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Abstract

A matched sum graph G1MG2 of two graphs G1 and G2 of the
same order n is obtained by adding to the union (or sum) of G1

and G2 a set M of n independent edges which join vertices in
V (G1) to vertices in V (G2). When G1 and G2 are isomorphic,
G1MG2 is just a permutation graph. In this work we derive
bounds for the k-restricted edge connectivity λ(k) of matched
sum graphs G1MG2 for 2 ≤ k ≤ 5, and present some sufficient
conditions for the optimality of λ(k)(G1MG2).

1 Introduction

Georges and Mauro introduced in [11] the concept of matched sum graphs as
follows. Given two graphs G1, G2 of the same order |V (G1)| = |V (G2)| = n
and a set M of n independent edges with one endvertex in V (G1) and the
other one in V (G2) (a matching between V (G1) and V (G2)), the matched
sum graph of G1 and G2 is the graph with vertex set V (G1) ∪ V (G2) and
edge set E(G1) ∪ E(G2) ∪M . Even though these authors denoted such a
graph by G1M

+G2, we will simplify this writing to G1MG2 heretofore for
the sake of simplicity. Matched sum graphs are in fact permutation graphs
—as they were introduced by Chartrand and Harary in [6]— when G1 and
G2 are isomorphic; hence, matched sum graphs generalize the concept of
permutation graphs. Examples of permutation graphs include hypercubes,
prisms and some generalized Petersen graphs; see [12, 15, 17, 18] for results
on permutation graphs.
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This work is devoted to study a particular measure of the connectivity
of matched sum graphs, extending (and somehow improving) some other
related known results. This measure —which can be seen within the frame-
work of conditional connectivities, introduced by Harary in [13]— is the so-
called k-restricted edge connectivity of a graph G, denoted λ(k)(G), which
corresponds to the minimum cardinality of a set of edges of G whose dele-
tion results in a disconnected graph with all its components of cardinality
at least k. We first derive bounds for the k-restricted edge connectivity
of matched sum graphs G = G1MG2 for 2 ≤ k ≤ 5. As a consequence
of this, we can present some sufficient conditions to guarantee optimality
for λ(k)(G), G being a matched sum graph. These new results extend and
improve those obtained in [2, 3] in some senses.

From now on, every graph will be assumed to be simple; that is, with
neither loops nor multiple edges.

1.1 Notation and terminology

Unless otherwise stated we follow [7] for additional terminology and defini-
tions.

Let G be a simple graph with vertex set V (G) and edge set E(G). For
every subset X of V (G), G[X] denotes the subgraph of G induced by X. For
every vertex x ∈ V (G), the neighborhood of x denoted by N(x) = NG(x)
is the set of vertices that are adjacent to x. The degree of a vertex x is
d(x) = dG(x) = |N(x)|, whereas δ = δ(G) is the minimum degree over all
vertices of G. For every two given proper subsets X,Y of V (G) we denote
by [X,Y ] the set of edges with one end in X and the other end in Y ; when
X = {x}, we write [x, Y ] instead of [{x}, Y ]. If X is a proper subset of
V (G), let us denote by w(X) = wG(X) to the set [X,V (G) \ X]. If the
graph G is connected and 1 ≤ k ≤ |V (G)| is an integer, the minimum
k-edge degree of G is defined as

ξ(k)(G) = min{|w(X)| : |X| = k, G[X] is connected}.

Clearly ξ(1)(G) = δ(G) and ξ(2)(G) = min{d(u)+d(v)−2 : uv ∈ E(G)}, the
latter being usually denoted as ξ(G) and called the minimum edge-degree
of G.

Inspired by the definition of conditional connectivity introduced by
Harary [13], Fàbrega and Fiol [9, 10] proposed the concept of k-restricted
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edge connectivity as follows. For an integer k ≥ 1 an edge cut W is called
a k-restricted edge cut if every component of G−W has at least k vertices,
where k ≥ 1 (in the former version due to Fàbrega and Fiol all components
obtained by deleting a k-restricted edge cut W from G should have at least
k+1 vertices, hence k ≥ 0 was taken; nevertheless, in view of recent related
literature we consider in this work cardinality at least k for the components
of G − W ). Assuming that G has k-restricted edge cuts (then G is said
to be λ(k)-connected), the k-restricted edge connectivity of G, denoted by
λ(k)(G), is defined as the minimum cardinality over all k-restricted edge
cuts of G. From the definition, we immediately have that if λ(k)(G) exists,
then λ(i)(G) exists for any i < k and λ(i)(G) ≤ λ(k)(G). Observe that any
edge cut of G is a 1-restricted edge cut and λ(1)(G) is just the standard con-
nectivity λ(G). Furthermore, the restricted edge connectivity λ′(G) defined
in [8] is λ′(G) = λ(2)(G).

