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Abstract

A matched sum graph G1M G4 of two graphs G and Go of the
same order n is obtained by adding to the union (or sum) of G;
and G9 a set M of n independent edges which join vertices in
V(G1) to vertices in V(G2). When G; and Go are isomorphic,
G1MGs is just a permutation graph. In this work we derive
bounds for the k-restricted edge connectivity A) of matched
sum graphs G1MGo for 2 < k < 5, and present some sufficient
conditions for the optimality of A (G1MG2).

1 Introduction

Georges and Mauro introduced in [11] the concept of matched sum graphs as
follows. Given two graphs G1, Gy of the same order |V (G1)| = |[V(G2)| =n
and a set M of n independent edges with one endvertex in V(G;) and the
other one in V(G2) (a matching between V(G1) and V(G2)), the matched
sum graph of G1 and Go is the graph with vertex set V(G1) U V(G2) and
edge set E(G1) U E(Ga) U M. Even though these authors denoted such a
graph by G1 M ™G5, we will simplify this writing to G MGs heretofore for
the sake of simplicity. Matched sum graphs are in fact permutation graphs
—as they were introduced by Chartrand and Harary in [6]— when G; and
G5 are isomorphic; hence, matched sum graphs generalize the concept of
permutation graphs. Examples of permutation graphs include hypercubes,
prisms and some generalized Petersen graphs; see [12, 15, 17, 18] for results
on permutation graphs.
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This work is devoted to study a particular measure of the connectivity
of matched sum graphs, extending (and somehow improving) some other
related known results. This measure —which can be seen within the frame-
work of conditional connectivities, introduced by Harary in [13]— is the so-
called k-restricted edge connectivity of a graph G, denoted \(;)(G), which
corresponds to the minimum cardinality of a set of edges of G whose dele-
tion results in a disconnected graph with all its components of cardinality
at least k. We first derive bounds for the k-restricted edge connectivity
of matched sum graphs G = G1MG5 for 2 < k < 5. As a consequence
of this, we can present some sufficient conditions to guarantee optimality
for A(3)(G), G being a matched sum graph. These new results extend and
improve those obtained in [2, 3] in some senses.

From now on, every graph will be assumed to be simple; that is, with
neither loops nor multiple edges.

1.1 Notation and terminology

Unless otherwise stated we follow [7] for additional terminology and defini-
tions.

Let G be a simple graph with vertex set V(G) and edge set E(G). For
every subset X of V(G), G[X] denotes the subgraph of G induced by X. For
every vertex x € V(G), the neighborhood of x denoted by N(z) = Ng(x)
is the set of vertices that are adjacent to x. The degree of a vertex z is
d(z) = dg(xz) = |N(x)|, whereas § = §(G) is the minimum degree over all
vertices of G. For every two given proper subsets X,Y of V(G) we denote
by [X, Y] the set of edges with one end in X and the other end in Y'; when
X = {z}, we write [z,Y] instead of [{z},Y]. If X is a proper subset of
V(G), let us denote by w(X) = wg(X) to the set [X,V(G) \ X]. If the
graph G is connected and 1 < k < |V(G)| is an integer, the minimum
k-edge degree of G is defined as

§ky(G) = min{[w(X)| : | X]| =k, G[X] is connected}.

Clearly £1)(G) = 0(G) and {(2)(G) = min{d(u)+d(v)-2 : uv € E(G)}, the
latter being usually denoted as {(G) and called the minimum edge-degree
of G.

