of matched sum graphs

Xavier Marcote
Universitat Politècnica de Catalunya
Barcelona

Abstract

A matched sum graph $G_{1} M G_{2}$ of two graphs G_{1} and G_{2} of the same order n is obtained by adding to the union (or sum) of G_{1} and G_{2} a set M of n independent edges which join vertices in $V\left(G_{1}\right)$ to vertices in $V\left(G_{2}\right)$. When G_{1} and G_{2} are isomorphic, $G_{1} M G_{2}$ is just a permutation graph. In this work we derive bounds for the k-restricted edge connectivity $\lambda_{(k)}$ of matched sum graphs $G_{1} M G_{2}$ for $2 \leq k \leq 5$, and present some sufficient conditions for the optimality of $\lambda_{(k)}\left(G_{1} M G_{2}\right)$.

1 Introduction

Georges and Mauro introduced in [11] the concept of matched sum graphs as follows. Given two graphs G_{1}, G_{2} of the same order $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=n$ and a set M of n independent edges with one endvertex in $V\left(G_{1}\right)$ and the other one in $V\left(G_{2}\right)$ (a matching between $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$), the matched sum graph of G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup M$. Even though these authors denoted such a graph by $G_{1} M^{+} G_{2}$, we will simplify this writing to $G_{1} M G_{2}$ heretofore for the sake of simplicity. Matched sum graphs are in fact permutation graphs -as they were introduced by Chartrand and Harary in [6]- when G_{1} and G_{2} are isomorphic; hence, matched sum graphs generalize the concept of permutation graphs. Examples of permutation graphs include hypercubes, prisms and some generalized Petersen graphs; see [12, 15, 17, 18] for results on permutation graphs.

This work is devoted to study a particular measure of the connectivity of matched sum graphs, extending (and somehow improving) some other related known results. This measure - which can be seen within the framework of conditional connectivities, introduced by Harary in [13]- is the socalled k-restricted edge connectivity of a graph G, denoted $\lambda_{(k)}(G)$, which corresponds to the minimum cardinality of a set of edges of G whose deletion results in a disconnected graph with all its components of cardinality at least k. We first derive bounds for the k-restricted edge connectivity of matched sum graphs $G=G_{1} M G_{2}$ for $2 \leq k \leq 5$. As a consequence of this, we can present some sufficient conditions to guarantee optimality for $\lambda_{(k)}(G), G$ being a matched sum graph. These new results extend and improve those obtained in $[2,3]$ in some senses.

From now on, every graph will be assumed to be simple; that is, with neither loops nor multiple edges.

1.1 Notation and terminology

Unless otherwise stated we follow [7] for additional terminology and definitions.

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. For every subset X of $V(G), G[X]$ denotes the subgraph of G induced by X. For every vertex $x \in V(G)$, the neighborhood of x denoted by $N(x)=N_{G}(x)$ is the set of vertices that are adjacent to x. The degree of a vertex x is $d(x)=d_{G}(x)=|N(x)|$, whereas $\delta=\delta(G)$ is the minimum degree over all vertices of G. For every two given proper subsets X, Y of $V(G)$ we denote by $[X, Y]$ the set of edges with one end in X and the other end in Y; when $X=\{x\}$, we write $[x, Y]$ instead of $[\{x\}, Y]$. If X is a proper subset of $V(G)$, let us denote by $w(X)=w_{G}(X)$ to the set $[X, V(G) \backslash X]$. If the graph G is connected and $1 \leq k \leq|V(G)|$ is an integer, the minimum k-edge degree of G is defined as

$$
\xi_{(k)}(G)=\min \{|w(X)|:|X|=k, G[X] \text { is connected }\}
$$

Clearly $\xi_{(1)}(G)=\delta(G)$ and $\xi_{(2)}(G)=\min \{d(u)+d(v)-2: u v \in E(G)\}$, the latter being usually denoted as $\xi(G)$ and called the minimum edge-degree of G.

Inspired by the definition of conditional connectivity introduced by Harary [13], Fàbrega and Fiol [9, 10] proposed the concept of k-restricted
edge connectivity as follows. For an integer $k \geq 1$ an edge cut W is called a k-restricted edge cut if every component of $G-W$ has at least k vertices, where $k \geq 1$ (in the former version due to Fàbrega and Fiol all components obtained by deleting a k-restricted edge cut W from G should have at least $k+1$ vertices, hence $k \geq 0$ was taken; nevertheless, in view of recent related literature we consider in this work cardinality at least k for the components of $G-W$). Assuming that G has k-restricted edge cuts (then G is said to be $\lambda_{(k)}$-connected), the k-restricted edge connectivity of G, denoted by $\lambda_{(k)}(G)$, is defined as the minimum cardinality over all k-restricted edge cuts of G. From the definition, we immediately have that if $\lambda_{(k)}(G)$ exists, then $\lambda_{(i)}(G)$ exists for any $i<k$ and $\lambda_{(i)}(G) \leq \lambda_{(k)}(G)$. Observe that any edge cut of G is a 1-restricted edge cut and $\lambda_{(1)}(G)$ is just the standard connectivity $\lambda(G)$. Furthermore, the restricted edge connectivity $\lambda^{\prime}(G)$ defined in [8] is $\lambda^{\prime}(G)=\lambda_{(2)}(G)$.

