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Light sheet fluorescence microscopy (LSFM) is a powerful technique that can provide 

high resolution images of biological samples. Therefore, this technique offers 

significant improvement for 3D imaging of living cells. However, producing high-

resolution 3D images of a single cell or biological tissues, normally requires high 

acquisition rate of focal planes, which means a large amount of sample sections. 

Consequently, it consumes a vast amount of processing time and memory, especially 

when studying real-time processes inside living cells. We describe an approach to 

minimize data acquisition by interpolation between planes using a phase retrieval 

algorithm. We demonstrate this approach on LSFM datasets and show reconstruction 

of intermediate sections of the sparse samples. Since this method diminishes the 

required amount of acquisition focal planes, it also reduces acquisition time of 

samples as well. Our suggested method has proven to reconstruct unacquired 

intermediate planes from diluted datasets up to 10x fold. The reconstructed planes 

were found correlated to the original pre-acquired samples (control group) with 

correlation coefficient of up to 90%. Given the findings, this procedure appears to be a 

powerful method for inquiring and analyzing biological samples. 
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1 |  INTRODUCTION 

A primary goal in biomedical studies is to map the real-time 
processes that occur in cells [1]. In order to conduct 
quantitative experiments in the field of life sciences, it is 
necessary to observe biological processes in vivo in real time. 
It is essential to achieve high axial resolution and high spatial 
resolution without compromising the physiological 
development of the specimen over a long period of time [2]. 
Generating a 3D model of the specimens, usually relies on Z–
stacks - a digital process of merging optical sectioning images 
to a 3D model, which is the basic technique of visualizing 3D 
structures [3].  
There are several techniques for producing optical sectioning. 
All techniques that use imaging by sections refer 
terminologically to tomography. The method of tomography 
was first developed in the 1930s by the radiologist 
Alessandro Vallebona. Focal plane tomography is based on 
the fact that the specimen appears sharper at the focal plane, 

while other planes appear blurred. This enables one to focus 
on each section of the specimen at a time and acquire each 
focal plane individually to eventually construct a 3D structure 
of the sample. Over the years, this method was developed, 
improved and branched out to various types and techniques in 
order to maximize efficiency and overcome limitations in 
different fields of study. 
Bright-field light microscopy is one of the simplest and 
fundamental techniques for optical sectioning [4-5]. The 
principle action of this technique is based on the physical 
concept of absorption that leads to attenuation of light. The 
sample is illuminated from below, causing contrast changes 
due to different density areas in the sample. Observed from 
above, the sample typically seen as dark on bright 
background, hence the technique name. Unfortunately, this 
technique suffers from low contrast, low resolution and 
difficulty to observe colorless and transparent samples. The 
last become crucial when the study is focused on 
mammalians cells, as they are mainly transparent. 
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Fluorescence microscopy is used as an imaging method that 
overcomes bright-field microscopy limitations [6]. In 
fluorescence microscopy the sample is illuminated with 
specific wavelengths which are absorbed by its fluorophores 
and emitted at different wavelengths. This method allows the 
sectioning to be more specific and therefore enhances the 
resolution of the imaged sample. The ability to image 
transparent specimens with improved resolution makes it 
widely used in biology, e.g., in living cells and biological 
tissues. On the other hand, illuminated samples are prone to 
photobleaching. The process of photobleaching occurs as the 
fluorescence molecules accumulate chemical damage from 
the excited electrons during fluorescence. As a result, the 
fluorophores lose their ability to fluoresce which can severely 
limit the observation time. Moreover, the method limits 
observations to specific structures which have been labelled 
for fluorescence. 
Another well-known imaging technique for increasing optical 
resolution and contrast is called confocal microscopy, a 
special type of fluorescence microscopy [6-9]. Confocal 
microscopy uses two pinhole apertures positioned at confocal 
positions to block out-of-focus light in image formation. 
Since the light beam is focused only on a small part, the 
surface of the sample is scanned by moving either the sample 
or the light beam to allow plane reconstruction at specific 
height with a good spatial resolution. However, this can be 
very lengthy and tiresome when used for imaging a large 
amount of 3D structures data and also causes undesired 
effects such as photo-bleaching and photo-toxicity to the 
imaged planes. 
Recent studied also shown the use of imaging by holography 
[10-12]. Holography uses diffraction to reproduce 3D light 
field, resulting an image to retains its depth, parallax and 
other original properties of the observed sample to achieve an 
accurate image reproduction. The technique enables a light 
field to be recorded and later reconstructed when the original 
light field is no longer in present, due to the absence of the 
original object. In common arrangement of this technique, the 
illuminating laser beam is split into two, one is projecting the 
sample and the other is used as a reference beam. The 
reflected and scattered light from the object is collected by 
the recording medium. The reference beam is expanded and 
shines directly on the recording medium, interacting with the 
light coming from the sample to create desired interference 
pattern. Nevertheless, this method has several drawbacks like 
being time consuming, high cost, may also suffer from noise 
and sensitive issues. 
In order to overcome these limitations, light sheet-based 
fluorescence microscopy (LSFM) has recently emerged as an 
attractive imaging solution for biological specimens [13]. 
This method overcomes the disadvantages of the more 
conventional point scanning confocal or multiphoton methods 
mentioned above due to its orthogonal position between the 
illumination and detection arms. This reduces photodamage 
and allows fast acquisition making LSFM a preferred 
technique for imaging biomedical samples in neuroscience 
and developmental biology [14]. 
Note that LFSM technique is very useful for deep imaging 
within whole organisms or within transparent tissues. The 
tissues are exposed to only a thin plane of light, and thus 