Inspired by the definition of conditional connectivity introduced by
Harary [13], Fabrega and Fiol [9, 10] proposed the concept of k-restricted
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edge connectivity as follows. For an integer £ > 1 an edge cut W is called
a k-restricted edge cut if every component of G — W has at least k vertices,
where k£ > 1 (in the former version due to Fabrega and Fiol all components
obtained by deleting a k-restricted edge cut W from G should have at least
k41 vertices, hence k > 0 was taken; nevertheless, in view of recent related
literature we consider in this work cardinality at least k for the components
of G — W). Assuming that G has k-restricted edge cuts (then G is said
to be )\(k)—connected), the k-restricted edge connectivity of G, denoted by
)\(k)(G), is defined as the minimum cardinality over all k-restricted edge
cuts of G. From the definition, we immediately have that if A (G) exists,
then \(;)(G) exists for any i < k and A\;)(G) < Ay)(G). Observe that any
edge cut of G is a 1-restricted edge cut and \(1)(G) is just the standard con-
nectivity A(G). Furthermore, the restricted edge connectivity \'(G) defined
in [8] is M(G) = A\(2)(G).

As far as the existence of k-restricted edge cuts is concerned, it was
shown in [8] that A\(9)(G) exists and A\(9)(G) < &(G) if G is not a star
and its order is at least 4. For k = 3, it was shown [5, 16] that except
for a special class of graphs named flowers, 3-restricted edge cuts exist
and A3)(G) < §(3)(G) for any connected graph G with order at least 7.
Following Ou [16], a graph F of order n > 2k is called a flower if it contains
a cut-vertex s such that every component of F'— s has order at most k — 1.
The following result was given by Zhang and Yuan in [21].

Theorem 1 [21] Let G be a connected graph of minimum degree § and
order n > 2(8 +1) that is not isomorphic to any G, s (where G s consists
of m disjoint copies of K5 and a new vertex u adjacént to all the vertices in
those copies). For allk < 6+1, G is Ay, -connected with A (G) < ) (G).

A graph G is said to be Ay)-optimal if A\)(G) = 4y (G). For other

interesting results on the k-restricted edge connectivity of graphs see [1, 3,
4, 14, 19, 20, 22], among others.

2 Main results

Given a matched sum graph G1 M Ga, it is clear that if B C V(G;) is a set
of cardinality k that induces a connected subgraph of GG; then

k) (G1MG2) < |we,me, (B)] = |we, (B)] + F,
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which in particular yields to the following remark.

Remark 2 Let £ > 1 and let G, G2 be two graphs of minimum k-edge
degrees &(1)(G1), §x)(Ga), respectively. Then for every matched sum graph
G1MG4 it follows that

Ey (G1MG2) < min{&)(G1), &y (G2) } + k.
A useful result obtained in [3] is recalled next.

Lemma 3 [3] Let G be a connected graph with minimum degree § and
minimum k-edge-degree &, (G) with k < 6 + 1. Then for every k > 2 and
for every j € {0,...,k} it follows that

E(G) =2 E—y)(G) + Jd — 25k + j(5 + 1).
The following theorem constitutes the main result of this work.

Theorem 4 Let 2 < k <5 be an integer and let G1, Gy be two connected
A(k)-connected graphs of the same order n and minimum degrees §(G1) > k,
6(Ga) > k, respectively. Then every matched sum graph Gi MGy is (-
connected and

min{n, )\(k) (Gh) + )‘(k) (Ga), )‘(k) (G1) +6(Gy) — k+ 3,
)\(k)(GQ) +0(Ga) — k+ 3, §(k)(G1MG2)}

Proof: Set M = G1{ MGy from now on. Observe that n > 2k because
both Gy and G are A()-connected. Notice also that M has no cutvertex,
because (G; and GG are connected.

Consider first G; >~ G2 ~ K,,. In this case, M is isomorphic to Ky x K,
and it is easily seen that this graph is A)-connected with

)\(k)(KQ X Kn) =n< k(n —k+ 1) = f(k)(KQ X Kn)

Suppose now that G is a noncomplete graph, then n = |[V(Gy)| >
d(G1) + 2. First, when Go ~ K,, we get 6(G2) =n — 12> 6(Gy) + 1, hence
(M) =0(G1) +1<n—1. As a consequence,

[VIM)| = 2n = 2(6(M) + 1),
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and M is A¢)-connected with Ay (M) < &y (M) following Theorem 1 as
M has no cutvertex. Second, suppose that G5 is also a noncomplete graph,
n = |V(Gy)| > 8(G2) + 2. Then §(M) = min{6(G1),6(Ga)} +1 < n—1
and [V (M)| = 2n > 2(§(M) + 1) holds. Again from Theorem 1 it follows
that M is A(y)-connected with () (M) < &y (M).