As far as the existence of k-restricted edge cuts is concerned, it was shown in [8] that $\lambda_{(2)}(G)$ exists and $\lambda_{(2)}(G) \leq \xi(G)$ if G is not a star and its order is at least 4 . For $k=3$, it was shown $[5,16]$ that except for a special class of graphs named flowers, 3-restricted edge cuts exist and $\lambda_{(3)}(G) \leq \xi_{(3)}(G)$ for any connected graph G with order at least 7 . Following Ou [16], a graph F of order $n \geq 2 k$ is called a flower if it contains a cut-vertex s such that every component of $F-s$ has order at most $k-1$. The following result was given by Zhang and Yuan in [21].

Theorem 1 [21] Let G be a connected graph of minimum degree δ and order $n \geq 2(\delta+1)$ that is not isomorphic to any $G_{m, \delta}^{*}$ (where $G_{m, \delta}^{*}$ consists of m disjoint copies of K_{δ} and a new vertex u adjacent to all the vertices in those copies). For all $k \leq \delta+1, G$ is $\lambda_{(k)}$-connected with $\lambda_{(k)}(G) \leq \xi_{(k)}(G)$.

A graph G is said to be $\lambda_{(k)}$-optimal if $\lambda_{(k)}(G)=\xi_{(k)}(G)$. For other interesting results on the k-restricted edge connectivity of graphs see $[1,3$, $4,14,19,20,22]$, among others.

2 Main results

Given a matched sum graph $G_{1} M G_{2}$, it is clear that if $B \subset V\left(G_{i}\right)$ is a set of cardinality k that induces a connected subgraph of G_{i} then

$$
\xi_{(k)}\left(G_{1} M G_{2}\right) \leq\left|w_{G_{1} M G_{2}}(B)\right|=\left|w_{G_{i}}(B)\right|+k
$$

which in particular yields to the following remark.
Remark 2 Let $k \geq 1$ and let G_{1}, G_{2} be two graphs of minimum k-edge degrees $\xi_{(k)}\left(G_{1}\right), \xi_{(k)}\left(G_{2}\right)$, respectively. Then for every matched sum graph $G_{1} M G_{2}$ it follows that

$$
\xi_{(k)}\left(G_{1} M G_{2}\right) \leq \min \left\{\xi_{(k)}\left(G_{1}\right), \xi_{(k)}\left(G_{2}\right)\right\}+k
$$

A useful result obtained in [3] is recalled next.
Lemma 3 [3] Let G be a connected graph with minimum degree δ and minimum k-edge-degree $\xi_{(k)}(G)$ with $k \leq \delta+1$. Then for every $k \geq 2$ and for every $j \in\{0, \ldots, k\}$ it follows that

$$
\xi_{(k)}(G) \geq \xi_{(k-j)}(G)+j \delta-2 j k+j(j+1)
$$

The following theorem constitutes the main result of this work.
Theorem 4 Let $2 \leq k \leq 5$ be an integer and let G_{1}, G_{2} be two connected $\lambda_{(k)}$-connected graphs of the same order n and minimum degrees $\delta\left(G_{1}\right) \geq k$, $\delta\left(G_{2}\right) \geq k$, respectively. Then every matched sum graph $G_{1} M G_{2}$ is $\lambda_{(k)^{-}}$ connected and

$$
\begin{aligned}
& \min \left\{n, \lambda_{(k)}\left(G_{1}\right)+\lambda_{(k)}\left(G_{2}\right), \lambda_{(k)}\left(G_{1}\right)+\delta\left(G_{1}\right)-k+3,\right. \\
& \left.\quad \lambda_{(k)}\left(G_{2}\right)+\delta\left(G_{2}\right)-k+3, \xi_{(k)}\left(G_{1} M G_{2}\right)\right\} \\
& \leq \lambda_{(k)}\left(G_{1} M G_{2}\right) \leq \xi_{(k)}\left(G_{1} M G_{2}\right)
\end{aligned}
$$

Proof: Set $\mathcal{M}=G_{1} M G_{2}$ from now on. Observe that $n \geq 2 k$ because both G_{1} and G_{2} are $\lambda_{(k)}$-connected. Notice also that \mathcal{M} has no cutvertex, because G_{1} and G_{2} are connected.

