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A cutting-plane approach for large-scale capacitated
multi-period facility location using a specialized
interior-point method
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Abstract We propose a cutting-plane approach (namely, Benders decomposition) for
a class of capacitated multi-period facility location problems. The novelty of this ap-
proach lies on the use of a specialized interior-point method for solving the Benders
subproblems. The primal block-angular structure of the resulting linear optimization
problems is exploited by the interior-point method, allowing the (either exact or inex-
act) efficient solution of large instances. The effect of different modeling conditions
and problem specifications on the computational performance are also investigated
both theoretically and empirically, providing a deeper understanding of the signifi-
cant factors influencing the overall efficiency of the cutting-plane method. This ap-
proach allowed the solution of instances of up to 200 potential locations, one million
customers and three periods, resulting in mixed integer linear optimization problems
of up to 600 binary and 600 millions of continuous variables. Those problems were
solved by the specialized approach in less than one hour, outperforming other state-
of-the-art methods, which exhausted the (144 Gigabytes of) available memory in the
largest instances.

Keywords mixed integer linear optimization · interior-point methods · multi-period
facility location · cutting planes · Benders decomposition · large-scale optimization

Mathematics Subject Classification (2000) 90C06 · 90C11 · 90C51 · 90B80

Jordi Castro?

Dept. of Statistics and Operations Research, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034
Barcelona, Catalonia, Spain. E-mail: jordi.castro@upc.edu

Stefano Nasini
Dept. of Production, Technology and Operations Management, IESE Business School, University of
Navarra, Av. Pearson 21, 08034 Barcelona, Catalonia, Spain. E-mail: snasini@iese.edu

Francisco Saldanha-da-Gama
Dept. of Statistics and Operations Research/Operations Research Center, Faculdade de Ciências, Univer-
sidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal. E-mail: faconceicao@fc.ul.pt



2

1 Introduction

A dynamic facility location problem consists of defining a time-dependent plan for
locating a set of facilities in order to serve customers in some area or region. A finite
planning horizon is usually considered representing the time for which the decision
maker wishes plan. In a multi-period setting, the planning horizon is divided into
several time periods each of which defining specific moments for making adjustments
into the system. The most common goal is the minimization of the total cost—for
the entire planning horizon—associated with the operation of the facilities and the
satisfaction of the demand.

This class of problems extends their static counterparts and emerges as appro-
priate when changes in the parameters underlying a facility location problem can be
predicted (e.g., demands or transportation costs). The reader can refer to the book
chapter [21] for further details as well as for references in this topic.

The study of multi-period facility location problems is far from new. Neverthe-
less, the relevance of these problems is still quite notable which is explained by the
fact that they are often at the core of more complex problems such as those aris-
ing in logistics (see, e.g., [18, 3]). Accordingly, their study is of great relevance. In
particular, having efficient approaches for tackling them may render an important
contribution to the resolution of more comprehensive problems.

The purpose of this paper is to introduce a method for the exact resolution of
a class of large multi-period discrete facility location problems. In particular, we
consider a pure phase-in setting in which a plan is to be devised for progressively
locating a set of capacitated facilities over time. This is the “natural" extension to a
multi-period context of the classical capacitated facility location problem. In addi-
tion, we specify a maximum number of facilities that can be operating in each time
period. This is a means to control the “speed" at which the system changes in case
the decision maker finds this necessary. A set of customers whose demand is known
for every period is to be supplied from the operating facilities in every period. Never-
theless, we assume that service level is not necessarily 100%; instead, this will be an
outcome of the problem. A cost is assumed for shortages at the customers. This cost
may represent an opportunity loss cost or simply a penalty paid for the shortage. In
addition to this cost, we consider operating costs for the facilities and transportation
costs from the facilities to the customers. All costs are assumed to be time-dependent.
The goal of the problem is to decide where and when to locate facilities in order to
minimize the total cost over the planning horizon.

