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Abstract

A well-known fundamental problem in extremal graph theory is
the degree/diameter problem, which is to determine the largest
(in terms of the number of vertices) graphs or digraphs or mixed
graphs of given maximum degree, respectively, maximum out-
degree, respectively, mixed degree; and given diameter. General
upper bounds, called Moore bounds, exist for the largest pos-
sible order of such graphs, digraphs and mixed graphs of given
maximum degree d (respectively, maximum out-degree d, re-
spectively, maximum mixed degree) and diameter k.

In recent years, there have been many interesting new results
in all these three versions of the problem, resulting in improve-
ments in both the lower bounds and the upper bounds on the
largest possible number of vertices. However, quite a number of
questions regarding the degree/diameter problem are still wide
open. In this paper we present an overview of the current state
of the degree/diameter problem, for undirected, directed and
mixed graphs, and we outline several related open problems.

1 Introduction

We are interested in relationships among three graph parameters, namely,
maximun degree (respectively, maximum out-degree, respectively, maxi-
mum mixed degree), diameter and order (i.e., the number of vertices) of
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a graph (respectively, digraph, respectively, mixed graph). Fixing the val-
ues of two of the parameters, we then wish to maximise or minimise the
value of the third parameter. Then there are six possible problems, de-
pending on which parameter we maximise or minimise; however, three of
these problems are trivial and so below we formulate only the three non-
trivial problems. For undirected graphs the problem statements are then
as follows.

• Degree/diameter problem: Given natural numbers d and k, find the
largest possible number of vertices nd,k in a graph of maximum degree
d and diameter ≤ k.

• Order/degree problem: Given natural numbers n and d, find the small-
est possible diameter kn,d in a graph of order n and maximum degree
d.

• Order/diameter problem: Given natural numbers n and k, find the
smallest possible maximum degree dn,k in a graph of order n and
diameter k.

The statements of the directed version of the problems differ only in that
‘degree’ is replaced by ‘out-degree’. The corresponding statements for the
mixed version of the problems use both the (undirected) maximum degree
and the maximum out-degree.

The three problems are related but as far as we know they are not
equivalent. For both undirected and directed cases, most of the attention
has been given to the first problem, some attention has been received by
the second problem but the third problem has been largely overlooked so
far. The mixed version of all three problems was the last to be formulated
and has received only very limitted attention until recently.

In this paper we will consider mainly the degree/diameter problem. For
most fixed values of d and k, this problem is still wide open. In the next sec-
tion we give an overview of the undirected version of the degree/diameter
problem. In Section 3 we consider the degree/diameter problem for di-
rected graphs. In Section 4 we present the status of the degree/diameter
problem for mixed graphs. The paper concludes with some interesting open
problems.
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2 Undirected graphs

There is a natural straightforward upper bound on the largest possible
order nd,k of a graph G of maximum degree d and diameter k. Trivially, if
d = 1 then k = 1 and n1,1 = 2; in what follows we therefore assume that
d ≥ 2. Let v be a vertex of the graph G and let ni, for 0 ≤ i ≤ k, be
the number of vertices at distance i from v. Then ni ≤ d(d − 1)i−1, for
1 ≤ i ≤ k, and so

nd,k =
k∑

i=0

ni ≤ 1 + d + d(d − 1) + · · · + d(d− 1)k−1

= 1 + d(1 + (d− 1) + · · ·+ (d− 1)k−1)

=

{
1 + d (d−1)k−1

d−2 if d > 2

2k + 1 if d = 2
(1)

The right-hand side of (1) is called the Moore bound and is denoted by
Md,k. A graph whose maximum degree is d, diameter k, and order equal to
the Moore bound Md,k is called a Moore graph; such a graph is necessarily
regular of degree d.

Moore graphs do exist: For diameter k = 1 and degree d ≥ 1, they are the
complete graphs Kd+1. For diameter k = 2, Hoffman and Singleton [13]
proved that Moore graphs can exist only for d = 2, 3, 7 and possibly 57; they
are the cycle C5 for degree d = 2, the Petersen graph for degree k = 3, and
the Hoffman-Singleton graph for degree k = 7. The existence of a Moore
graph of degree 57 is still an open problem. Damerell [9] proved that there
are no Moore graphs (other than cycles K2k+2) of diameter k ≥ 3. An
independent proof of this result was also given by Bannai and Ito [1].