there is less effects of photo-bleaching and photo toxicity 
caused to the specimen, compared to other methods as wide 
field fluorescence, confocal, or multiphoton microscopy [15]. 
Moreover, its depth of field (DOF) is lower and produces a 
higher-resolution image along the axial dimension [16]. The 
photo-toxicity bleaching is highly reduced due to a single 
interest plane illumination at a time [16-20]. 
In order to achieve high 3D resolution of structure by using a 
z-stack in LFSM, a large number of image planes are required, 
i.e., the distance between the serial planes needs to be small, 
such that the 3D object is appropriately sampled. This 
requires a significant investment in both time and memory 
consumption. 
In this paper, we present a modified Gerchberg-Saxton (GS) 
phase retrieval algorithm, in order to minimize the number of 
images per volume that are required for reconstructing a 3D 
image with sufficient axial resolution. In this way, we can 
retrieve the phase of the electro-magnetic field (EMF) and 
free space propagate the field in order extrapolate the axial 
information between the sampled reference planes. As we 
demonstrate via experimental results, the reconstructed 
intermediate planes have high correlation to the original 
images and therefore the reconstruction obtained with the 
proposed method is reliable and could be made applicable in 
light sheet microscopy. This method enables one to use a ten-
fold reduced axial sampling density in the imaging process, 
yet still retains the same information content while causing 
lower photo-damage, utilizing lower amount of memory, and 
exploiting higher speed of data acquisition. 

2 |  THEORETICAL BACKGROUND 

2.1 | GS Phase retrieval algorithm  

The GS algorithm is an iterative algorithm that is used, inter 
alia, for phase retrieval. Consider two plane images with 
known intensities I1, I2 and their EMF amplitudes: 
 

 𝐴1 = √𝐼1, 𝐴2 = √𝐼2 (1) 

with unknown phases 𝜑1, 𝜑2 such that the EMF is: 
 

 𝐸1 = 𝐴1𝑒𝑥𝑝(𝑖𝜑1),     𝐸2 = 𝐴2𝑒𝑥𝑝(𝑖𝜑2) (2) 

with known distance between the planes denoted as ∆z12 [21] 
The input amplitude 𝐴1  is imposed with an initial random 
phase 𝜑1. Then, 𝐸1  is propagated by free space propagation 
(FSP) distance of 𝑧2 to obtain: 
 

 𝐸2 = 𝐹𝑆𝑃(𝐸1, ∆𝑧12) = 𝐴2̃ 𝑒𝑥𝑝(𝑖 𝑎𝑟𝑔(𝐸2)) (3) 

The argument of 𝐸2  is kept while the amplitude of 𝐴2̃  is 
omitted and replaced by the known amplitude 𝐴2. 
 