As far as the existence of k-restricted edge cuts is concerned, it was
shown in [8] that λ(2)(G) exists and λ(2)(G) ≤ ξ(G) if G is not a star
and its order is at least 4. For k = 3, it was shown [5, 16] that except
for a special class of graphs named flowers, 3-restricted edge cuts exist
and λ(3)(G) ≤ ξ(3)(G) for any connected graph G with order at least 7.
Following Ou [16], a graph F of order n ≥ 2k is called a flower if it contains
a cut-vertex s such that every component of F − s has order at most k− 1.
The following result was given by Zhang and Yuan in [21].

Theorem 1 [21] Let G be a connected graph of minimum degree δ and
order n ≥ 2(δ +1) that is not isomorphic to any G∗m,δ (where G∗m,δ consists
of m disjoint copies of Kδ and a new vertex u adjacent to all the vertices in
those copies). For all k ≤ δ+1, G is λ(k)-connected with λ(k)(G) ≤ ξ(k)(G).

A graph G is said to be λ(k)-optimal if λ(k)(G) = ξ(k)(G). For other
interesting results on the k-restricted edge connectivity of graphs see [1, 3,
4, 14, 19, 20, 22], among others.

2 Main results

Given a matched sum graph G1MG2, it is clear that if B ⊂ V (Gi) is a set
of cardinality k that induces a connected subgraph of Gi then

ξ(k)(G1MG2) ≤ |wG1MG2(B)| = |wGi(B)|+ k,
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which in particular yields to the following remark.

Remark 2 Let k ≥ 1 and let G1, G2 be two graphs of minimum k-edge
degrees ξ(k)(G1), ξ(k)(G2), respectively. Then for every matched sum graph
G1MG2 it follows that

ξ(k)(G1MG2) ≤ min{ξ(k)(G1), ξ(k)(G2)}+ k.

A useful result obtained in [3] is recalled next.

Lemma 3 [3] Let G be a connected graph with minimum degree δ and
minimum k-edge-degree ξ(k)(G) with k ≤ δ + 1. Then for every k ≥ 2 and
for every j ∈ {0, . . . , k} it follows that

ξ(k)(G) ≥ ξ(k−j)(G) + jδ − 2jk + j(j + 1).

The following theorem constitutes the main result of this work.

Theorem 4 Let 2 ≤ k ≤ 5 be an integer and let G1, G2 be two connected
λ(k)-connected graphs of the same order n and minimum degrees δ(G1) ≥ k,
δ(G2) ≥ k, respectively. Then every matched sum graph G1MG2 is λ(k)-
connected and

min{n, λ(k)(G1) + λ(k)(G2), λ(k)(G1) + δ(G1)− k + 3,

λ(k)(G2) + δ(G2)− k + 3, ξ(k)(G1MG2)}
≤ λ(k)(G1MG2) ≤ ξ(k)(G1MG2).

Proof: Set M = G1MG2 from now on. Observe that n ≥ 2k because
both G1 and G2 are λ(k)-connected. Notice also that M has no cutvertex,
because G1 and G2 are connected.

Consider first G1  G2  Kn. In this case, M is isomorphic to K2×Kn,
and it is easily seen that this graph is λ(k)-connected with

λ(k)(K2 ×Kn) = n < k(n− k + 1) = ξ(k)(K2 ×Kn).

Suppose now that G1 is a noncomplete graph, then n = |V (G1)| ≥
δ(G1) + 2. First, when G2  Kn we get δ(G2) = n− 1 ≥ δ(G1) + 1, hence
δ(M) = δ(G1) + 1 ≤ n− 1. As a consequence,

|V (M)| = 2n ≥ 2(δ(M) + 1),
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and M is λ(k)-connected with λ(k)(M) ≤ ξ(k)(M) following Theorem 1 as
M has no cutvertex. Second, suppose that G2 is also a noncomplete graph,
n = |V (G2)| ≥ δ(G2) + 2. Then δ(M) = min{δ(G1), δ(G2)} + 1 ≤ n − 1
and |V (M)| = 2n ≥ 2(δ(M) + 1) holds. Again from Theorem 1 it follows
that M is λ(k)-connected with λ(k)(M) ≤ ξ(k)(M).

