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Abstract 

Lightning flashes involve high energy processes that still are not well understood. In the 

laboratory, high voltage pulses are used to produce long sparks in open air allowing the 

production of energetic radiation. In this paper X-rays emitted by long sparks in air are 

simultaneously measured with the RF power radiation at 2.4 GHz. The experiment showed 

that the measured RF power systematically peaks at the time of the X-rays generation (in 

the microsecond time scale). All of the triggered sparks present peaks of RF radiation 

before the breakdown of the gap. The RF peaks are related to the applied voltage to the gap. 

RF peaks are also detected in discharges without breakdown. Cases where X-rays are 

detected presented higher RF power. The results indicate that at some stage of the 

discharge, before the breakdown, electrons are very fast accelerated letting in some cases to 

produce X-rays. Microwave radiation and X-rays may come from the same process.  
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1. Introduction 

Productions of X-rays from electrical discharges at atmospheric pressure have been 

studied for a long time (e.g. Stankevich and Kalinin, 1967). The recent discoveries of the 

Terrestrial Gamma ray Flashes (TGF) by Fishman et al. [1994] and the high-energy 

emissions produced by lightning [Moore et al., 2001] promoted the interest of the 

atmospheric electricity community in the high energy emissions produced by laboratory 

discharges at air [e.g. Dwyer et al., 2005; Nguyen et al., 2008; Rahman et al., 2008; March 

and Montanyà, 2010 and 2011; Kochkin et al.,2012]. One of the interests in high voltage 

experiments is to understand the mechanisms of the production of energetic radiation that 

occurs in lightning and may probably share similar properties than the intense TGF to 

space. Results from laboratory experiments showed the importance of the overvoltage 

attained in the inter-electrode gap in order to produce X-rays (e.g. Babich and Loiko, 2010 

and related references therein). In that way, March and Montanyà [2010] showed how a 

fast voltage growth lets to higher probability of X-ray production and with higher energies. 

In addition, the asymmetry between streamer/leader polarities related to the energetic 

production was studied by March and Montanyà [2011].   

Radio Frequency (RF) radiation from lightning at frequencies higher than 500 MHz 

were first recorded by Takagi and Takeuti [1963] and later by Brook and Kitagawa [1964]. 

They found that most of the RF radiation was associated with stepped leaders, dart leaders 

and k-changes (recoil leaders). Later, Kosarev et al. [1970] suggested that the radiation at 

decimetric wave range is different from the dipole emission from the lightning currents. 

Rust et al. [1979], by measuring at 2.2 GHz, found bursts of radiation during the 

preliminary breakdown, in conjunction with the initial return stroke and during dart leaders 
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of subsequent strokes. Recently Petersen and Beasley [2013a and 2013b] presented 

radiation at 1.57 GHz from negative stepped leaders.    

Bekefi and Brown [1961] studied bremsstrahlung radiation produced by accelerating 

electrons. When an electron makes a transition between two continuous states with initial 

and final energies of  and  respectively, it radiates and emits a quantum of 

ℏω. Due to the transitions between continuous states the radiation forms a continuum. 

Later, Rai et al. [1972] based on the previous reference of Bekefi and Brown [1961], found 

that the bremsstrahlung process is a possible source of RF emissions in UHF and 

microwaves measured during some lightning processes. The authors demonstrated how the 

full ionized plasma in the return stroke does not radiate microwave power since its 

absorption coefficient lets to an optical thickness much greater than the unity. On the other 

hand, the partially ionized plasma in the stepped leader, dart leader and k-changes (recoil 

leader) does emit microwaves. In such cases the estimated optical thickness is lower than 

the unity due to the negligible absorption. Microwave radiation can be basically due to 

electron-atom encounters. Bondiou [1987] studied the V-UHF RF emission of laboratory 

discharges and proposed a model. The impulsive RF radiation was associated with the 

processes during the formation of the transient arc and could be similar to the produced by 

lightning. The called transient arc phase in the breakdown takes place between the streamer 

phase and the development of the conductive channel with duration between 5 to 10 ns. 

Recently, Cooray and Cooray [2012] calculated the radiation of electron avalanches 

showing that can radiate in the microwave region.  

In this paper, we present simultaneous measurements of X-rays and microwave RF 

power emissions at 2.4 GHz from high voltage sparks. The simultaneous occurrence of the 
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X-rays and the absolute RF peaks are presented and discussed. The emission of microwave 

RF is studied for negative and positive discharges with different gap voltage. A discussion 

of the obtained results and the possible mechanism is addressed. 

 

2. Experimental setup 

The geometries studied in this paper corresponds vertical rod-rod and rod-plate setups. 

In both cases, the lower electrode was grounded whereas the rod on top was connected to 

the output of a 1.2 MV Marx generator. The rod was round terminated with a diameter of 

16 mm and made from stainless-steel. The gap varied from 60 cm to 1 m. The adjusted 

waveform presented and average rise time of 0.55 µs. The instruments where placed within 

an EMI shielded cabined. The measurement cabinet was placed horizontally from the gap. 

The cabinet contained a scintillation detector (NaI(Tl) and LaBr3) and a receiver tuned at 

2.4 GHz with a pass-band of 5.5 MHz. The receiver was based on a logarithmic detector 

with a dynamic range from -65 dBm to +10 dBm with a SAW filter in order to tune it at the 

desired frequency. The receiver was calibrated by means of a RF signal generator. The 

antenna used was a microstrip antenna adjusted at the tuned frequency. The estimated gain 

of the antenna was <10 dBi. 