The rest of the proof concerns with the lower bound for Ag,(M). Let
W C E(M) be a minimum k-restricted edge cut of M, [W] = \)(M).
Hence M — W consists of exactly two connected components, H, H* such
that |V(H)| > k and |[V(H*)| > k. Observe that w(V(H)) = w(V(H*)) =
W = [V(H), V(H)]. T [V(H)| = k, then Agy(M) = [W| > &) (M) and
the result holds. If W = M the result is also true since Ay (M) = [M| = n.
Let us next prove the following claim.

Claim A. The inequality Ay (M) > &) (M) holds provided that any of
the following situations occurs:

(i) There exist two sets S; C V(G1), So C V(Ga), 2 < |S1| = k —
2,|1S9| = k — 1, such that the following conditions hold altogether:
S1USy C V(H); the subgraphs M[S;] are connected, i = 1,2; M —W
contains no edge cd with ¢ € S; and d € (V(G;)\S;)NV(H), i=1,2;
there exist two vertices u € S1, u' € Sy such that uu' € E(M — W);
M — W contains no edge ab' € M where a € (V(Gy) \ S1) NV (H)
and b € Sy — .

(ii) There exist two sets S1 C V(G1), S2 C V(Ga), |S1| = |S2| =k—1 for
3< k<4, and |S1| = |S2] € {k — 2,k — 1} for k =5, such that the
following conditions hold altogether: S1 U Sy = V(H); the subgraphs

M(S;] are connected, i = 1,2; there exist two vertices u € Sy, u' € Sy
such that uv’ € E(M — W).

(iii) k& =5 and there exist S1 = {u,w} C V(G1), So = {u/,v',t'} C V(Ga),
S3 = {w’,z’} C V(Gz) (52 NnSs = @), |51| = |Sg| = 2, |52| = 3,
such that the following conditions hold altogether: S; U Sy U S3 C
V(H); the subgraphs M[S;] are connected, i = 1,2,3; M—W contains
no edge cd with ¢ € S; and d € (V(G;) \ Si;)) N V(H), i = 1,2,3;
wi/,ww' € E(M — W); M — W contains no edge ab' € M where
a€ (V(G)\S1)NV(H) and b € Sy — /.

(iv) k = 5 and there exist S1 = {u,w} C V(Gy), So = {u/,v,t',2'} C
V(G9), |S1| = 2, |S2| = 4, such that the following conditions hold
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altogether: S1 U Sy C V(H); the subgraphs M(S;] are connected, i =

2; M —W contains no edge cd with ¢ € S; and d € (V(G;) \ Si) N
V(H),i=1,2; vu/ € E(IM—W); M —W contains no edge ab’ € M
where a € (V(G1)\ S1) NV (H) and b/ € So — .

(v) k=5 and there exist Sy = {u,w} C V(Gy), So = {v/,v'} C V(Ga),
S3 = {U t} C V(Gl) (51 NSs = @) ’51’ = |52| = ’53’ = 2, such that
the following conditions hold altogether: S; U Sy U Sy C V(H); the
subgraphs M([S;] are connected, i = 1,2,3; M—W contains no edge cd
withc € S;, d € (V(Gi)\Si)NV(H),i=1,2,3; uv',vv' € E(M—-W).

Proof of Claim A. We give the proof for items (i), (ii) and (iii), since (iv)
and (v) are proved similarly.