The rest of the proof concerns with the lower bound for λ(k)(M). Let
W ⊂ E(M) be a minimum k-restricted edge cut of M, |W | = λ(k)(M).
Hence M−W consists of exactly two connected components, H, H∗ such
that |V (H)| ≥ k and |V (H∗)| ≥ k. Observe that w(V (H)) = w(V (H∗)) =
W = [V (H), V (H∗)]. If |V (H)| = k, then λ(k)(M) = |W | ≥ ξ(k)(M) and
the result holds. If W = M the result is also true since λ(k)(M) = |M | = n.
Let us next prove the following claim.

Claim A. The inequality λ(k)(M) ≥ ξ(k)(M) holds provided that any of
the following situations occurs:

(i) There exist two sets S1 ⊂ V (G1), S2 ⊂ V (G2), 2 ≤ |S1| = k −
2, |S2| = k − 1, such that the following conditions hold altogether:
S1∪S2 ⊆ V (H); the subgraphs M[Si] are connected, i = 1, 2; M−W
contains no edge cd with c ∈ Si and d ∈ (V (Gi)\Si)∩V (H), i = 1, 2;
there exist two vertices u ∈ S1, u′ ∈ S2 such that uu′ ∈ E(M−W );
M−W contains no edge ab′ ∈ M where a ∈ (V (G1) \ S1) ∩ V (H)
and b′ ∈ S2 − u′.

(ii) There exist two sets S1 ⊂ V (G1), S2 ⊂ V (G2), |S1| = |S2| = k−1 for
3 ≤ k ≤ 4, and |S1| = |S2| ∈ {k − 2, k − 1} for k = 5, such that the
following conditions hold altogether: S1 ∪ S2 = V (H); the subgraphs
M[Si] are connected, i = 1, 2; there exist two vertices u ∈ S1, u′ ∈ S2

such that uu′ ∈ E(M−W ).

(iii) k = 5 and there exist S1 = {u,w} ⊂ V (G1), S2 = {u′, v′, t′} ⊂ V (G2),
S3 = {w′, z′} ⊂ V (G2) (S2 ∩ S3 = ∅), |S1| = |S3| = 2, |S2| = 3,
such that the following conditions hold altogether: S1 ∪ S2 ∪ S3 ⊆
V (H); the subgraphsM[Si] are connected, i = 1, 2, 3; M−W contains
no edge cd with c ∈ Si and d ∈ (V (Gi) \ Si) ∩ V (H), i = 1, 2, 3;
uu′, ww′ ∈ E(M − W ); M− W contains no edge ab′ ∈ M where
a ∈ (V (G1) \ S1) ∩ V (H) and b′ ∈ S2 − u′.

(iv) k = 5 and there exist S1 = {u,w} ⊂ V (G1), S2 = {u′, v′, t′, z′} ⊂
V (G2), |S1| = 2, |S2| = 4, such that the following conditions hold
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altogether: S1 ∪ S2 ⊆ V (H); the subgraphs M[Si] are connected, i =
1, 2; M−W contains no edge cd with c ∈ Si and d ∈ (V (Gi) \ Si) ∩
V (H), i = 1, 2; uu′ ∈ E(M−W ); M−W contains no edge ab′ ∈ M
where a ∈ (V (G1) \ S1) ∩ V (H) and b′ ∈ S2 − u′.

(v) k = 5 and there exist S1 = {u,w} ⊂ V (G1), S2 = {u′, v′} ⊂ V (G2),
S3 = {v, t} ⊂ V (G1) (S1 ∩ S3 = ∅), |S1| = |S2| = |S3| = 2, such that
the following conditions hold altogether: S1 ∪ S2 ∪ S3 ⊆ V (H); the
subgraphs M[Si] are connected, i = 1, 2, 3; M−W contains no edge cd
with c ∈ Si, d ∈ (V (Gi)\Si)∩V (H), i = 1, 2, 3; uu′, vv′ ∈ E(M−W ).

Proof of Claim A. We give the proof for items (i), (ii) and (iii), since (iv)
and (v) are proved similarly.