Consider first $G_{1} \simeq G_{2} \simeq K_{n}$. In this case, \mathcal{M} is isomorphic to $K_{2} \times K_{n}$, and it is easily seen that this graph is $\lambda_{(k)}$-connected with

$$
\lambda_{(k)}\left(K_{2} \times K_{n}\right)=n<k(n-k+1)=\xi_{(k)}\left(K_{2} \times K_{n}\right)
$$

Suppose now that G_{1} is a noncomplete graph, then $n=\left|V\left(G_{1}\right)\right| \geq$ $\delta\left(G_{1}\right)+2$. First, when $G_{2} \simeq K_{n}$ we get $\delta\left(G_{2}\right)=n-1 \geq \delta\left(G_{1}\right)+1$, hence $\delta(\mathcal{M})=\delta\left(G_{1}\right)+1 \leq n-1$. As a consequence,

$$
|V(\mathcal{M})|=2 n \geq 2(\delta(\mathcal{M})+1)
$$

and \mathcal{M} is $\lambda_{(k)}$-connected with $\lambda_{(k)}(\mathcal{M}) \leq \xi_{(k)}(\mathcal{M})$ following Theorem 1 as \mathcal{M} has no cutvertex. Second, suppose that G_{2} is also a noncomplete graph, $n=\left|V\left(G_{2}\right)\right| \geq \delta\left(G_{2}\right)+2$. Then $\delta(\mathcal{M})=\min \left\{\delta\left(G_{1}\right), \delta\left(G_{2}\right)\right\}+1 \leq n-1$ and $|V(\mathcal{M})|=2 n \geq 2(\delta(\mathcal{M})+1)$ holds. Again from Theorem 1 it follows that \mathcal{M} is $\lambda_{(k)}$-connected with $\lambda_{(k)}(\mathcal{M}) \leq \xi_{(k)}(\mathcal{M})$.

The rest of the proof concerns with the lower bound for $\lambda_{(k)}(\mathcal{M})$. Let $W \subset E(\mathcal{M})$ be a minimum k-restricted edge cut of $\mathcal{M},|W|=\lambda_{(k)}(\mathcal{M})$. Hence $\mathcal{M}-W$ consists of exactly two connected components, H, H^{*} such that $|V(H)| \geq k$ and $\left|V\left(H^{*}\right)\right| \geq k$. Observe that $w(V(H))=w\left(V\left(H^{*}\right)\right)=$ $W=\left[V(H), V\left(H^{*}\right)\right]$. If $|V(H)|=k$, then $\lambda_{(k)}(\mathcal{M})=|W| \geq \xi_{(k)}(\mathcal{M})$ and the result holds. If $W=M$ the result is also true since $\lambda_{(k)}(\mathcal{M})=|M|=n$. Let us next prove the following claim.

Claim A. The inequality $\lambda_{(k)}(\mathcal{M}) \geq \xi_{(k)}(\mathcal{M})$ holds provided that any of the following situations occurs:
(i) There exist two sets $S_{1} \subset V\left(G_{1}\right), S_{2} \subset V\left(G_{2}\right), 2 \leq\left|S_{1}\right|=k-$ $2,\left|S_{2}\right|=k-1$, such that the following conditions hold altogether: $S_{1} \cup S_{2} \subseteq V(H)$; the subgraphs $\mathcal{M}\left[S_{i}\right]$ are connected, $i=1,2 ; \mathcal{M}-W$ contains no edge $c d$ with $c \in S_{i}$ and $d \in\left(V\left(G_{i}\right) \backslash S_{i}\right) \cap V(H), i=1,2$; there exist two vertices $u \in S_{1}, u^{\prime} \in S_{2}$ such that $u u^{\prime} \in E(\mathcal{M}-W)$; $\mathcal{M}-W$ contains no edge $a b^{\prime} \in M$ where $a \in\left(V\left(G_{1}\right) \backslash S_{1}\right) \cap V(H)$ and $b^{\prime} \in S_{2}-u^{\prime}$.
(ii) There exist two sets $S_{1} \subset V\left(G_{1}\right), S_{2} \subset V\left(G_{2}\right),\left|S_{1}\right|=\left|S_{2}\right|=k-1$ for $3 \leq k \leq 4$, and $\left|S_{1}\right|=\left|S_{2}\right| \in\{k-2, k-1\}$ for $k=5$, such that the following conditions hold altogether: $S_{1} \cup S_{2}=V(H)$; the subgraphs $\mathcal{M}\left[S_{i}\right]$ are connected, $i=1,2$; there exist two vertices $u \in S_{1}, u^{\prime} \in S_{2}$ such that $u u^{\prime} \in E(\mathcal{M}-W)$.
(iii) $k=5$ and there exist $S_{1}=\{u, w\} \subset V\left(G_{1}\right), S_{2}=\left\{u^{\prime}, v^{\prime}, t^{\prime}\right\} \subset V\left(G_{2}\right)$, $S_{3}=\left\{w^{\prime}, z^{\prime}\right\} \subset V\left(G_{2}\right)\left(S_{2} \cap S_{3}=\emptyset\right),\left|S_{1}\right|=\left|S_{3}\right|=2,\left|S_{2}\right|=3$, such that the following conditions hold altogether: $S_{1} \cup S_{2} \cup S_{3} \subseteq$ $V(H)$; the subgraphs $\mathcal{M}\left[S_{i}\right]$ are connected, $i=1,2,3 ; \mathcal{M}-W$ contains no edge $c d$ with $c \in S_{i}$ and $d \in\left(V\left(G_{i}\right) \backslash S_{i}\right) \cap V(H), i=1,2,3$; $u u^{\prime}, w w^{\prime} \in E(\mathcal{M}-W) ; \mathcal{M}-W$ contains no edge $a b^{\prime} \in M$ where $a \in\left(V\left(G_{1}\right) \backslash S_{1}\right) \cap V(H)$ and $b^{\prime} \in S_{2}-u^{\prime}$.
(iv) $k=5$ and there exist $S_{1}=\{u, w\} \subset V\left(G_{1}\right), S_{2}=\left\{u^{\prime}, v^{\prime}, t^{\prime}, z^{\prime}\right\} \subset$ $V\left(G_{2}\right),\left|S_{1}\right|=2,\left|S_{2}\right|=4$, such that the following conditions hold
altogether: $S_{1} \cup S_{2} \subseteq V(H)$; the subgraphs $\mathcal{M}\left[S_{i}\right]$ are connected, $i=$ 1,$2 ; \mathcal{M}-W$ contains no edge $c d$ with $c \in S_{i}$ and $d \in\left(V\left(G_{i}\right) \backslash S_{i}\right) \cap$ $V(H), i=1,2 ; u u^{\prime} \in E(\mathcal{M}-W) ; \mathcal{M}-W$ contains no edge $a b^{\prime} \in M$ where $a \in\left(V\left(G_{1}\right) \backslash S_{1}\right) \cap V(H)$ and $b^{\prime} \in S_{2}-u^{\prime}$.
(v) $k=5$ and there exist $S_{1}=\{u, w\} \subset V\left(G_{1}\right), S_{2}=\left\{u^{\prime}, v^{\prime}\right\} \subset V\left(G_{2}\right)$, $S_{3}=\{v, t\} \subset V\left(G_{1}\right)\left(S_{1} \cap S_{3}=\emptyset\right),\left|S_{1}\right|=\left|S_{2}\right|=\left|S_{3}\right|=2$, such that the following conditions hold altogether: $S_{1} \cup S_{2} \cup S_{3} \subseteq V(H)$; the subgraphs $\mathcal{M}\left[S_{i}\right]$ are connected, $i=1,2,3 ; \mathcal{M}-W$ contains no edge cd with $c \in S_{i}, d \in\left(V\left(G_{i}\right) \backslash S_{i}\right) \cap V(H), i=1,2,3 ; u u^{\prime}, v v^{\prime} \in E(\mathcal{M}-W)$.