In the next section we show that the above problem is quite general in the sense
that it allows capturing in a single modeling framework several particular cases with
practical relevance and thus it actually represents a class of problems. Moreover, we
show that the problem can be formulated as a mixed integer linear optimization prob-
lem with a set of binary variables (associated with the location decisions) and a set
of continuous variables (associated with transportation for demand satisfaction and
shortage at the customers). Such type of problems are well-known to be particularly
suited for decomposition approaches based on cutting planes, namely Benders de-
composition [15, 25]. In fact once the binary variables are fixed, the remaining prob-
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lem is a linear optimization problem which can be dualized for deriving optimality
cuts.

In this paper, we propose an efficient Benders decomposition approach for the
problem above described (and thus for the class of problems it represents). The nov-
elty in this Benders decomposition has to do with the resolution of the Benders sub-
problem, for which the specialized interior-point method for primal block-angular
structures of [5, 6, 8] will be customized. In short, this is a primal-dual path-following
method [26], whose efficiency relies on the sensible combination of Cholesky factor-
ization and preconditioned conjugate gradient for the solution of the linear system of
equations to be solved at each interior-point iteration. It is worth noting that interior-
points methods have already been used in the past for the solution of integer opti-
mization problem using cutting-plane approaches, such as in [19] for linear ordering
problems. More recently, primal-dual interior-point methods have shown to be very
efficient in the stabilization of column-generation procedures for the solution of ve-
hicle routing with time windows, cutting stock, and capacitated lot sizing problems
with setup times [11, 20].

Using such a specialized interior-point method for the Benders subproblems has
two main benefits. The first is the ability to efficiently solve very large linear subprob-
lems. As it will be shown, both theoretically and empirically, the specialized interior-
point method becomes very efficient when the number of facilities and customers is
large. This allows the effective solution of fine-grained situations, for instance, those
with a few facilities and millions of customers (e.g., warehouses or post offices de-
livering items to households). Second, Benders decomposition does not require an
optimal solution to the subproblem, and a primal-dual feasible solution (i.e., a point
of the primal-dual space which is feasible for both the primal and dual pair of the
subproblem) is enough for generating an additional cut. The interior-point method
is thus an excellent choice, since it can quickly obtain such a primal-dual feasible
point during the earlier iterations, skipping the last ones which focus on reducing
the complementarity gap. In particular, avoiding the last interior-point iterations is
instrumental for the specialized algorithm considered, since the performance of the
embedded preconditioned conjugate gradient solver degrades close to the optimal so-
lution. Using this approach we were able to solve multi-period capacitated facility
location problems of up to 200 potential locations, one million customers and three
periods, resulting in mixed integer linear problems of up to 600 binary and 600 mil-
lions of continuous variables. To the best of the authors’ knowledge, facility location
instances of such sizes have never been solved before in the literature.

The remainder of this paper is organized as follows. In Section 2 the problem is
described in detail and formulated. In Section 3 the new decomposition approach is
introduced and in Section 4 it is tested computationally. The paper ends with some
conclusions drawn from the research done highlighting the main findings in this work.

2 Problem description and formulation

We consider a set of potential locations where facilities can be set operating during
a planning horizon divided into several time periods. Additionally, there is a set of



4

customers whose demand in each period is known and that are to be supplied from
the operating facilities. Facilities are capacitated and once installed they should stay
opened until the end of the planning horizon. We specify the maximum number of
facilities that can be operating in each time period. Finally, demands are not required
to be fully satisfied; instead, we consider a service level that will be an outcome of the
decision making process. We consider costs associated with (i) the operation of the
facilities, (ii) the satisfaction of the demand and (iii) the shortages at the customers.
The goal is to decide where facilities should be set operating and how to supply the
customers in each time period from the operating facilities in order to minimize the
cost for the entire planning horizon.

Before presenting an optimization model for this problem we introduce some
notation that will be considered hereafter.

