4 they
all exist for v ≥ 13.

The necessary conditions are not always sufficient. One example is
k = 5, since there is no configuration 225.

For symmetric configurations, existence for some parameters are listed
in Table 1, also from [6] and [4]. We see there that also for small values
of k and v the existence of vk−configurations is sometimes unknown, for
example it is not known whether or not there exists a 336−configuration.

Results on non-symmetric configurations, generalizing the symmetric
configurations, are more sparse, at least for large parameters. The state of
the art can be found in [7] which actually treats geometric configurations,
but also covers results on combinatorial configurations.

One interesting result in our context is the next theorem by Gropp. It
guarantees the existence of large configurations and, in fact, the existence
of any configuration satisfying the necessary conditions with sufficiently
large v (and so b). Its limitation is the restriction on the choice of the
parameters r, k.

Theorem 5 For given k and r with r = tk there is a v0 depending on k,
t such that there is a (v, b, r, k)-configuration for all v ≥ v0 satisfying the
necessary conditions from Proposition 3.
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k = 5 215 − 235 245 255 265 275 285 295 305 315

6 316 − ? ? 356 366 376 386 396 406 416

7 − − 457 ? ? 487 497 507 517 527 537

Table 1: Existence of configurations vk for 5 ≤ k ≤ 7 and d ≤ 10. vk

means configuration exists, − means configuration does not exist, ? means
existence is unknown. The notation vk−configuration is used to denote a
(v, v, k, k)−configuration.

2.2 The set of (r, k)−configurable tuples

Definition 6 We say that the tuple (v, b, r, k) is configurable if a (v, b, r, k)-
configuration exists.

As we saw in Proposition 3, if (v, b, r, k) is configurable then vr = bk
and consequently there exists d such that v = d k

gcd(r,k) and b = d r
gcd(r,k) .

So, to each configurable tuple (v, b, r, k) we can assign an integer d. Two
different configurable tuples (v, b, r, k) will have different integers d. Let
us call Dr,k the set of all possible integers d corresponding to configurable
tuples (v, b, r, k). That is,

Dr,k =

{
d ∈ N0 :

(
d

k

gcd(r, k)
, d

r

gcd(r, k)
, r, k

)
is configurable

}
.

Our aim is to study Dr,k. We will consider the empty graph to be
also a configuration and consequently 0 ∈ Dr,k for all pair r, k. Obviously
Dr,k = Dk,r and D1,k = {0, k}. First we will give a complete description of
D2,k and a complete description of D3,k and then we will study the general
case.

2.3 The case r = 2

There is a natural bijection between (v, b, 2, k)-configurations and k-regular
connected graphs with b vertices and v edges. Two vertices in the graph
share an edge if and only if the corresponding nodes in the configuration
share a neighbor and viceversa. The following well-known lemma is the
key result for describing D2,k. We include the proof in order to make the
article more self-contained.
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Figure 1: Construction of a connected 4-regular graph with 10 vertices

Lemma 7 Let k be an even positive integer. A connected k-regular graph
with b vertices exists if and only if b ≥ k + 1.

Proof: By definition, any k-regular graph must have a number of vertices
at least k + 1.

Conversely, suppose b ≥ k+1. Consider a set of vertices x1, . . . , xb. Put
an edge between xi and xj, with i ≤ j, if j − i ≤ k/2 or i + b − j ≤ k/2.
This gives a connected k-regular graph with b vertices. �

The construction in this last proof is illustrated in Figure 1.
From the natural bijection between (v, b, 2, k)-configurations and k-

regular connected graphs with b vertices and v edges, we get the follow-
ing corollary. We write 〈a1, . . . , an〉 to denote the numerical semigroup
generated by a1, . . . , an.

Corollary 8 If k is an even positive integer then

D2,k = 〈k + 1, k + 2, . . . , 2k + 1〉 .

Lemma 9 Let k be an odd positive integer. A connected k-regular graph
with b vertices exists if and only if b is even and b ≥ k + 1.