Proof of Claim A. We give the proof for items (i), (ii) and (iii), since (iv) and (v) are proved similarly.
(i) Considering the set $\Omega=\{u\} \cup S_{2}$ of cardinality k it is clear that the subgraph of \mathcal{M} induced by Ω is connected. Observe that, for every vertex $v \in S_{1}-u$, it may exist an edge in $M \backslash W$ which connects v and some vertex in $\left(V\left(G_{2}\right) \backslash S_{2}\right) \cap V(H)$. Then,

$$
\begin{aligned}
\lambda_{(k)}(\mathcal{M}) & =\left|w_{\mathcal{M}}(V(H))\right| \\
& \geq\left|w_{\mathcal{M}}(\Omega)\right|+\sum_{v \in S_{1}-u}\left(d_{\mathcal{M}}(v)-2|[v, \Omega]|-1\right)-\left(\left|S_{1}\right|-1\right)\left(\left|S_{1}\right|-2\right) \\
& \geq \xi_{(k)}(\mathcal{M})+\sum_{v \in S_{1}-u}(k+1-2 \cdot 2-1)-(k-3)(k-4) \\
& \geq \xi_{(k)}(\mathcal{M})+(k-3)(k-4)-(k-3)(k-4)=\xi_{(k)}(\mathcal{M})
\end{aligned}
$$

after taking into account that $|[v, \Omega]| \leq 2$ for every $v \in S_{1}-u$.
(ii) When $\left|S_{1}\right|=\left|S_{2}\right|=k-1$ consider again the set $\Omega=\{u\} \cup S_{2}$, which induces a connected subgraph of \mathcal{M}. It follows that:

$$
\begin{aligned}
\lambda_{(k)}(\mathcal{M}) & =\left|w_{\mathcal{M}}(V(H))\right| \\
& \geq\left|w_{\mathcal{M}}(\Omega)\right|+\sum_{v \in S_{1}-u}\left(d_{\mathcal{M}}(v)-2|[v, \Omega]|\right)-\left(\left|S_{1}\right|-1\right)\left(\left|S_{1}\right|-2\right) \\
& \geq \xi_{(k)}(\mathcal{M})+\sum_{v \in S_{1}-u}(k+1-2 \cdot 2)-(k-2)(k-3) \\
& \geq \xi_{(k)}(\mathcal{M})+(k-2)(k-3)-(k-2)(k-3)=\xi_{(k)}(\mathcal{M})
\end{aligned}
$$