(i) Considering the set Ω = {u} ∪S2 of cardinality k it is clear that the
subgraph of M induced by Ω is connected. Observe that, for every vertex
v ∈ S1 − u, it may exist an edge in M \ W which connects v and some
vertex in (V (G2) \ S2) ∩ V (H). Then,

λ(k)(M) = |wM(V (H))|
≥ |wM(Ω)|+ ∑

v∈S1−u(dM(v) − 2|[v,Ω]| − 1)− (|S1| − 1)(|S1| − 2)

≥ ξ(k)(M) +
∑

v∈S1−u(k + 1− 2 · 2− 1)− (k − 3)(k − 4)

≥ ξ(k)(M) + (k − 3)(k − 4)− (k − 3)(k − 4) = ξ(k)(M),

after taking into account that |[v,Ω]| ≤ 2 for every v ∈ S1 − u.
(ii) When |S1| = |S2| = k−1 consider again the set Ω = {u}∪S2, which

induces a connected subgraph of M. It follows that:

λ(k)(M) = |wM(V (H))|
≥ |wM(Ω)|+

∑
v∈S1−u(dM(v) − 2|[v,Ω]|) − (|S1| − 1)(|S1| − 2)

≥ ξ(k)(M) +
∑

v∈S1−u(k + 1− 2 · 2)− (k − 2)(k − 3)

≥ ξ(k)(M) + (k − 2)(k − 3)− (k − 2)(k − 3) = ξ(k)(M).

And when |S1| = |S2| = k−2 = 3 (k = 5), take the set L = {u,w}∪S2 with
uw ∈ E(G1), w ∈ S1. This set has cardinality k = 5 and clearly induces a
connected subgraph of M. In this case, if S1 \ {u,w} = {z}:

λ(5)(M) = |wM(V (H))| ≥ |wM(L)|+ dM(z)− 2|[z, L]|
≥ ξ(5)(M) + (6− 2 · 3) ≥ ξ(5)(M),

noticing that |[z, L]| ≤ 3.
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(iii) Take the set of cardinality five Ω = S1 ∪ {u′} ∪ S3, which induces
a connected subgraph of M. Then:

λ(5)(M) = |wM(V (H))|
≥ |wM(Ω)|+ dM(v′) + dM(t′)− 2|[{v′, t′},Ω]| − 2|[v′, t′]| − 1
≥ ξ(5)(M) + 6 + 6− 2 · 2− 2− 1 = ξ(5)(M) + 5 > ξ(5)(M),

because vertices v′, t′ cannot be adjacent in M to any vertex of S1 and
since it may exist one edge in M \W which connects z′ to some vertex in
(V (G1) \ S1) ∩ V (H). �

We continue the proof of the theorem by assuming |V (H)| ≥ k + 1,
|V (H∗)| ≥ k + 1, W = M , and that none of the aforementioned five situ-
ations (i) to (v) of Claim A (or the corresponding ones obtained by inter-
changing the roles of either G1, G2, or H, H∗) occurs. We write heretofore
W = W1 ∪WM ∪W2, with W1 ⊂ E(G1), WM ⊂ M , W2 ⊂ E(G2). Notice
that if Wi = ∅ then Wi is an edge cut of Gi due to the minimality of W .
The following claim needs to be proved at this point.

Claim B. If Wi = ∅, every component of Gi −Wi has at least k vertices.

Proof of Claim B. We use proof by contradiction. Assume that some
component of Gi−Wi has at most k−1 vertices. Let C be such a component
of (G1−W1)∪ (G2−W2) on at most k−1 vertices, chosen so that no other
component of (G1 −W1) ∪ (G2 −W2) has fewer vertices than C, and (in
case two or more components have this minimum order) with the minimum
possible number of components of (G1 −W1) ∪ (G2 −W2) to which these
components are linked by means of an edge (of M) in M−W . Assume
without loss of generality that W1 = ∅ and that C is a component of
G1 − W1, with V (C) ⊂ V (H). As M is λ(k)-connected it follows that
there exist two adjacent vertices u ∈ V (C) ⊂ V (G1 − W1) ∩ V (H) and
u′ ∈ V (G2 −W2) ∩ V (H) such that the edge uu′ ∈ M does not belong to
W . Let us prove now the following assertion:

All components of H − V (C) have at least k vertices. (1)

To this end, let C∗ be a component of G2 −W2 to which C is linked by
means of an edge of M \W , and assume that |V (C)| ≤ |V (C∗)| ≤ k − 1
(otherwise the component of H − V (C) containing C∗ has cardinality at
least k).
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Suppose first that |V (C)| = 1, V (C) = {u}. Then H − u is connected
as vertex u is only adjacent in H to vertex u′ ∈ V (C∗), and |V (H − u)| =
|V (H)| − 1 ≥ k. Thus, assertion (1) is proved when k = 2.