Proof: By definition, any k-regular graph must have a number of vertices
at least k + 1. Now, since the number of edges is kb/2 this means that kb
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Figure 2: Construction of a connected 5-regular graph with 10 vertices

must be even and since k is odd b must be even. Conversely, suppose b
is even and b ≥ k + 1. Consider a set of vertices x1, . . . , xb. Put an edge
between xi and xj, with i ≤ j, if j − i ≤ (k− 1)/2 or i + b− j ≤ (k − 1)/2.
Put also edges between xi and xi+b/2 for i from 1 to b/2. This gives a
connected k-regular graph with b vertices. �

The construction in this last proof is illustrated in Figure 2.

From the natural bijection between (v, b, 2, k)-configurations and k-
regular connected graphs with b vertices and v edges, we now get the
following corollary.

Corollary 10 If k is an odd positive integer then

D2,k =

〈
k + 1

2
,
k + 1

2
+ 1,

k + 1

2
+ 2, . . . , k

〉
.

2.4 The case r = 3

Because of Theorem 4, the case r = 3 is much simpler. It is stated in the
next theorem.
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Theorem 11 Suppose k > 1 then

D3,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0, 2k + 1, 2k + 2, . . . } if k ≡ 0mod 3

{0, 2k+1
3 , 2k+1

3 + 1, 2k+1
3 + 2, . . . } if k ≡ 1mod 3

{0, 2k+2
3 , 2k+2

3 + 1, 2k+2
3 + 2, . . . } if k ≡ 2mod 3

Proof: By Theorem 4 (by swapping the role of b and v) we know that
any tuple (v, b, 3, k) with b = 0 is configurable if and only if 3v = bk and
b ≥ k(3−1)+1 = 2k+1. In particular, the non-zero values b for which there
exists a configurable tuple (v, b, 3, k) are exactly those integers b ≥ 2k + 1
such that bk

3 is an integer.

If k ≡ 0mod 3 then the only condition is b ≥ 2k + 1 which results in

d =
b gcd(3, k)

3
=

3b

3
= b ≥ 2k + 1

and this proves the result in this case.

Otherwise, we need b ≥ 2k + 1 and b be a multiple of 3. If k ≡ 1mod 3
this is equivalent to b ∈ {2k+1, 2k+4, 2k+7, . . . } and so d = b gcd(3,k)

3 = b
3

is in {
2k + 1

3
,
2k + 1

3
+ 1,

2k + 1

3
+ 2, . . .

}
.

If k ≡ 2mod 3 this is equivalent to b ∈ {2k + 2, 2k + 5, 2k + 8, . . . } and

so d = b gcd(3,k)
3 = b

3 is in{
2k + 2

3
,
2k + 2

3
+ 1,

2k + 2

3
+ 2, . . .

}
. �

2.5 The general case

We want to prove that Dr,k ⊂ N0 is a numerical semigroup. The following
results on semigroups will be helpful.

Proposition 12 A set of integers generate a numerical semigroup if and
only if they are coprime.
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The proof of this proposition can be found in [13].

Proposition 12 says that in order to prove that a set is a numerical
semigroup it is enough to prove that the set is a submonoid of the natural
numbers with coprime elements. This means that we need to prove that

• 0 ∈ Dr,k,

• Dr,k is closed under addition,

• at least two elements (and therefore all of the elements) of Dr,k are
coprime.

The two first conditions ensure that the subset Dr,k of the natural numbers
is a monoid. The operation of the monoid is addition. The last condition
ensures that the monoid is a numerical semigroup. Since the case r ≤ 3
has been proved earlier, in this section we will suppose that r, k > 3.

The set of configurable tuples is a submonoid of the natural num-
bers

We first observe that since we consider the empty configuration a configu-
ration, 0 ∈ Dr,k.

We will now prove that the set Dr,k is closed under addition.

Lemma 13 If (v, b, r, k) and (v′, b′, r, k) are configurable tuples, so is (v +
v′, b + b′, r, k).