The results presented in this paper correspond to two sets of experiments. In the first set 

a rod-rod gap was setup with a gap distance of 68 cm and the instrumented cabinet 

separated 0.8 m from the gap. The object of this experiment was to investigate if there is 

any characteristic of the RF emissions related to the production of X-rays and. In the 

second set, the effect of the peak voltage on the RF emissions was studied for both 

polarities. In this last experiment the measurement cabinet was at 1.6 m from the gap. 
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3. Results of simultaneous detection of X-rays and RF pulses 

X-rays and signals of RF power were measured from rod-rod sparks with negative 

polarity. As found in previous works (e.g. March and Montanyà, 2010), only discharges 

with negative polarity produced X-rays. Figure 1 displays two examples of the recorded X-

rays and RF power. The figure shows how RF power peaks at the time (with the adjusted 

time scale) of the X-ray pulses. This observation was systematically repeated for more than 

25 impulses in which X-rays were detected. During the entire discharge process the 

absolute RF maximum is coincident with the detection of X-rays. The dashed lines indicate 

the time of breakdown, note that the breakdown neither produce emission at the considered 

frequency and in X-rays. 

In order to investigate any possible relation between the peak of the RF power and the 

X-rays, figure 2 plots the measured energy versus the RF power for ten cases. The small 

sample in figure 2 does not show evidence of straight relation between the peak of the RF 

power and the energy of the X-ray pulses. All the cases where X-rays were detected 

presented RF power levels higher than -20 dBm. However no clear relation between both 

magnitudes is found here.  

 

4. Results of the relation between peak voltage and RF power 

The second experiment was focused on the study of the relation between the peak of the 

RF power and the applied voltage. In this case more than 40 impulses are considered. 

Within these impulses in only one discharge X-rays were detected. The object here is to 

show the relation between the peak of the applied voltage into the gap and the measured RF 

power. From the graphs in figure 3 we can find how at low peak voltages, the RF power 

emissions are in general lower than at higher voltages. Moreover, discharges that produced 
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breakdown tend to produce higher levels of RF power. The case marked as #1 in Figure 3 

corresponds to the singular case with detection of X-rays. Note that this case presents a 

singularity in the dataset for the negative polarity impulses. On the other hand, the other 

singular case labeled as #2 corresponds to an intense RF power detection in a positive 

impulse. Despite the intense RF emission no X-rays were detected.     

 

5. Discussion 

The results shown in the previous figures suggest that the mechanism of the peaks of 

RF power at microwave frequencies is in common with the production of X-rays. As 

indicated by Rai et al. [1972] based on Bekefi’s works, UHF emission from lightning 

would be produced by bremsstrahlung process. Under this hypothesis, lightning leaders 

would be much more efficient radiating at microwaves than return stroke channels. Here we 

found similar results with the discharges at the laboratory but with the extension to higher 

energies.  The signals in figure 1 revealed how RF power peaks during the streamer (and 

possibly leader) phase whereas during the breakdown and the high current of the spark the 

RF signals do not show any effect. In addition to bremsstrahlung radiation, our 

measurements could be explained considering the radiation from electron avalanches as 

calculated by Cooray and Cooray [2012]. In the cases with X-ray generation an 

enhancement of the streamer activity at the time of the X-rays would explain the increase of 

radiation. 

In the experiments here we did not find any straight relation between the energy of 

the X-rays and the RF peaks. We believe that some relation may exist since March and 

Montanya [2010] found that energy of the high energy radiation was related with voltage 

growth ∆V/∆t during the initial phase of the discharge. Unfortunately, in the experiment 
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presented here the ∆V/∆t did not change significantly since the peak voltages and their rise 

times were kept practically constant due to generator limitations.  

In general, the cases with detected X-rays presented intense RF levels that the ones 

without the detection of high energy pulses. The cases that produced breakdown also tend 

to produce higher peaks of RF. This can be due to the cases with breakdown, the 

streamer/leaders in the gap produced higher electric field peaks before the breakdown. 

However, X-rays are also found without breakdown of the gap (not shown here but 

indicated by March et al. [2012]).  

Asymmetry in the RF power production and X-rays is also found between negative 

and positive discharges. X-rays are measured in negative impulses whereas we have not 

detected X-rays in positive impulses. Some attention must be paid since the presence of the 

negative streamers/leaders in the gap can arise from positive impulses depending on the gap 

geometry. Then, we mention negative impulses to those dominated by a negative 

streamer/leader and positive impulses to those dominated by positive streamers/leaders in 

the gap. From figure 3 we can see how positive discharges are efficient producing RF 

radiation because with lower peak voltages the RF levels are higher than in negative 

discharges. This is similar to the asymmetry in the breakdown and the critical electric fields 

for positive and negative streamer propagation (Raizer [1991]). 

 

6. CONCLUSIONS 

We have demonstrated that X-rays and RF emissions in the microwaves share some 

common mechanisms. The main mechanism for both radiations would come from 

interactions of electrons with atoms. Then bremsstrahlung may be the responsible for both 
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emissions. The results encourage the study of microwave radio emissions during X-rays 

produced by natural lightning and during TGF.  
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Figure 1. X-rays and RF power at 2.4 GHz for two negative voltage impulses. Left plot 

corresponds to a voltage impulse of -775 kV whereas the right most plot -786 kV. Vertical 

dashed line indicates the breakdown time. 
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Figure 2. Energy of the detected X-rays versus the RF power. 

 

 

 

 

Figure 3. Peak voltage applied to the gap versus RF power at 2.4 GHz for positive 

(right) and negative impulses (left). 

 