 𝐸2 = 𝐴2 𝑒𝑥𝑝(𝑖 𝑎𝑟𝑔(𝐸2)) (4) 

Then, in the same manner, the reversed process is executed to 
obtain 𝐸1 from 𝐸2. 
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 𝐸1 = 𝐹𝑆𝑃(𝐸2, − ∆𝑧12) = 𝐴1̃ 𝑒𝑥𝑝(𝑖 𝑎𝑟𝑔(𝐸1)) (5) 

After imposing the amplitude, one obtains: 
 

 𝐸1 = 𝐴1 𝑒𝑥𝑝(𝑖 𝑎𝑟𝑔(𝐸1)) (6) 

 
The algorithm, as described, is performed iteratively, until 
reaching a desired correlation threshold ρ. Chart flow of the 
algorithm is described in Figure 1. 

 

FIGURE 1  A flow chart describing the GS phase retrieval 

algorithm. 

2.2 | LSFM 

As previously mentioned LSFM is a non-destructive imaging 

method for optical sectioning and visualizing tissue 3D, by 

using a plane (sheet) of light to reach a subcellular resolution 

(see Figure 2). 

 

 

 

FIGURE 2 Schematic diagram of the light-sheet fluorescence 

microscopy of different sample types. (A) Spheroid [22]. (B)  Beads 

[23].  

3 |  MATERIALS AND METHODS  

3.1 | Light-sheet data sets 

In this paper, we applied the modified algorithm on 
microscopic cellular datasets acquired by two-photon light-
sheet fluorescence microscopy [14]. For the sectioning, a 
digitally scanned light-sheet fluorescence microscope 
(DSLM) [1], based on the openSPIM geometry [24], was 
assigned.  The first data set contains volumetric image stacks 
of a 3D cultured cellular spheroid with dimeter of ~450 𝜇𝑚. 
The Human Embryonic Kidney cells (HEK 293 T17) were 
plated in an ultra-low attachment 96-well round bottom cell 
capture plate (Corning® Costar® 7007) and grown for 48 
hours. After the spheroids were formed, PUREBLU™ 
Hoechst 33342 nuclear staining dye was used to label their 
outer layer. The spheroids were embedded in 1% agarose in a 
FEP (Fluorinated Ethylene Propylene) capillary. The second 
data set includes image stacks of the sub-diffraction limited 
fluorescent bead. The 1 𝜇𝑚 diameter blue fluorescing beads 
were embedded in 1.5% agarose in a FEP capillary. The light-
sheet system used in 2-photon excitation mode was obtained 
with an excitation central wavelength of 800 nm. The laser 
power was approximate 50 mW and the camera exposure 
time was 100 ms in all the data sets. The NA of the light-
sheet illumination objective was about 0.17 which 
corresponds to a light-sheet thickness (and axial resolution) of 
about 1.5 - 1.7 µm. The axial resolution will be best in the 

(A) 

(B) 
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center of the image and increase to about 2.5 µm after moving 
about 40 µm away from the center (to the left or right). The 
NA of the detection lens is 0.5 which should give a lateral 
resolution of about 0.5 um. The camera has pixels of 6.5 um, 
and the system has a magnification of 40x, therefore, each 
pixel is 0.1625 µm. The z-spacing between each image plane 
is 0.25µm. 
 

3.2 | Correlation between source images 

For each data set, we tested the correlation between adjacent 
source images to examine the rate of changes and determine 
whether it is adequate for phase retrieval. Later, in order to 
determine an appropriate number of base planes to be used by 
the modified algorithm, in each dataset, we examined the 
correlation value between plane-images with difference of 5, 
10 and 20 planes between images of the same dataset. 
Meaning that the examined plane numbers were 1,11,21, etc. 
in each data set. Figures 3 and 4 show the correlation graphs 
between sequential images at different increments within the 
spheroid and the beads data sets respectively. 

 

FIGURE 3 Correlation between the spheroid source images in 

planes separation of 1, 5, 10, 20 increments. 