Proof: Suppose we have a (v, b, r, k)-configuration with vertices {x1, . . . , xv},
{y1, . . . , yb} and a (v′, b′, r, k)-configuration with vertices {x′1, . . . , x′v′} and
{y′1, . . . , y′b′}. Consider the graph with vertices {x1, . . . , xv}∪ {x′1, . . . , x′v′},
{y1, . . . , yb} ∪ {y′1, . . . , y′b′} and all the edges in the original configurations.
We can assume without loss of generality that the edges x1y1, xvyb,x

′
1y
′
1,

x′v′y
′
b′ belong to the original configurations.

Swap the edges xvyb and x′1y
′
1 for xvy

′
1 and x′1yb. This gives a (v+v′, b+

b′, r, k) configuration [3]. An example of this construction is illustrated in
Figure 3. �

Since

d = v gcd(r, k)/k = b gcd(r, k)/r
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Figure 3: Construction of a (v+v′, b+b′, r, k) configuration from a (v, b, r, k)
configuration and a (v′, b′, r, k) configuration.

and

d′ = v′ gcd(r, k)/k = b′ gcd(r, k)/r

there exists a

d′′ = (v + v′) gcd(r, k)/k = (b + b′) gcd(r, k)/r = d + d′.

Hence if d, d′ ∈ Dr,k, then d + d′ ∈ Dr,k, or in other words Dr,k ⊂ N0 is
closed under addition. Together with the fact that 0 ∈ Dr,k we get the
result we were looking for.

Proposition 14 Dr,k is a submonoid of the natural numbers.
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The submonoid contains two coprime elements

We start by proving that given any pair of natural numbers (r, k), there
exists at least one element in Dr,k. We do this by constructing a (v, b, r, k)-
configuration.

For the construction we need a graph of girth at least 5. In [10] a
family of small graphs of girth 5 is constructed, which can be used for our
purposes. The existence of this graph is given in the following theorem.

Theorem 15 Let q ≥ 13 be an odd prime power and let n ≤ q + 3. Then
there exists a n regular graph with girth 5 and with 2(n − 2)(q − 1) ver-
tices [10, Theorem 17].

There are other constructions of small graphs for other (larger) girths, such
as the ones in [1]. For our purposes taking girth at least 5 is enough.

Now we can construct the connected, r, k biregular graph of girth at
least 5 which gives us the (v, b, r, k) configuration we are looking for.

Proposition 16 For any pair of integers r > 1, k > 1, there exists at least
one non-zero integer in Dr,k.

Proof: The cases in which r ≤ 3 or k ≤ 3 have already been proved. We
can therefore suppose that r > 3 and k > 3.

Consider the complete bipartite graph Kr,k, with edge set E and vertex
set V . We consider one spanning tree Tr,k of Kr,k. Then Tr,k has vertex set
V , but edge set E′ ⊂ E with |E′| = r + k − 1.

The number of edges in Kr,k outside Tr,k, that is in E − E′, is n =
rk − r − k + 1. Since r, k > 3 we have n ≥ 3.

From Theorem 15 we know that there exists (at least) a n-regular graph
of girth (at least) 5. We take one of these graphs and call it G.

Now we will construct a bipartite (r, k)−biregular graph of girth at
least 5, using G. Associate to each of the vertices of G a copy of the
complete bipartite graph Kr,k. For all edges ab in G, consider its end
vertices a and b and let A and B be the copies of Kr,k associated to these
vertices. Also let TA and TB be the corresponding spanning trees in A and
B. Now choose one edge xAyA in A, but not in TA and one edge xByB in
B, but not in TB and swap them so that we instead get two edges xAyB

and xByA. Since G is n−regular and n is the number of edges in Kr,k that
are not in its spanning tree, we can choose different edges xAyA and xByB

for every edge in G.
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In this way we get a bipartite, (r, k)−biregular graph of girth at least 5,
from a n−regular graph of girth at least 5, with n = rk − r − k + 1.