(i) Considering the set Q = {u} U Sy of cardinality k it is clear that the
subgraph of M induced by 2 is connected. Observe that, for every vertex
v € S1 — u, it may exist an edge in M \ W which connects v and some
vertex in (V(Gs) \ S2) NV (H). Then,

Ay M) = |wpm(V(H))|
ZI wm ()] + 2 0es, —uldr(v) = 2[[v, Q]| = 1) = (IS1] = 1)(|51] = 2)
Ery (M) + 2 pes, u(k+1-2-2—-1) — (k= 3)(k —4)
iy (M) + (k= 3)(k —4) = (k = 3)(k — 4) = {y (M),

after taking into account that |[v, ]| < 2 for every v € S7 — w.
(ii) When |S1| = |S2| = k—1 consider again the set Q = {u}US3, which
induces a connected subgraph of M. It follows that:

Ay M) = |wpm(V(H))|
> fwpm ()] + D ves, —uldr(v) = 2[[o, A) = (IS1] = 1)([S1] - 2)
>y (M) + 2 pes, (b +1-2-2) — (b —2)(k - 3)
> Eky (M) + (k= 2)(k = 3) — (k = 2)(k = 3) = {ky (M),

And when |S1] = |S2| = k—2 =3 (k = 5), take the set L = {u,w}US, with
uw € E(G1), w € Sy. This set has cardinality £ = 5 and clearly induces a
connected subgraph of M. In this case, if 57 \ {u,w} = {z}:

!w/\?(V(H))I 2 [wpm (L) + dp(z) = 2|[z, L]

Apy(M) =
> {E M)+ (6—-2-3) = {5 (M),

noticing that |[z, L]| < 3.
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(iii) Take the set of cardinality five Q = S; U {u/} U S5, which induces
a connected subgraph of M. Then:

MV (H))|
wpm()] +dm (V) +dm (@) = 2|[{v', ¢} Q]| = 2|[v", ¢]| — 1
M) +646—2-2—-2—1=_¢E5(M)+5 > (M),

A5y (M) ;

I\/ v ||

because vertices v',t' cannot be adjacent in M to any vertex of S and
since it may exist one edge in M \ W which connects 2’ to some vertex in

(V(Gl) \Sl)ﬂV(H) O

We continue the proof of the theorem by assuming |V (H)| > k + 1,
[V(H*)| > k+ 1, W # M, and that none of the aforementioned five situ-
ations (i) to (v) of Claim A (or the corresponding ones obtained by inter-
changing the roles of either G, Go, or H, H*) occurs. We write heretofore
W = Wi U Wy UWsy, with Wy C E(Gl), Wy C M, Wy C E(Gg) Notice
that if W; # 0 then W; is an edge cut of G; due to the minimality of WW.
The following claim needs to be proved at this point.

Claim B. If W; # 0, every component of G; — W; has at least k vertices.

Proof of Claim B. We use proof by contradiction. Assume that some
component of G; — W, has at most k—1 vertices. Let C' be such a component
of (G1 —W1)U (G2 — W) on at most k — 1 vertices, chosen so that no other
component of (G; — Wi) U (G2 — W) has fewer vertices than C, and (in
case two or more components have this minimum order) with the minimum
possible number of components of (G; — W1) U (G2 — Wa) to which these
components are linked by means of an edge (of M) in M — W. Assume
without loss of generality that W; # () and that C is a component of
G1 — Wi, with V(C) C V(H). As M is Ag,)-connected it follows that
there exist two adjacent vertices u € V(C) C V(G1 — Wi) NV (H) and
u € V(Gy — Wy) NV (H) such that the edge uu’ € M does not belong to
W. Let us prove now the following assertion:

All components of H — V(C) have at least k vertices. (1)

To this end, let C* be a component of Go — Wy to which C' is linked by
means of an edge of M \ W, and assume that |V(C)| < |[V(C*)| < k-1
(otherwise the component of H — V(C) containing C* has cardinality at
least k).
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Suppose first that |V(C)| = 1, V(C) = {u}. Then H — u is connected
as vertex u is only adjacent in H to vertex v’ € V(C*), and |V(H — u)| =
|V(H)| — 1> k. Thus, assertion (1) is proved when k = 2.