And when $\left|S_{1}\right|=\left|S_{2}\right|=k-2=3(k=5)$, take the set $L=\{u, w\} \cup S_{2}$ with $u w \in E\left(G_{1}\right), w \in S_{1}$. This set has cardinality $k=5$ and clearly induces a connected subgraph of \mathcal{M}. In this case, if $S_{1} \backslash\{u, w\}=\{z\}$:

$$
\begin{aligned}
\lambda_{(5)}(\mathcal{M}) & =\left|w_{\mathcal{M}}(V(H))\right| \geq\left|w_{\mathcal{M}}(L)\right|+d_{\mathcal{M}}(z)-2|[z, L]| \\
& \geq \xi_{(5)}(\mathcal{M})+(6-2 \cdot 3) \geq \xi_{(5)}(\mathcal{M})
\end{aligned}
$$

noticing that $|[z, L]| \leq 3$.
(iii) Take the set of cardinality five $\Omega=S_{1} \cup\left\{u^{\prime}\right\} \cup S_{3}$, which induces a connected subgraph of \mathcal{M}. Then:

$$
\begin{aligned}
\lambda_{(5)}(\mathcal{M}) & =\left|w_{\mathcal{M}}(V(H))\right| \\
& \geq\left|w_{\mathcal{M}}(\Omega)\right|+d_{\mathcal{M}}\left(v^{\prime}\right)+d_{\mathcal{M}}\left(t^{\prime}\right)-2\left|\left[\left\{v^{\prime}, t^{\prime}\right\}, \Omega\right]\right|-2\left|\left[v^{\prime}, t^{\prime}\right]\right|-1 \\
& \geq \xi_{(5)}(\mathcal{M})+6+6-2 \cdot 2-2-1=\xi_{(5)}(\mathcal{M})+5>\xi_{(5)}(\mathcal{M}),
\end{aligned}
$$

because vertices v^{\prime}, t^{\prime} cannot be adjacent in \mathcal{M} to any vertex of S_{1} and since it may exist one edge in $M \backslash W$ which connects z^{\prime} to some vertex in $\left(V\left(G_{1}\right) \backslash S_{1}\right) \cap V(H)$.

We continue the proof of the theorem by assuming $|V(H)| \geq k+1$, $\left|V\left(H^{*}\right)\right| \geq k+1, W \neq M$, and that none of the aforementioned five situations (i) to (v) of Claim A (or the corresponding ones obtained by interchanging the roles of either G_{1}, G_{2}, or H, H^{*}) occurs. We write heretofore $W=W_{1} \cup W_{M} \cup W_{2}$, with $W_{1} \subset E\left(G_{1}\right), W_{M} \subset M, W_{2} \subset E\left(G_{2}\right)$. Notice that if $W_{i} \neq \emptyset$ then W_{i} is an edge cut of G_{i} due to the minimality of W. The following claim needs to be proved at this point.

Claim B. If $W_{i} \neq \emptyset$, every component of $G_{i}-W_{i}$ has at least k vertices.
Proof of Claim B. We use proof by contradiction. Assume that some component of $G_{i}-W_{i}$ has at most $k-1$ vertices. Let C be such a component of $\left(G_{1}-W_{1}\right) \cup\left(G_{2}-W_{2}\right)$ on at most $k-1$ vertices, chosen so that no other component of $\left(G_{1}-W_{1}\right) \cup\left(G_{2}-W_{2}\right)$ has fewer vertices than C, and (in case two or more components have this minimum order) with the minimum possible number of components of $\left(G_{1}-W_{1}\right) \cup\left(G_{2}-W_{2}\right)$ to which these components are linked by means of an edge (of M) in $\mathcal{M}-W$. Assume without loss of generality that $W_{1} \neq \emptyset$ and that C is a component of $G_{1}-W_{1}$, with $V(C) \subset V(H)$. As \mathcal{M} is $\lambda_{(k)}$-connected it follows that there exist two adjacent vertices $u \in V(C) \subset V\left(G_{1}-W_{1}\right) \cap V(H)$ and $u^{\prime} \in V\left(G_{2}-W_{2}\right) \cap V(H)$ such that the edge $u u^{\prime} \in M$ does not belong to W. Let us prove now the following assertion:

$$
\begin{equation*}
\text { All components of } H-V(C) \text { have at least } k \text { vertices. } \tag{1}
\end{equation*}
$$

To this end, let C^{*} be a component of $G_{2}-W_{2}$ to which C is linked by means of an edge of $M \backslash W$, and assume that $|V(C)| \leq\left|V\left(C^{*}\right)\right| \leq k-1$ (otherwise the component of $H-V(C)$ containing C^{*} has cardinality at least k).

Suppose first that $|V(C)|=1, V(C)=\{u\}$. Then $H-u$ is connected as vertex u is only adjacent in H to vertex $u^{\prime} \in V\left(C^{*}\right)$, and $|V(H-u)|=$ $|V(H)|-1 \geq k$. Thus, assertion (1) is proved when $k=2$.