The resulting graph may not be connected. If this is the case, we can
proceed in two ways.

• We can choose any of the connected subgraphs, and consider that
graph to be the incidence graph of the configuration we want to con-
struct. If we choose the smallest connected subgraph, then we min-
imize the size of the smallest known (v, b, r, k)-configuration proved
to exist in this manner;

• We can use the ’addition’ law from Lemma 13 to connect all the
connected subgraphs.

In any case we get a connected, bipartite, (r, k)−biregular graph of girth
at least 6, hence the incidence graph of a (v, b, r, k)-configuration. �

We will now construct a second element of Dr,k, also different from 0,
such that the element we already have and the new one are coprime. In
order to do so we need the following lemma.

Lemma 17 Suppose we have a (v, b, r, k)-configuration with r ≥ 3. There
exist three edges in the configuration such that the six ends are all different.

Proof: It is easy to prove, by the property that no cycle of length 4 exists,
that there exists a path with four edges with the five ends being different.
Three of these ends will be in one partition of the graph while the other
two will be in the other partition. Take the vertex at the end of the path.
It must be one of the three in the same partition. Since its degree is at
least 3, then it will have one neighbor not in the path. So, by adding the
edge from the end of the path to this additional vertex, we obtain a new
path with 5 edges with all its vertices being different. By taking the first,
third, and fifth edges of this new path we obtain the result. �

This lemma tells us that the vertices {x1, . . . , xv}, {y1, . . . , yb} in a
(v, b, r, k)-configuration with r ≥ 3 can be arranged in a way such that the
edges x1y1, x2y2 and xvyb belong to the configuration.

We are now ready to prove the existence of two coprime elements of
Dr,k.
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Proposition 18 Dr,k contains two elements m = 0 and sm + 1, with s =
rk/ gcd(r, k), so that the two are coprime.

Proof: Because of the results in the previous sections we can assume that
r and k are larger than 3. By Proposition 16 and since Dr,k ⊆ N0, there is
a minimal non-zero element m in Dr,k. Let us call

v = mk/ gcd(r, k)

and

b = mr/ gcd(r, k).

Select a (v, b, r, k) configuration. Take

s = rk/ gcd(r, k)

copies of this configuration. Let us call the vertices of the ith copy

x
(i)
1 , . . . , x

(i)
v , y

(i)
1 , . . . , y

(i)
b .

By Lemma 17 we can assume that

x
(i)
1 y

(i)
1 , x

(i)
2 y

(i)
2 and x

(i)
v y

(i)
b

belong to the ith copy. Consider k/ gcd(r, k) further vertices

x′1, . . . , x
′
k/ gcd(r,k)

and r/ gcd(r, k) further vertices

y′1, . . . , y
′
r/ gcd(r,k).

Now perform the following changes to the edge set of the graph defined
by the union of all parts previously mentioned. It may be clarifying to
contemplate Figure 4. In the figure the edges to be removed are dashed,
while the edges to add are thick lines.

• For all 2 ≤ i ≤ s replace the edges

x
(i)
v y

(i)
b and x

(i−1)
1 y

(i−1)
1

by
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x
(i)
v y

(i−1)
1 and x

(i−1)
1 y

(i)
b .

• Also, remove the edges x
(i)
2 y

(i)
2 for all 2 ≤ i ≤ s.

• Add the edges

x′1y
(1)
2 , x′1y

(2)
2 , . . . , x′1y

(r)
2 ,

x′2y
(r+1)
2 , x′2y

(r+2)
2 , . . . , x′2y

(2r)
2 ,

...

x′k/ gcd(r,k)y
(s−r+1)
2 , . . . , x′k/ gcd(r,k)y

(s)
2

and

x
(1)
2 y′1, x

(2)
2 y′1, . . . , x

(k)
2 y′1,

x
(k+1)
2 y′2, x

(k+2)
2 y′2, . . . , x

(2k)
2 y′2,

...

x
(s−k+1)
2 y′r/ gcd(r,k), . . . , x

(s)
2 y′r/ gcd(r,k).