 

 

FIGURE 4 Correlation between the beads source images in planes 

separation of 1, 5, 10, 20 increments. 

As seen in Figure 3, the correlation value between successive 
images is equal to or exceeds 0.95 along the entire dataset and 
remains above 0.82 up to increments of plane separation of 
10. This indicates that relatively there are no rapid changes 
along the dataset, and we can choose base-plane images for 
the modified algorithm respectively. 
For the dataset of the beads (see Figure 4), the correlation 
between successive plane-images remains high and around 
0.9, whereas when using increments by 5, a sharp decrease 
was observed after few planes that worsen when using 
increments of 10 and 20. 
 

3.3 | Methods 

In the current approach, we have modified the known GS 
algorithm to set of multiple pre-known amplitudes z-stack 
imaging data in order to diminish the number of z-plane 
images by reconstructing intermediate planes along the data 
set. For the proof of concept, five original base plane images 
have been taken with an increment of 10 images from one to 
the next (i.e., images number 1, 11, 21, 31 and 41). We have 
implemented a modified GS algorithm on the datasets in 
order to reconstruct the phase on each base plane image. In 
the same manner as shown above for the basic GS algorithm, 
the modified algorithm requires known amplitudes – taken 
from the datasets as our base plane images. These amplitudes 
we denoted as 𝐴1 − 𝐴5 and they correspond to images 1, 11, 
21, 31 and 41 respectively. As in the basic algorithm, here as 
well we start with a random phase imposed to the initial 
amplitude 𝐴1. 
Now, instead of propagating the EM field between 2 planes 
𝐴1  and 𝐴2 , the modified algorithm executes propagation 
between all 5 known amplitudes 𝐴1 − 𝐴5. After imposing the 
random phase for 𝐴1 to create 𝐸1, the field is propagated by 
FSP to 𝐸2 and imposed with the known amplitude 𝐴2 (3), (4). 
This propagation is then implemented in the same way 
between the rest of our sequential base planes 𝐴2 − 𝐴3, 𝐴3 −
𝐴4  and 𝐴4 − 𝐴5 . The same propagation is now performed 
backwards from 𝐴5 to 𝐴1, like shown in the basic algorithm 
for amplitudes 𝐴1  and 𝐴2  (5), (6) to complete 1 iteration. 
Each iteration is described as flow chart in Figure 5. 
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FIGURE 5 Modified GS algorithm’s flow chart.

This modified algorithm has been applied using 100 iterations 
to achieve a single-phase reconstruction on each base plane. 
In that manner, the algorithm was executed 300 times with a 
different random phase at the entrance to obtain 300 
reconstructed phases for every base plane (total of 100x300 
iterations). At the end of the process, the reconstructed fields 
at the entrance plane (same amplitude with 300 different 
retrieved phases) was free space propagated to an 
intermediate plane (the plane of image 6 at z = 1.25µm, then 
averaged to a single image and compared to the original 
image of that plane. After implementing this algorithm, the 
resulted reconstructed images were analysed and compared to 
their original paralleled image at the same z-plane to measure 
and quantify the reconstruction quality. For the spheroid 
dataset we achieved correlation value of 0.97 and RMSE of 
0.37 between the images, and for the beads set we obtained 
correlation of 0.9932 and RMSE of 0.25. This means that the 
algorithm performed well and was able to reconstruct the 
original reference data. 
Based on our empirical experiments and results, the 
recommended work point is 10 times lower z-sampling. 
Meaning that, in our case, the credible data is in resolution up 
to 1-2 micron. Although, light sheet microscopy technique 
can handle even lower dimensions, this is considered 
negligible compare to the benefits earned by using this 
method. An example of reconstruction is seen in Figure 6. 

4 |  EXPERIMENTAL 

4.1 | Optimization 

For better accuracy and correlation improvement, the 
reconstructed planes were filtered with spatial Gaussian filter. 
This 2-D Gaussian shape filters an image with a smoothing 
kernel with standard deviation designated as σ by performing 
convolution on the entire image. In this way, the side effect of 
added noise at the end of the iterations process can be 
diminished. In order to find the optimal standard deviation 
(STD) σ of the Gaussian filter, we examined the Gaussian 
filter on the reconstructed image in plane 6. Different values 
of sigma between 0.5 to 100, incremented by 0.5, have been 
tested in order to find the optimal value of STD that yields the 

maximal correlation between the original and the 
reconstructed filtered image. 