Since Moore graphs exist only in a small number of cases, the study of
the existence of large graphs focuses on graphs whose order is ‘close’ to the
Moore bound, that is, graphs of order Md,k− δ, for δ small. The parameter
δ is called the defect, and the most usual understanding of ‘small defect’
is that δ ≤ d. For convenience, by a (d, k)-graph we will understand any
graph of maximum degree d and of diameter at most k; if such a graph has
order M∗

d,k − δ then it will be referred to as a (d, k)-graph of defect δ.
Erdös, Fajtlowitcz and Hoffman [10] proved that, apart from the cycle

C4, there are no graphs of degree d, diameter 2 and defect 1, that is, of

337



An Overview of the Degree/Diameter Problem
for Directed, Undirected and Mixed Graphs M. Miller

order one less than the Moore bound. This was subsequently generalized
by Bannai and Ito [2] and also by Kurosawa and Tsujii [15] to all diameters.
Hence, for all d ≥ 3 there are no (d, k)-graphs of defect 1, and for d = 2
the only such graphs are the cycles C2k. It follows that for d ≥ 3 we
have nd,k ≤ Md,k − 2. Only a few values of nd,k are known. Apart from
those already mentioned, we have also n4,2 = 15, n5,2 = 24, n3,3 = 20 and
n3,4 = 38. The general frontier in the study of the upper bound of nd,k is
defect 2.

Miller, Nguyen and Pineda-Villavicencio [17] found several structural
properties of (d, 2)-graphs with defect 2, and showed the nonexistence of
such graphs for infinitely many values of d. Conde and Gimbert [7] used
factorisation of certain polynomials related to the characteristic polynomial
of a graph of diameter 2 and defect 2 to prove the nonexistence of (d, 2)-
graphs with defect 2 for other values of d. Combining these results we
obtain that for degree d, 6 ≤ d ≤ 50, there are no (d, 2)-graphs with defect
2. Moreover, we believe that the following conjecture holds.

Conjecture 1 For degree d ≥ 6, there are no (d, 2)-graphs with defect 2.

Little is known about defects larger than two. Jorgensen [14] proved
that a graph with maximum degree 3 and diameter k ≥ 4 cannot have
defect two. Taking into account the handshaking lemma when defect is
odd, this shows that n3,k ≤ M3,k − 4 if k ≥ 4. In 2008, this was improved
by Pineda-Villavicencio and Miller [18] to n3,k ≤ M3,k − 6 if k ≥ 5. Miller
and Simanjuntak [19] proved that for k ≥ 3, a (4, k)-graph cannot have
defect 2, showing that n4,k ≤ M4,k − 3 if k ≥ 3. Currently, for most values
of d and k, the existence or otherwise of (d, k)-graphs with defect 2 remains
an open problem.

The lower bounds on nd,k and n∗d,k are obtained from constructions
of the corresponding graphs and digraphs. There are many interesting
techniques used in these constructions, including algebraic specifications
(used to produce de Bruijn and Kautz graphs and digraphs), star product,
compounding, and graph lifting - the last three methods all producing
large graphs from suitable smaller “seed” or “base” graphs. Additionally,
many new largest known graphs have been obtained with the assistance of
computers.

In the case of undirected graphs, the gap between the lower bound and
the upper bound on nd,k is in most cases wide, providing a good motivation

338



An Overview of the Degree/Diameter Problem
for Directed, Undirected and Mixed Graphs M. Miller

for researchers to race each other for ever larger graphs. Further stimulation
is provided by the current table of largest graphs (for degree up to 16 and
diameter up to 10), kept up to date by Francesc Comellas on the website

http://maite71.upc.es/grup de grafs/grafs/taula delta d.html

A larger table (for degree up to 20 and diameter up to 10) is kept by Eyal
Loz, Hebert Perez-Roses and Guillermo Pineda-Villavicencio; it is available
at

http://combinatoricswiki.org/wiki/

The Degree Diameter Problem for General Graphs

3 Directed graphs

As in the case of undirected graphs, there is a natural upper bound on the
order, denoted by nd,k, of directed graphs (digraphs) of given maximum
out-degree d and diameter k. For any given vertex v of a digraph G, we
can count the number of vertices at a particular distance from that vertex.
Let n∗i , for 0 ≤ i ≤ k, be the number of vertices at distance i from v. Then
n∗i ≤ di, for 0 ≤ i ≤ k, and consequently,

n∗d,k =
k∑

i=0

n∗i ≤ 1 + d + d2 + · · ·+ dk

=

{
dk+1−1

d−1 if d > 1

k + 1 if d = 1
(2)

The right-hand side of (2), denoted by M∗
d,k, is called the Moore bound for

digraphs. If the equality sign holds in (2) then the digraph is called a Moore
digraph.