Sets:

T Set of time periods in the planning horizon with k = |T |.
I Set of candidate locations for the facilities with n = |I |.
J Set of customers with m = |J |.

Costs:

f t
i Cost for operating a facility at i ∈I in period t ∈T .

ct
i j Unitary transportation cost from facility i ∈ I to customer j ∈J

in period t ∈T .
ht

j Unitary shortage cost at customer j ∈J in period t ∈T .

Other parameters:

dt
j Demand of customer j ∈J in period t ∈T .

qi Capacity of a facility operating at i ∈I .
pt Maximum number of facilities that can be operating in period t ∈T .

The decisions to be made can be represented by the following sets of decision
variables:

yt
i =

{
1 if a facility is operating at i ∈I in period t ∈T ,
0 otherwise.

xt
i j = Amount shipped from facility i ∈I to customer j ∈J in period t ∈T .

zt
j = Shortage at customer j ∈J in period t ∈T .
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The multi-period facility location problem that we are working with can be for-
mulated as follows:

minimize ∑
t∈T

(
∑

i∈I
f t
i yt

i + ∑
i∈I

∑
j∈J

ct
i jxi j + ∑

j∈J
ht

jz
t
j

)
, (1)

subject to ∑
i∈I

xt
i j + zt

j = dt
j, t ∈T , j ∈J , (2)

∑
j∈J

xt
i j ≤ qiyt

i, t ∈T , i ∈I , (3)

∑
i∈I

yt
i ≤ pt , t ∈T , (4)

yt
i ≤ yt+1

i , t ∈T \{k}, i ∈I , (5)
yt

i ∈ {0,1}, t ∈T , i ∈I , (6)
xt

i j ≥ 0, t ∈T , i ∈I , j ∈J (7)

zt
j ≥ 0, t ∈T , j ∈J . (8)

In the above model, the objective function (1) represents the total cost through-
out the planning horizon, which includes the cost for operating the facilities, the
transportation costs from facilities to customers and the costs for shortages at the
customers. Constraints (2) ensure that the demand of each customer in each period
is divided into two parts: the amount supplied from the operating facilities and the
shortage. Inequalities (3) are the capacity constraints for the operating facilities. Con-
straints (4) define the maximum number of facilities that can be operating in each
period. Relations (5) ensure that we are working under a pure phase-in setting, i.e.,
once installed, a facility should remain opened until the end of the planning horizon.
Finally, constraints (6)–(8) define the domain of the decision variables.

The above model has several features which are worth emphasizing.

i) By considering constraints (5) we are capturing a feature of major relevance in
many logistics network design problems which has to do with the need for pro-
gressively install a system since it is often the case that such systems cannot be
setup in a single step (the reader can refer to [17] for a deeper discussion).

ii) Since the facilities involved in this problem are capacitated, the possibility of
adjusting the set of operating facilities over time is a way for adjusting the overall
capacity of the system as a response to changes in demands and costs. Some
authors have explicitly considered capacity adjustments as part of the decision
making process (e.g., [12, 13]) within a multi-period modeling framework for
facility location problems.

iii) By specifying the values of pt , t ∈ T we are setting a maximum “speed" for
making adjustments in the system in terms of the operating facilities. When such
a feature is not relevant, we can simply consider pt = n, t ∈ T and the model is
still valid. Since we are working with a pure phase-in problem we assume that
1≤ p1 ≤ p2 ≤ ·· · ≤ pk ≤ n.

iv) In the model proposed, the service level is not necessarily 100%; instead, it will be
an outcome from the model and will result from a tradeoff between the different
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costs considered. The relevance of considering a service level below 100% within
the context of facility location has been discussed by several authors, such as [22],
[2], and [1]. Since we are working with a multi-period problem, “service level"
may be looked at as a vague term. In fact, we may consider a service level per
time period or even a global service level for the planning horizon:

SL(t) =
∑ j∈J ∑i∈I xt

i j

∑ j∈J dt
j

, GSL =
∑t∈T ∑ j∈J ∑i∈I xt

i j

∑t∈T ∑ j∈J dt
j

.