 

FIGURE 6 The reconstructed image 6 vs. original image taken from 

the spheroid dataset. 

From the obtained results, we saw that for the spheroid data, 
filter with STD of 4 pixels gave the highest correlation and in 
the beads data a filter with STD of 2.5 pixels gave the highest 
correlation to the data set. 
 

4.2 | Number of random phases dependency  

A further correlation test was applied to explore the 
dependency on the number of random phases. The 
experiment was performed and distinguished between results 
of before filtering and after filtering. This correlation test has 
shown with clarity that the correlation value before applying 
the Gaussian filter is better for a more significant number of 
random phases. However, it is significantly noticeable also 
that the improvement in the correlation after using the 
Gaussian filter is almost unchanged, independently on the 
number of random phases. 
The correlation trend practically remained the same for 10 or 
even 300 random phases. These findings allow performing 
this modified GS algorithm with high efficiency and decent 
image reconstruction using only few base-planes source 
images. 
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5 |  RESULTS AND DISCUSSION 

Following the obtained results from the experimental tests, 
the modified algorithm has been executed on the entire data 
sets. Base planes were taken from each data set in the same 
manner to perform the modified algorithm. 10 random phases 
have been retrieved in each base plane and reconstructed 
intermediate planes were filtered according to the suitable 
optimal Gaussian filter. 
The obtained results showing the correlation between all re- 
constructed images vs. original images for the spheroid data 
set are seen in Figures 7 and 8. 

 

FIGURE 7 The correlation obtained between all reconstructed 

images vs. original images for spheroid dataset. 

 

FIGURE 8 The correlation obtained between the first 21 

reconstructed images vs. original images for beads dataset. 

 
One may see that after applying the Gaussian filter 
correlation value above 0.93 was obtained across the entire 
data set. which indicates that good reconstruction was 
obtained. An example of original, reconstructed and 
reconstructed-filtered image can be seen in Figure 9 and 10. 
In addition, a 3D rendering of the spheroid data can be 
observed in respect to x-z plane as shown in Figure 11 
(orthogonal to Figure 9 that shows x-y plane observation of 
the spheroid. 
We demonstrated an application of our modified algorithm on 
sparse datasets of spheroid and fluorescent beads. Though the 
results proven applicable on our given datasets, it should be 
taken under consideration that dilution factor may vary 
between different types and size of interested objects. For 
instance, we have showed in Figures 3 and 4, correlation 
plots of our datasets, applying different dilution factors. As 

mentioned, and based on the results, we therefore determined 
different dilution factor for each dataset.  

In our case, the demonstrated dilution factors varied between 

a factor of 5 and 10. In case the data is not sparse but rather 

contains several different types of objects within the field of 

view, then our approach will include a preliminary step of 

classification and segmentation and then the iterative 

algorithm will be applied separately on each segmented 

region in the field of view that correspond to different type of 

objects. In this way the presented improvement factor of 5-10 

can still be preserved even in more dense images containing 

several types of objects per frame. 
For example, if the object of interest consists of minute 
corpuscles, the algorithm dilution factor could be modified, 
localized and implanted in segmentation for different areas 
within the sample. Dilution factor should be determined by 
the sample size, rate and correlation between sequential 
planes of the diluted data. 
 

4 |  CONCLUSION 

This paper demonstrates a technique for 3D imaging of 
microscopic cellular data sets acquired by two-photon light-
sheet fluorescence microscopy, using 10 times smaller 
number of plane-images than would typically be required. 
Thus, it is more suitable for live cell imaging, since it is less 
time consuming and therefore further reduce phototoxicity to 
the cell. 
On the other hand, it should be acknowledged that there is 
still a minuscule amount of information loss. Moreover, the 
resolution of the sample decreased slightly due to reduction in 
the sampling rate. Consequently, it may be difficult to 
recognize organelles that are much smaller than the new 
lower sampling rate. 
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