Now, suppose that $2 \leq|V(C)| \in\{k-2, k-1\}$, hence $3 \leq k \leq 5$. Observe that C^{*} must be linked in $\mathcal{M}-W$ (by means of an edge of $M \backslash W$) to some component $\tilde{C} \neq C$ of $G_{1}-W_{1}$. Indeed, let us see that supposing otherwise that the only component of $G_{1}-W_{1}$ to which C^{*} is linked is C yields to one of the five situations of Claim A, against our assumptions. When $\left|V\left(C^{*}\right)\right|>|V(C)|$ it must be $\left|V\left(C^{*}\right)\right|=k-1$ and $|V(C)|=k-2$, which corresponds to situation (i) of Claim A; and when $\left|V\left(C^{*}\right)\right|=|V(C)|$, it follows that the only component of $G_{2}-W_{2}$ to which C is linked is C^{*} (by the way C has been chosen), that is to say, $V(H)=V(C) \cup V\left(C^{*}\right)$ and then $\left|V\left(C^{*}\right)\right|=|V(C)|=k-1$ for $3 \leq k \leq 4$ or $\left|V\left(C^{*}\right)\right|=|V(C)| \in$ $\{k-2, k-1\}=\{3,4\}$ for $k=5$, because $|V(H)| \geq k+1$; this is situation (ii) of Claim A.

Hence when $2 \leq|V(C)| \in\{k-2, k-1\}$ it follows that C^{*} is linked in $\mathcal{M}-W$ (by means of an edge of $M \backslash W$) to some component $\tilde{C} \neq C$ of $G_{1}-W_{1}$. In this case, the component of $H-V(C)$ containing C^{*} has cardinality at least

$$
\begin{array}{ll}
\left|V\left(C^{*}\right)\right|+|V(\tilde{C})| \geq 2 \cdot 2=4, & \text { if } k=3 \\
\left|V\left(C^{*}\right)\right|+|V(\tilde{C})| \geq 2(k-2) \geq k, & \text { if } k=4,5
\end{array}
$$

Observe that assertion (1) is then proved when $k=3,4$. Hence, to complete the proof of (1) it must be assumed next that $k=5$ and $|V(C)|=2$, $V(C)=\{u, w\}$.

First, if C^{*} is not linked in $\mathcal{M}-W$ (by means of an edge of $M \backslash W$) to any component $\tilde{C} \neq C$ of $G_{1}-W_{1}\left(H-V\left(C^{*}\right)\right.$ is connected), it turns out that $\left|V\left(C^{*}\right)\right| \in\{3,4\}$; otherwise $\left|V\left(C^{*}\right)\right|=2$ and so $V(H)=V(C) \cup V\left(C^{*}\right)$ according to the way C has been chosen, which is an absurdity because $|V(H)| \geq 6$ by assumption. When $\left|V\left(C^{*}\right)\right|=3, C$ is necessarily linked in $\mathcal{M}-W$ (by means of an edge of $M \backslash W$) to some component $\hat{C} \neq C^{*}$ of $G_{2}-W_{2}$, because $|V(H)| \geq 6$. If $|V(\hat{C})| \geq 3$ then $\left|V(H) \backslash V\left(C^{*}\right)\right| \geq$ $|V(C)|+|V(\hat{C})| \geq 5$; hence the set of edges

$$
W^{\prime}=\left(W \cup\left\{u u^{\prime}\right\}\right) \backslash w_{G_{2}}\left(V\left(C^{*}\right)\right)
$$

is a 5 -restricted edge cut of \mathcal{M}, of cardinality

$$
\left|W^{\prime}\right| \leq|W|+1-\left|V\left(C^{*}\right)\right|\left(\delta\left(G_{2}\right)-2\right) \leq|W|-8<|W|
$$

an absurdity. As a consequence $|V(\hat{C})|=2$, situation (iii) of Claim A. The case $\left|V\left(C^{*}\right)\right|=4$ corresponds to situation (iv) of Claim A.

Second, suppose that C^{*} is linked in $\mathcal{M}-W$ by means of an edge of $M \backslash W$ to some component $\tilde{C} \neq C$ of $G_{1}-W_{1}$. When $\left|V\left(C^{*}\right)\right| \geq 3$ assertion (1) holds, as $\left|V\left(C^{*}\right)\right|+|V(\tilde{C})| \geq 3+2=5$. Hence, consider the case $\left|V\left(C^{*}\right)\right|=2$. Again, if $|V(\tilde{C})| \geq 3$ we are done, then assume $|V(\tilde{C})|=2$, which corresponds to situation (v) of Claim A. At this point, assertion (1) has been shown to be true for all $2 \leq k \leq 5$.

Once we have seen that every component of $H-V(C)$ has order at least k, it follows that the set of edges
$W^{*}=\left(W \cup\left\{w w^{\prime}: w \in V(C), w^{\prime} \in V\left(G_{2}\right), w w^{\prime} \in E(H) \backslash W_{M}\right\}\right) \backslash w_{G_{1}}(V(C))$
is a k-restricted edge cut of \mathcal{M}. But W^{*} has cardinality

$$
\left|W^{*}\right| \leq|W|+|V(C)|-\left|w_{G_{1}}(V(C))\right| \leq|W|-|V(C)| \leq|W|-1
$$

(because $\left|w_{G_{1}}(V(C))\right| \geq 2|V(C)|$ since $\delta\left(G_{1}\right) \geq k$ and $|V(C)| \leq k-1$), an absurdity. Then the claim has been proved.