As can be verified, the construction gives a new configuration with param-
eters

(v′, b′, r, k) = (sv + k/ gcd(r, k), sb + r/ gcd(r, k), r, k)

= (smk/ gcd(r, k) + k/ gcd(r, k),

smr/ gcd(r, k) + r/ gcd(r, k), r, k)

= ((sm + 1)k/ gcd(r, k), (sm + 1)r/ gcd(r, k), r, k)

and so sm + 1 ∈ Dr,k. �

From Proposition 18 we deduce that Dr,k contains two coprime ele-
ments, so that they generate a numerical semigroup and this semigroup is
contained in Dr,k. So the complement of Dr,k in N0 is finite and Dr,k is a
numerical semigroup.

Theorem 19 For every pair of integers r, k ≥ 2, Dr,k is a numerical semi-
group.
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(2)
1

x
(2)
2

...

x
(2)
v

y
(2)
1

y
(2)
2

...

y
(2)
b

...

x
(s)
1

x
(s)
2

...

x
(s)
v

y
(s)
1

y
(s)
2

...

y
(s)
b

x
′

1

x
′

2

...

x
′

α

y
′

1

y
′

2

...

y
′

β

x
(s)
v y

(s)
b

x
(1)
1 y

(1)
1

Figure 4: Construction of a (sv + k/ gcd(r, k), sb + r/ gcd(r, k), r, k)-
configuration from s (v, b, r, k) configurations and α + β = k/ gcd(r, k) +
r/ gcd(r, k) extra vertices.
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We call an element of the complement of a numerical semigroup a gap.
Observe that D2,k as well as D3,k for k > 1 are ordinary, that is, all their
gaps are in a row. However, there are pairs r, k for which Dr,k is not
ordinary. For example the multiplicity of D5,5 is 21, but 22 is a gap, as
can be deduced from Table 1. Also, while the multiplicity of D6,6 is 31, we
have that 33 ∈ D6,6 (see [11]).

3 Bounds on configurable tuples

3.1 A lower bound on the multiplicity of the numerical semi-
group Dr,k

The multiplicity of a numerical semigroup is its smallest non-zero element.
Observe that bounds on the multiplicity are bounds regarding the size of
the smallest configuration for a given pair of r and k.

For the cases r = 2 and r = 3, since we know the actual structure of
the semigroup we can precise the multiplicity exactly.

Proposition 20 For k > 1 the multiplicity of D2,k is{
k + 1 if k is even
k+1

2 if k is odd

For k > 1 the multiplicity of D3,k is⎧⎨⎩
2k + 1 if k ≡ 0mod 3
2k+1

3 if k ≡ 1mod 3
2k+2

3 if k ≡ 2mod 3

The proof follows from Corollary 8, Corollary 10, and Theorem 11.

In the next lemma we give a lower bound for the multiplicity of Dr,k.
It is a consequence of Proposition 3.

Lemma 21 If d ∈ Dr,k and d = 0 then d ≥ (rk − r + 1)gcd(r,k)
k and, by

symmetry, d ≥ (rk − k + 1)gcd(r,k)
r .

For certain r = k, the bound is tight. An example is seen in the next
proposition.
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Proposition 22 For r = k = q + 1 with q a power of a prime, the multi-
plicity of the numerical semigroup Dr,k is r2 − r + 1.

Proof: There exists a finite projective plane for every power of a prime q.
The projective plane is a (q2 + q + 1, q2 + q + 1, q + 1, q + 1)−configuration.
We have that

q2 + q + 1 = (r − 1)2 + r − 1 + 1 = r2 − r + 1. �

3.2 An upper bound on the multiplicity of the numerical
semigroup Dr,k

In Proposition 16 we proved that Dr,k contains at least one element for every
pair (r, k). Counting the points and lines of the configuration constructed
in the proof of Proposition 16 we get an upper bound on the multiplicity
of Dr,k.