Now, suppose that 2 ≤ |V (C)| ∈ {k − 2, k − 1}, hence 3 ≤ k ≤ 5.
Observe that C∗ must be linked inM−W (by means of an edge of M \W )
to some component C̃ = C of G1 −W1. Indeed, let us see that supposing
otherwise that the only component of G1 −W1 to which C∗ is linked is C
yields to one of the five situations of Claim A, against our assumptions.
When |V (C∗)| > |V (C)| it must be |V (C∗)| = k − 1 and |V (C)| = k − 2,
which corresponds to situation (i) of Claim A; and when |V (C∗)| = |V (C)|,
it follows that the only component of G2 −W2 to which C is linked is C∗

(by the way C has been chosen), that is to say, V (H) = V (C) ∪ V (C∗)
and then |V (C∗)| = |V (C)| = k − 1 for 3 ≤ k ≤ 4 or |V (C∗)| = |V (C)| ∈
{k − 2, k − 1} = {3, 4} for k = 5, because |V (H)| ≥ k + 1; this is situation
(ii) of Claim A.

Hence when 2 ≤ |V (C)| ∈ {k − 2, k − 1} it follows that C∗ is linked
in M−W (by means of an edge of M \W ) to some component C̃ = C
of G1 −W1. In this case, the component of H − V (C) containing C∗ has
cardinality at least

|V (C∗)|+ |V (C̃)| ≥ 2 · 2 = 4, if k = 3,

|V (C∗)|+ |V (C̃)| ≥ 2(k − 2) ≥ k, if k = 4, 5.

Observe that assertion (1) is then proved when k = 3, 4. Hence, to complete
the proof of (1) it must be assumed next that k = 5 and |V (C)| = 2,
V (C) = {u,w}.

First, if C∗ is not linked inM−W (by means of an edge of M\W ) to any
component C̃ = C of G1−W1 (H − V (C∗) is connected), it turns out that
|V (C∗)| ∈ {3, 4}; otherwise |V (C∗)| = 2 and so V (H) = V (C) ∪ V (C∗)
according to the way C has been chosen, which is an absurdity because
|V (H)| ≥ 6 by assumption. When |V (C∗)| = 3, C is necessarily linked
in M−W (by means of an edge of M \W ) to some component Ĉ = C∗

of G2 −W2, because |V (H)| ≥ 6. If |V (Ĉ)| ≥ 3 then |V (H) \ V (C∗)| ≥
|V (C)|+ |V (Ĉ)| ≥ 5; hence the set of edges

W ′ = (W ∪ {uu′}) \ wG2(V (C∗))

is a 5-restricted edge cut of M, of cardinality

|W ′| ≤ |W |+ 1− |V (C∗)|(δ(G2)− 2) ≤ |W | − 8 < |W |,
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an absurdity. As a consequence |V (Ĉ)| = 2, situation (iii) of Claim A. The
case |V (C∗)| = 4 corresponds to situation (iv) of Claim A.

Second, suppose that C∗ is linked in M − W by means of an edge
of M \ W to some component C̃ = C of G1 − W1. When |V (C∗)| ≥ 3
assertion (1) holds, as |V (C∗)| + |V (C̃)| ≥ 3 + 2 = 5. Hence, consider
the case |V (C∗)| = 2. Again, if |V (C̃)| ≥ 3 we are done, then assume
|V (C̃)| = 2, which corresponds to situation (v) of Claim A. At this point,
assertion (1) has been shown to be true for all 2 ≤ k ≤ 5.

Once we have seen that every component of H − V (C) has order at
least k, it follows that the set of edges

W ∗ = (W∪{ww′ : w ∈ V (C), w′ ∈ V (G2), ww′ ∈ E(H)\WM})\wG1(V (C))

is a k-restricted edge cut of M. But W ∗ has cardinality

|W ∗| ≤ |W |+ |V (C)| − |wG1(V (C))| ≤ |W | − |V (C)| ≤ |W | − 1

(because |wG1(V (C))| ≥ 2|V (C)| since δ(G1) ≥ k and |V (C)| ≤ k − 1), an
absurdity. Then the claim has been proved. �

As a consequence of Claim B, if Wi = ∅ then Wi is indeed a k-restricted
edge cut of Gi, hence |Wi| ≥ λ(k)(Gi).