It is well known that Moore digraphs exist only in the trivial cases
when d = 1 (directed cycles of length k + 1, Ck+1, for any k ≥ 1) or k = 1
(complete digraphs of order d + 1, Kd+1, for any d ≥ 1). This was first
proved by Plesńık and Znám in 1974 [23] and later independently by Bridges
and Toueg [6]. In the directed version, the general frontier in the study of
the upper bound of n∗d,k is defect 1. For diameter k = 2, line digraphs
of complete digraphs are examples of (d, 2)-digraphs of defect 1, for any
d ≥ 2, showing that n∗d,2 = M∗

d,2 − 1. When d = 2 there are two other
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non-isomorphic (2, 2)-digraphs of defect 1 but for d ≥ 3 Gimbert [11, 12]
proved that line digraphs of complete digraphs are the only (d, 2)-digraphs
of defect 1. Moreover, Conde, Gimbert, Gonzalez, Miret and Moreno [8]
proved that there are no (d, 3)-digraphs with defect 1, for any d ≥ 3.

On the other hand, focusing on small out-degree instead of diameter,
Miller and Fris [16] proved that, for maximum out-degree 2, there are no
(2, k)-digraphs of defect 1, for any k ≥ 3. Moreover, Baskoro, Miller, Širáň
and Sutton [3] proved, for maximum out-degree 3, that there are no (3, k)-
digraphs of defect 1, for any diameter greater than or equal to 3. The
following conjecture is likely to hold but unlikely to be proved in a simple
way.

Conjecture 2 For maximum out-degree d ≥ 2 and diameter k ≥ 3, there
are no (d, k)-digraphs with defect 1.

The study of digraphs of defect two has so far concentrated on digraphs
of maximum out-degree d = 2. Miller and Širáň [20] proved, for maximum
out-degree d = 2, that (2, k)-digraphs of defect two do not exist, for all
k ≥ 3. For the remaining values of k ≥ 3 and d ≥ 3, the question of
whether digraphs of defect two exist or not remains completely open.

As in the undirected case, the lower bounds on n∗d,k are obtained from
constructions of the corresponding digraphs. The current situation for the
best lower bounds in the directed case is much simpler than in the undi-
rected case. In the case of directed graphs, the best known values of n∗d,k

are, in almost all cases, given by the corresponding Kautz digraph. One
exception is the case of d = 2, where the best lower bound for k ≥ 4 is
obtained from Alegre digraph and line digraphs of Alegre digraph.

The difference between lower bound and upper bound on the largest
possible order of a digraph of given maximum out-degree and diameter
is much smaller than in the undirected case. Correspondingly, it seems
much more difficult to find constructions of graphs that would improve the
lower bound of n∗d,k, and indeed, there has not been any improvement to
the lower bound during the last 30 years or so, since the discovery of the
Alegre digraph. On the other hand, thanks to the line digraph technique,
finding any digraph larger than currently best known would result in much
higher “payout” than in the undirected case, giving rise to a whole infinite
family of largest known digraphs.
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4 Mixed graphs

In many real-world networks, a mixture of both unidirectional and bidirec-
tional connections may exist (e.g., the World Wide Web network, where
pages are nodes and hyperlinks describe the connections). For such net-
works, mixed graphs provide a perfect modeling framework. The idea of
“mixed” (or “partially directed”) graphs is a generalisation of both undi-
rected and directed graphs.

We start by introducing some definitions which are needed for mixed graphs.
Let v be a vertex of a graph G. Denote by id(v) (respectively, od(v)) the
sum of the number of arcs incident to (respectively, from) v and the number
of edges incident with v. Denote by r(u) the number of edges incident with
v (i.e., the undirected degree of v). A graph G is said to be regular of degree
d if od(v) = id(v) = d, for every vertex v of G. A regular graph G of degree
d is said to be totally regular with mixed degree d, undirected degree r and
directed degree z = d − r if for every pair of vertices {u, v} of G we have
r(u) = r(v) = r. Mixed Moore graphs of diameter 2 were first studied by
Bosák in [4] and [5] who proved that all mixed Moore graphs are totally
regular.