Now, suppose that 2 < |V(C)| € {k — 2,k — 1}, hence 3 < k < 5.
Observe that C* must be linked in M — W (by means of an edge of M\ W)
to some component C' # C of G; — W;. Indeed, let us see that supposing
otherwise that the only component of G; — Wi to which C* is linked is C
yields to one of the five situations of Claim A, against our assumptions.
When |V(C*)| > |[V(C)| it must be |V(C*)| =k —1 and |V(C)| =k — 2,
which corresponds to situation (i) of Claim A; and when |V (C*)| = |V(C)],
it follows that the only component of Go — W5 to which C' is linked is C*
(by the way C has been chosen), that is to say, V(H) = V(C) U V(C*)
and then |[V(C*)|=|V(C)|=k—-1for 3 <k <4or|V(C*| =|V(C) €
{k—2,k—1} = {3,4} for k =5, because |V (H)| > k + 1; this is situation
(ii) of Claim A.

Hence when 2 < |[V(C)| € {k — 2,k — 1} it follows that C* is linked
in M — W (by means of an edge of M \ W) to some component C' # C
of G; — W1. In this case, the component of H — V(C) containing C* has
cardinality at least

V(CH|+|V(C)] >2-2=4, if k=3,
V(CH|+|V(C)| =2k —2) >k, ifk=4,5.

Observe that assertion (1) is then proved when k = 3,4. Hence, to complete
the proof of (1) it must be assumed next that k¥ = 5 and |V(C)| = 2,
V(C) = {u,w}.

First, if C* is not linked in M—W (by means of an edge of M \W) to any
component C' # C of Gy — Wy (H — V(C*) is connected), it turns out that
|[V(C*)| € {3,4}; otherwise |V(C*)| = 2 and so V(H) = V(C) U V(C¥)
according to the way C has been chosen, which is an absurdity because
|V(H)| > 6 by assumption. When |V (C*)| = 3, C is necessarily linked
in M — W (by means of an edge of M \ W) to some component C' # C*
of Gy — Wy, because |V (H)| > 6. If [V(C)| > 3 then |V(H) \ V(C*)| >
[V(C)| + [V(C)| > 5; hence the set of edges

W' = (WU {uu'}) \ we, (V(CT))
is a 5-restricted edge cut of M, of cardinality
(W < [W[+1—[V(C)|(6(Ge) —2) < [W| -8 < [W],
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an absurdity. As a consequence |V (C)| = 2, situation (iii) of Claim A. The
case |V (C*)| = 4 corresponds to situation (iv) of Claim A.

Second, suppose that C* is linked in M — W by means of an edge
of M\ W to some component C' # C of Gy — Wi. When |[V(C*)| > 3
assertion (1) holds, as |V(C*)| 4+ |[V(C)| > 3 +2 = 5. Hence, consider
the case |V(C*)| = 2. Again, if |[V(C)| > 3 we are done, then assume
|V(C)| = 2, which corresponds to situation (v) of Claim A. At this point,
assertion (1) has been shown to be true for all 2 < k < 5.

Once we have seen that every component of H — V(C') has order at
least k, it follows that the set of edges

W* = (WU{ww' :w e V(C),w € V(Gy),ww" € E(H)\Wyx})\weg, (V(C))
is a k-restricted edge cut of M. But W* has cardinality
(W < W[+ [V(O)] = [we, V()] < W] = [V(C) < W] -1

(because |wg, (V(C))| > 2|V (C)| since 6(G1) > k and |V (C)| < k—1), an
absurdity. Then the claim has been proved. [

As a consequence of Claim B, if W; # () then W is indeed a k-restricted
edge cut of G;, hence |W;| > \;)(Gi).