Therefore, when both W1,W2 = ∅, then λ(k)(M) = |W | ≥ |W1|+|W2| ≥
λ(k)(G1)+λ(k)(G2), and the theorem holds. Hence we may assume W1 = ∅
and W2 = ∅, and in this case V (H) ⊂ V (G1) and k + 1 ≤ |V (H)| = |WM |.
It follows that

λ(k)(M) = |W | = |W1|+ |WM | = |W1|+ |V (H)|. (2)

Set r = |V (H)| ≥ k + 1. First observe that if r ≥ δ(G1)− k + 3, then from
(2) and from the fact that |W1| ≥ λ(k)(G1) (because W1 is a k-restricted
edge cut of G1) it follows

λ(k)(M) ≥ λ(k)(G1) + δ(G1)− k + 3,

and the theorem holds. Therefore we assume k + 1 ≤ r ≤ δ(G1) − k + 2.
By Lemma 3 we have

|W1| ≥ ξ(r)(G1) ≥ ξ(k)(G1) + (r − k)(δ(G1)− r − k + 1). (3)
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If r ≤ δ(G1)− k + 1, then (r − k)(δ(G1)− r − k + 1) ≥ 0, hence from (2),
(3), and from Remark 2 it follows that

λ(k)(M) ≥ ξ(k)(G1) + r ≥ ξ(k)(G1) + k + 1 > ξ(k)(M).

Suppose finally that r = |V (H)| = δ(G1) − k + 2. Taking into account
Remark 2 and expressions (2) and (3) yields

λ(k)(M) ≥ ξ(k)(G1)+(2k−δ(G1)−2)+(δ(G1)−k+2) = ξ(k)(G1)+k ≥ ξ(k)(M).

Similarly, under the alternative assumption W2 = ∅ and W1 = ∅ we obtain
either

λ(k)(M) ≥ ξ(k)(M)

or
λ(k)(M) ≥ λ(k)(G2) + δ(G2)− k + 3,

and the proof of the theorem is now complete. �

A very similar expression to that in Theorem 4 was obtained in [2] for
matched sum graphs when k = 2. In fact, the only difference lies on the
terms λ(k)(Gi)+δ(Gi)−k+3 = λ(2)(Gi)+δ(Gi)+1 for i = 1, 2 (in the lower
bound for ξ(2)(G1MG2) in Theorem 4), which are one unit larger than the
corresponding terms in the mentioned result in [2]; in this sense, Theorem
4 (slightly) improves the result in [2] for the case k = 2. When k = 3 and
G1  G2 (then G1MG2 is a permutation graph), Theorem 4 recovers the
main result in [3]. Hence the case k = 3 of Theorem 4 is a natural gen-
eralization for matched sum graphs of the corresponding known result for
permutation graphs. As far as we know, cases k = 4, 5 of Theorem 4 must
be considered as new contributions for the k-restricted edge connectivity of
matched sum graphs (thus, also for permutation graphs).

The following results —consequences of Theorem 4— provide conditions
on G1, G2 to guarantee λ(k)-optimality for matched sum graphs G1MG2

(λ(k)(G1MG2) = ξ(k)(G1MG2)) when 2 ≤ k ≤ 5.

Corollary 5 Let 3 ≤ k ≤ 5 be an integer and let G1, G2 be two connected
λ(k)-connected graphs of minimum degrees δ(G1) ≥ 2k − 3, δ(G2) ≥ 2k − 3
and order |V (G1)| = |V (G2)| ≥ min{ξ(k)(G1), ξ(k)(G2)}+ k, and such that
λ(k)(Gi) ≥ ξ(k)(Gi)− δ(Gi) + 2k − 3 for both i = 1, 2. Then every matched
sum graph G1MG2 is λ(k)-optimal.
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Corollary 6 Let 3 ≤ k ≤ 5 be an integer and let G1, G2 be two connected
λ(k)-connected graphs such that λ(k)(G1) ≤ λ(k)(G2). Suppose that G1 and
G2 are λ(k)-optimal, with minimum degrees δ(G1) ≥ 2k − 3, δ(G2) ≥ k + 2
and order |V (G1)| = |V (G2)| ≥ ξ(k)(G1) + k. Then every matched sum
graph G1MG2 is λ(k)-optimal.
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