Let G be a mixed graph of diameter k, maximum degree d and maximum
out-degree z. Let r = d− z. Then the order n(z, r, k) of G is bounded by

Mz,r,k = 1+(z+r)+z(z+r)+r(z+r−1)+· · ·+z(z+r)k−1+r(z+r−1)k−1

(3)
We shall call Mz,r,k the mixed Moore bound for mixed graphs of maximum
degree d, maximum out-degree z and diameter k. A mixed graph of max-
imum degree d, maximum out-degree z, diameter k and order Mz,r,k is
called a mixed Moore graph. Note that Mz,r,k = Md,k when z = 0 and
Mz,r,k = M∗

d,k when r = 0 (d = r + z).

A mixed graph G is said to be a proper mixed graph if G contains at
least one arc and at least one edge.. Most of the known proper mixed Moore
graphs of diameter 2, constructed by Bosák, can be considered isomorphic
to Kautz digraphs of the same degree and order (with the exception of order
n = 18). Indeed, they are the Kautz digraphs Ka(d, 2) with all digons (a
digon is a pair of arcs with the same end points and opposite direction)
considered as undirected edges.

Mixed Moore graphs for k ≥ 3 have been categorised in [22]. Suppose
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d ≥ 1, k ≥ 3. A finite graph G is a mixed Moore graph of degree d and
diameter k if and only if either d = 1 and G is Zk+1 (the directed cycle on
k + 1 vertices), or d = 2 and G is C2k+1 (the undirected cycle on 2k + 1
vertices).

It remains to consider Moore graphs of diameter 2. Mixed Moore graphs
of diameter 2 were studied by Bosák in [5] using matrix and eigenvalue
techniques. Bosák proved that any mixed Moore graph of diameter 2 is
totally regular with undirected degree r and directed degree z, where these
two parameters r and z must satisfy a tight arithmetic condition obtained
by eigenvalue analysis. Thus, apart from the trivial cases z = 1 and r = 0
(graph Z3), z = 0 and r = 2 (graph C5), there must exist a positive odd
integer c such that

c | (4z − 3)(4z + 5) and r =
1

4
(c2 + 3). (4)

Mixed Moore graphs of diameter k = 2 and order n ≤ 100 are sum-
marized in Table 1,where d = z + r and the values of r and z are derived
from (4) (see [5]).

5 Conclusion

In this paper we have given an overview of the degree/diameter problem
and we pointed out some research directions concerning the three param-
eters order, diameter and maximum degree for undirected graphs, resp.,
maximum out-degree for directed graphs, resp., maximum mixed degree
for mixed graphs. More specifically, we have been interested in the ques-
tions of optimising one of these three parameters (the order) given the
values of the other two parameters. We finish by presenting a list of some
related open problems in this area.

1. Does there exist a Moore graph of diameter 2 and degree 57? This is
the best known open problem in this area; it has been open for half
a century.

2. Find graphs (resp. digraphs) which have larger number of vertices
than the currently largest known graphs (resp., digraphs).
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n d z r existence uniqueness

3 1 1 0 Z3
√

5 2 0 2 C5
√

6 2 1 1 Ka(2, 2)
√

10 3 0 3 Petersen graph
√

12 3 2 1 Ka(3, 2) (Figure 1)
√

18 4 1 3 Bosák graph
√

20 4 3 1 Ka(4, 2)
√

30 5 4 1 Ka(5, 2)
√

40 6 3 3 unknown unknown
42 6 5 1 Ka(6, 2)

√

50 7 0 7 Hoffman-Singleton graph
√

54 7 4 3 unknown unknown
56 7 6 1 Ka(7, 2)

√

72 8 7 1 Ka(8, 2)
√

84 9 2 7 unknown unknown
88 9 6 3 unknown unknown
90 9 8 1 Ka(9, 2)

√

Table 1: Mixed Moore graphs of diameter 2 and order ≤ 100.

3. Prove the diregularity or otherwise of digraphs close to Moore bound
for defect greater than one. Clearly, undirected graphs close to the
Moore bound must be regular. It is also easy to see that digraphs
close to the directed Moore bound must be out-regular. However,
even for quite small defect (as little as 2), there exist digraphs which
are in-regular but not out-regular (that is, all vertices have the same
in-degree but not the same out-degrees).

4. Investigate the degree/diameter problem for regular graphs, digraphs
and mixed graphs.

5. Investigate the existence (and uniqueness) of mixed Moore graphs of
diameter k = 2 and orders 40, 54, 88, 90 and when n > 100.

6. Find large proper mixed graphs and construct a Table of the largest
known proper mixed graphs.
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