As a consequence of Claim B , if $W_{i} \neq \emptyset$ then W_{i} is indeed a k-restricted edge cut of G_{i}, hence $\left|W_{i}\right| \geq \lambda_{(k)}\left(G_{i}\right)$.

Therefore, when both $W_{1}, W_{2} \neq \emptyset$, then $\lambda_{(k)}(\mathcal{M})=|W| \geq\left|W_{1}\right|+\left|W_{2}\right| \geq$ $\lambda_{(k)}\left(G_{1}\right)+\lambda_{(k)}\left(G_{2}\right)$, and the theorem holds. Hence we may assume $W_{1} \neq \emptyset$ and $W_{2}=\emptyset$, and in this case $V(H) \subset V\left(G_{1}\right)$ and $k+1 \leq|V(H)|=\left|W_{M}\right|$. It follows that

$$
\begin{equation*}
\lambda_{(k)}(\mathcal{M})=|W|=\left|W_{1}\right|+\left|W_{M}\right|=\left|W_{1}\right|+|V(H)| . \tag{2}
\end{equation*}
$$

Set $r=|V(H)| \geq k+1$. First observe that if $r \geq \delta\left(G_{1}\right)-k+3$, then from (2) and from the fact that $\left|W_{1}\right| \geq \lambda_{(k)}\left(G_{1}\right)$ (because W_{1} is a k-restricted edge cut of G_{1}) it follows

$$
\lambda_{(k)}(\mathcal{M}) \geq \lambda_{(k)}\left(G_{1}\right)+\delta\left(G_{1}\right)-k+3,
$$

and the theorem holds. Therefore we assume $k+1 \leq r \leq \delta\left(G_{1}\right)-k+2$. By Lemma 3 we have

$$
\begin{equation*}
\left|W_{1}\right| \geq \xi_{(r)}\left(G_{1}\right) \geq \xi_{(k)}\left(G_{1}\right)+(r-k)\left(\delta\left(G_{1}\right)-r-k+1\right) \tag{3}
\end{equation*}
$$

If $r \leq \delta\left(G_{1}\right)-k+1$, then $(r-k)\left(\delta\left(G_{1}\right)-r-k+1\right) \geq 0$, hence from (2), (3), and from Remark 2 it follows that

$$
\lambda_{(k)}(\mathcal{M}) \geq \xi_{(k)}\left(G_{1}\right)+r \geq \xi_{(k)}\left(G_{1}\right)+k+1>\xi_{(k)}(\mathcal{M})
$$

Suppose finally that $r=|V(H)|=\delta\left(G_{1}\right)-k+2$. Taking into account Remark 2 and expressions (2) and (3) yields
$\lambda_{(k)}(\mathcal{M}) \geq \xi_{(k)}\left(G_{1}\right)+\left(2 k-\delta\left(G_{1}\right)-2\right)+\left(\delta\left(G_{1}\right)-k+2\right)=\xi_{(k)}\left(G_{1}\right)+k \geq \xi_{(k)}(\mathcal{M})$.
Similarly, under the alternative assumption $W_{2} \neq \emptyset$ and $W_{1}=\emptyset$ we obtain either

$$
\lambda_{(k)}(\mathcal{M}) \geq \xi_{(k)}(\mathcal{M})
$$

or

$$
\lambda_{(k)}(\mathcal{M}) \geq \lambda_{(k)}\left(G_{2}\right)+\delta\left(G_{2}\right)-k+3
$$

and the proof of the theorem is now complete.
A very similar expression to that in Theorem 4 was obtained in [2] for matched sum graphs when $k=2$. In fact, the only difference lies on the terms $\lambda_{(k)}\left(G_{i}\right)+\delta\left(G_{i}\right)-k+3=\lambda_{(2)}\left(G_{i}\right)+\delta\left(G_{i}\right)+1$ for $i=1,2$ (in the lower bound for $\xi_{(2)}\left(G_{1} M G_{2}\right)$ in Theorem 4), which are one unit larger than the corresponding terms in the mentioned result in [2]; in this sense, Theorem 4 (slightly) improves the result in [2] for the case $k=2$. When $k=3$ and $G_{1} \simeq G_{2}$ (then $G_{1} M G_{2}$ is a permutation graph), Theorem 4 recovers the main result in [3]. Hence the case $k=3$ of Theorem 4 is a natural generalization for matched sum graphs of the corresponding known result for permutation graphs. As far as we know, cases $k=4,5$ of Theorem 4 must be considered as new contributions for the k-restricted edge connectivity of matched sum graphs (thus, also for permutation graphs).

The following results - consequences of Theorem 4-provide conditions on G_{1}, G_{2} to guarantee $\lambda_{(k)}$-optimality for matched sum graphs $G_{1} M G_{2}$ $\left(\lambda_{(k)}\left(G_{1} M G_{2}\right)=\xi_{(k)}\left(G_{1} M G_{2}\right)\right)$ when $2 \leq k \leq 5$.