The graph G from the proof of Proposition 16 has 2(n−2)(q−1) vertices,
for an odd prime power q ≥ n−3, q ≥ 13 and n = rk−r−k+1. In the final
graph, constructed from G, every vertex of G is replaced by the vertices of
the r, k−complete graph. Therefore in the final graph, the total number of
vertices is 2(n − 2)(q − 1)(r + k) and the numbers of points and lines in
the corresponding configuration are 2(n − 2)(q − 1)r and 2(n − 2)(q − 1)k
respectively.

A bound on the existence of a prime power

In order to get an exact bound we need a bound on the existence of the
prime power q. However, we will not care about prime powers of higher
exponents and instead use a famous bound on the existence of primes. The
density of prime powers of exponent greater than 1 is small compared with
the density of primes.

Proposition 23 The number of squares, cubes, . . . of primes up to x does
not exceed

x
1
2 + x

1
3 + x

1
4 + · · · = O(x

1
2 ln x).
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When it comes to prime numbers, their density is described in the ’Prime
number theorem’.

Theorem 24 Prime number theorem Let π(x) be the function counting the
number of prime numbers up to x. Then we have

π(x) ∼ x
ln x

The function x
1
2 ln x grows much slower than a function containing x like

the latter, so that the function counting all prime powers, including those of
exponent 1, behaves asymptotically like the prime counting function. For
more details on this see [9].

Therefore, when we look for a power of a prime ≥ n − 3, we are more
likely to find a prime p than a power of a prime pm, and it is enough to
apply the Bertrand’s Postulate in order to get a good bound.

Theorem 25 Bertrand’s Postulate
If m > 3 is an integer, then there always exists at least one prime

number p with m < p < 2m− 2.

Using this, since we want our prime to be greater or equal to n− 3, we get
that there exists at least one prime number in the interval

[n− 3, 2(n − 4)− 3] = [n− 3, 2n − 11].

Therefore we get the following upper bound on the multiplicity of Dr,k.

Proposition 26 For r, k > 3 the multiplicity m of Dr,k satisfies

m ≤ 2(rk − r − k − 1)(2(rk − r − k)− 10) gcd(r, k).

Proof: Since r, k > 3, we have n = rk − r − k + 1 > 7 and so n − 4 > 3.
Because of the construction of the configuration in Proposition 16 and
Bertrand’s postulate, we get the following bound on the number of points
in the configuration.

v = 2(n− 2)(q − 1)k

≤ 2(n− 2)(2n − 11− 1)k

= 2(rk − r − k − 1)(2(rk − r − k)− 10)k
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We have
v = d k

gcd(r,k)

and therefore

d = v gcd(r,k)
k .

This means that in this particular configuration

d = v gcd(r,k)
k

≤ 2(rk − r − k − 1)(2(rk − r − k)− 10) gcd(r, k)

If we had used the bound on the number of lines in the configuration
instead, we would have arrived at the same conclusion, simply replacing k
by r. �

3.3 An upper bound on the conductor of the numerical
semigroup Dr,k

The largest gap of a numerical semigroup S is called the Frobenius number
of S. To Proposition 12 we have associated the following result.

Proposition 27 The numerical semigroup generated by two coprime pos-
itive integers a, b has Frobenius number (a− 1)(b− 1)− 1 [15].

Definition 28 The conductor of a numerical semigroup is the smallest
element such that all subsequent natural numbers belong to the semigroup.

Hence if the Frobenius number is f , then c = f + 1. By bounding the
conductor upwards, we get a value from which all subsequent integers give
configurable tuples. This is equivalent to giving values v0 and b0 such that
all tuples (v, b, r, k) with vr = bk, v ≥ b0 and b ≥ b0 are configurable.

As before, for the cases r = 2 and r = 3 we know exactly the conductor
of Dr,k. Indeed, in these semigroups the conductor is equal to the multi-
plicity (see Corollary 8, Corollary 10, and Theorem 11) and the multiplicity
is given in Proposition 20.