Therefore, when both Wy, Wy # 0, then A¢py (M) = [W| > [Wq|+[Wa| >
k) (G1) 4+ Ay (G2), and the theorem holds. Hence we may assume Wy # ()
and Wy = (), and in this case V(H) C V(G1) and k + 1 < |V (H)| = [Wa|.
It follows that

Ay (M) = [W] = W]+ W[ = W] + [V (H)] (2)
Set r = |V(H)| > k+ 1. First observe that if » > §(G1) — k + 3, then from
(2) and from the fact that [W1] > A)(G1) (because W is a k-restricted
edge cut of G1) it follows

)‘(k)(M) > )‘(k)(Gl) + 5(G1) —k+3,

and the theorem holds. Therefore we assume k+1 < r < §(Gy) — k + 2.
By Lemma 3 we have

Wil = &) (G1) 2§y (Gr) + (1 = K)(6(Gr) —r =k + 1). (3)
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If r <§(G1) — k+1, then (r — k)(6(G1) —r — k+ 1) > 0, hence from (2),
(3), and from Remark 2 it follows that

Ay (M) = gy (G1) + 1 2> €y (G1) + K41 > gy (M).

Suppose finally that r = |V(H)

| = §(G1) — k + 2. Taking into account
Remark 2 and expressions (2) and (3)

yields
Ay (M) 2> §3) (G1)+(2k—0(G1)=2)+(6(G1)—k+2) = iy (G1)+k = gy (M).

Similarly, under the alternative assumption Wy # () and Wi = () we obtain
either

Ay (M) > €y (M)

or

)\(k)(./\/l) > )\(k)(Gg) +0(Ga) — k + 3,
and the proof of the theorem is now complete. [

A very similar expression to that in Theorem 4 was obtained in [2] for
matched sum graphs when k£ = 2. In fact, the only difference lies on the
terms (i) (G;) +0(Gi) —k+3 = A\2)(G;) +0(G;)+1 for i = 1,2 (in the lower
bound for {3)(G1MG2) in Theorem 4), which are one unit larger than the
corresponding terms in the mentioned result in [2]; in this sense, Theorem
4 (slightly) improves the result in [2] for the case kK = 2. When k = 3 and
G1 ~ G2 (then G1M G5 is a permutation graph), Theorem 4 recovers the
main result in [3]. Hence the case k& = 3 of Theorem 4 is a natural gen-
eralization for matched sum graphs of the corresponding known result for
permutation graphs. As far as we know, cases k = 4,5 of Theorem 4 must
be considered as new contributions for the k-restricted edge connectivity of
matched sum graphs (thus, also for permutation graphs).

The following results —consequences of Theorem 4— provide conditions
on G, Gg to guarantee A(;)-optimality for matched sum graphs Gi MGy
(A(k)(GlMGQ) = f(k)(GlMGQ)) when 2 < k < 5.

Corollary 5 Let 3 < k <5 be an integer and let G1, Go be two connected
A(k)-connected graphs of minimum degrees 6(G1) > 2k — 3, 6(G2) > 2k —3
and order |V (G1)| = [V(G2)| > min{{)(G1),{w) (G2)} + k, and such that
Ay (Gi) = iy (Gi) — 6(Gi) + 2k — 3 for both i = 1,2. Then every matched
sum graph G1M Gz is A\(y)-optimal.
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Corollary 6 Let 3 < k <5 be an integer and let G1, Go be two connected
A(k)-connected graphs such that \(x)(G1) < Ay (G2). Suppose that G1 and
Ga are \(yy-optimal, with minimum degrees 6(G1) > 2k — 3, 0(G2) > k+2
and order [V(G1)| = |V(G2)| = &uy(G1) + k. Then every matched sum
graph G1 MGy is A)-optimal.
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