Corollary 5 Let $3 \leq k \leq 5$ be an integer and let G_{1}, G_{2} be two connected $\lambda_{(k)}$-connected graphs of minimum degrees $\delta\left(G_{1}\right) \geq 2 k-3, \delta\left(G_{2}\right) \geq 2 k-3$ and order $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right| \geq \min \left\{\xi_{(k)}\left(G_{1}\right), \xi_{(k)}\left(G_{2}\right)\right\}+k$, and such that $\lambda_{(k)}\left(G_{i}\right) \geq \xi_{(k)}\left(G_{i}\right)-\delta\left(G_{i}\right)+2 k-3$ for both $i=1,2$. Then every matched sum graph $G_{1} M G_{2}$ is $\lambda_{(k)}$-optimal.

Corollary 6 Let $3 \leq k \leq 5$ be an integer and let G_{1}, G_{2} be two connected $\lambda_{(k)}$-connected graphs such that $\lambda_{(k)}\left(G_{1}\right) \leq \lambda_{(k)}\left(G_{2}\right)$. Suppose that G_{1} and G_{2} are $\lambda_{(k)}$-optimal, with minimum degrees $\delta\left(G_{1}\right) \geq 2 k-3, \delta\left(G_{2}\right) \geq k+2$ and order $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right| \geq \xi_{(k)}\left(G_{1}\right)+k$. Then every matched sum graph $G_{1} M G_{2}$ is $\lambda_{(k) \text {-optimal. }}$

References

[1] C. Balbuena, P. García-Vázquez and X. Marcote. Sufficient conditions for λ^{\prime}-optimality in graphs with girth g. J. Graph Theory, 52:73-86, 2006.
[2] C. Balbuena, P. García-Vázquez and X. Marcote. Connectivity measures in matched sum graphs. Discrete Math., 308:1985-1993, 2008.
[3] C. Balbuena, D. González-Moreno and X. Marcote. On the 3restricted edge connectivity of permutation graphs. Discrete Appl. Math., 157:1586-1591, 2009.
[4] C. Balbuena, X. Marcote and P. García-Vázquez. On restricted connectivities of permutation graphs. Networks, 45:113-118, 2005.
[5] P. Bonsma, N. Ueffing and L. Volkmann. Edge-cuts leaving components of order at least three. Discrete Math., 256(1-2):431-439, 2002.
[6] G. Chartrand and F. Harary. Planar permutation graphs. Ann. Inst. H. Poincaré, Sec. B, 3:433-438, 1967.
[7] Gary Chartrand and Linda Lesniak. Graphs and Digraphs. Chapman and Hall, London, UK, 1996.
[8] A.H. Esfahanian and S.L. Hakimi. On computing a conditional edgeconnectivity of a graph. Information Process. Lett., 27:195-199, 1988.
[9] J. Fàbrega and M.A. Fiol. Extraconnectivity of graphs with large girth. Discrete Math., 127:163-170, 1994.
[10] J. Fàbrega and M.A. Fiol. On the extraconnectivity of graphs. Discrete Math., 155:49-57, 1996.

On the k-restricted edge-connectivity of matched sum graphs X. Marcote
[11] J.P. Georges and D.W. Mauro. On generalized Petersen graphs labeled with a condition at distance two. Discrete Math., 259:311-318, 2002.
[12] W. Goddard, M.E. Raines and P.J. Slater. Distance and connectivity measures in permutation graphs. Discrete Math., 271:61-70, 2003.
[13] F. Harary. Conditional connectivity. Networks, 13:347-357, 1983.
[14] A. Hellwig and L. Volkmann. Sufficient conditions for graphs to be λ^{\prime}-optimal, super-edge-connected, and maximally edge-connected. J. Graph Theory, 48:228-246, 2005.
[15] H.-J. Lai. Large survivable nets and the generalized prisms. Discrete Appl. Math., 61:181-185, 1995.
[16] J. Ou. Edge cuts leaving components of order at least m. Discrete Math., 305(1-3):365-371, 2005.
[17] B. Piazza. Edge-connectivity of permutation graphs. Congr. Numer., 65:7-16, 1988.
[18] B.L. Piazza and R.D. Ringeisen. Connectivity of generalized prisms over G. Discrete Appl. Math., 30:229-233, 1991.
[19] S. Wang, J. Yuan and A. Liu. k-Restricted edge connectivity for some interconnection networks. Applied Math. and Comput., 201:587-596, 2008.
[20] Z. Zhang. Sufficient conditions for restricted-edge-connectivity to be optimal. Discrete Math., 307:2891-2899, 2007.
[21] Z. Zhang and J. Yuan. A proof of an inequality concerning k-restricted edge connectivity. Discrete Math., 304:128-134, 2005.
[22] Z. Zhang and J. Yuan. Degree conditions for restricted-edgeconnectivity and isoperimetric-edge-connectivity to be optimal. Discrete Math., 307:293-298, 2007.