Proposition 29 Suppose r, k > 1 and let t = rk−r−k−1. The conductor
c of the numerical semigroup Dr,k satisfies

c ≤ rk((4t2 − 16t)2 gcd(r, k) − 4t2 + 16t).
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Proof: By Proposition 26 the multiplicity of Dr,k satisfies m ≤ 2(rk −
r − k − 1)(2(rk − r − k) − 10)gcd(r, k). Now, because of Proposition 18,
sm + 1 ∈ Dr,k, with s = rk/gcd(r, k), and sm + 1 and m are coprime.
Therefore Proposition 27 says that (m− 1)sm− 1 is the Frobenius element
of a numerical semigroup contained in Dr,k. We have

(m− 1)sm− 1 ≤ (2(rk− r− k− 1)(2(rk− r− k)− 10) gcd(r, k)− 1)2(rk−
r − k − 1)(2(rk − r − k)− 10)rk − 1

and therefore the conductor is bounded by

c ≤ (2(rk−r−k−1)(2(rk−r−k)−10) gcd(r, k)−1)2(rk−r−k−1)(2(rk−
r − k)− 10)rk.

With t = rk − r − k − 1 we get

c ≤ (2t(2t−8) gcd(r, k)−1)2t(2t−8)rk = rk((4t2−16t)2 gcd(r, k)−4t2+16t).
�

k = 4 5 6 7 8

r = 4 13 17/5 7 25/7 29/2
5 21 13/3 31/7 9/2
6 31 37/7 43/4
7 43 25/4
8 57

Table 2: Lower bounds for the multiplicity of the numerical semigroup Dr,k

k = 4 5 6 7 8

r = 4 336 240 936 768 4560
5 2800 1008 1584 2288
6 10488 2688 7656
7 28560 5760
8 64672

Table 3: Upper bounds for the multiplicity of the numerical semigroup Dr,k
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k = 4 5 6 7 8

r = 4 450240 1147200 10501920 16493568 166312320
5 39186000 30451680 87761520 209306240
6 659925936 303351552 1406560320
7 5709515280 1857623040
8 33459223296

Table 4: Upper bounds for the conductor of the numerical semigroup Dr,k

3.4 Results

The upper bounds on the multiplicity and the conductor of Dr,k are both
huge, while the lower bound on the multiplicity is quite small. In Table 2,
Table 3 and Table 4 one can see some examples of the values the bounds
take for some r and k. We leave it as an open problem to find better
bounds.

3.5 Concluding results

We are ready to collect our results in a final theorem.

Theorem 30 For any pair of integers r, k, both larger than 1,

(i) there exist infinitely many configurable tuples (v, b, r, k);

(ii) there exists at least one configurable tuple (v, b, r, k) with

v ≤ 2(rk − r − k − 1)(2(rk − r − k)− 10)k

and

b ≤ 2(rk − r − k − 1)(2(rk − r − k)− 10)r;

(iii) all tuples (v, b, r, k) with vr = bk,

• v ≥ d0k/ gcd(r, k), and

• b ≥ d0r/ gcd(r, k),
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are configurable for a certain d0;

(iv) if r = 2 then

d0 =

{
k + 1 if k is even
k+1
2 if k is odd

if r = 3 then

d0 =

⎧⎨⎩
2k + 1 if k ≡ 0mod 3
2k+1

3 if k ≡ 1mod 3
2k+2

3 if k ≡ 2mod 3

(v) if r, k > 3 then d0 ≥ rk((4t2 − 16t)2 gcd(r, k) − 4t2 + 16t), where
t = rk − r − k − 1.

Proof:

(i) This is a result of the fact that for any (r, k), Dr,k is a numerical
semigroup,

(ii) This was proven in Proposition 26.

(iii) This is because a numerical semigroup has a conductor d0, so that
every element greater or equal to d0 pertains to Dr,k.

(iv) This is a consequence of Proposition 20 and the fact that for the
semigroups D2,k and D3,k the multiplicity equals the conductor.

(v) This is the bound on the conductor from Proposition 29. �
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