In the first case, in order to obtain a “global" service level, we may simply average
the service level attained in the different periods yielding

ASL =
1
k ∑

t∈T
SL(t).

v) The above model is still valid if some facilities are already operating before the
planning horizon and the goal is not to built a system from scratch but simply
expanding a system that is already operating. In such a case we can use the same
model if we fix to 1 the location variables associated with the existing facilities.

vi) In order to present a model that is as general as possible, we are assuming all
parameters to be time-dependent. However, in practice this is not always the case.
For instance, when the transportation costs are a function of the distance between
the facilities and customers we may not observe a significant change from one
period to the following and thus we may assume them to be time-invariant.

Considering the problem with k = 1 (one period), p1 = n and shortage costs ar-
bitrarily large (thus ensuring that all z-variables are equal to 0), we obtain the well-
known capacitated facility location problem which generalizes the uncapacitated fa-
cility location problem that is known to be NP-hard (see, e.g., [10]). Accordingly,
the problem we are investigating is also NP-hard. Nevertheless, developing efficient
exact approaches that can solve instances with a realistic size is always a possibility
worth exploring. This is what we propose next.

3 The cutting-plane approach

The problem described in the previous section is a good candidate for the appli-
cation of a Benders decomposition approach [4, 14, 23, 25]. In fact, once the bi-
nary y-variables are decided, the remaining problem is a linear optimization problem.
Therefore, the problem can be projected onto the y-variables space yielding

minimize ∑
t∈T

∑
i∈I

f t
i yt

i +Q(y), (9)

subject to ∑
i∈I

yt
i ≤ pt , t ∈T , (10)

yt
i ≤ yt+1

i , t ∈T \{k}, i ∈I , (11)
yt

i ∈ {0,1}, t ∈T , i ∈I , (12)
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where y = (yt
i , i ∈I , t ∈T ), and Q(y) is defined as

Q(y) = min ∑
t∈T

(
∑

j∈J
∑

i∈I
ct

i jx
t
i j + ∑

j∈J
ht

jz
t
j

)
, (13)

subject to ∑
i∈I

xt
i j + zt

j = dt
j, t ∈T , j ∈J , (14)

∑
j∈J

xt
i j ≤ qiyt

i, t ∈T , i ∈I , (15)

xt
i j ≥ 0, t ∈T , i ∈I , j ∈J , (16)

zt
j ≥ 0, t ∈T , j ∈J . (17)

Q(y) is a convex piecewise linear function, so the overall problem can be solved by
some nondifferentiable cutting-plane approach. Benders decomposition can be seen
as a particular implementation of such an approach, where Q(y) is approximated from
below by cutting planes. These planes are obtained by evaluating Q(y) at some par-
ticular y values, i.e., solving the (Benders) subproblem induced by those values. The
new cuts replace Q(y) and are sequentially added to (9)–(12) leading to an updated
(Benders) master problem. Benders master and subproblem provide, respectively,
lower and upper bounds to the optimal solution. Such a cutting-plane algorithm is
iterated until the gap between the lower and upper bound is small enough or zero.

Fixing the location variables yt
i (i ∈ I , t ∈ T ), the linear optimization problem

Q(y) is separable for time periods. A resulting family of k independent linear opti-
mization problems is obtained, which for a particular time period t = 1, . . . ,k can be
written as:

SubLP(y, t) = min ∑
j∈J

∑
i∈I

ct
i jx

t
i j + ∑

j∈J
ht

jz
t
j, (18)

subject to ∑
i∈I

xt
i j + zt

j = dt
j, j ∈J , (19)

∑
j∈J

xt
i j ≤ qiyt

i, i ∈I , (20)

xt
i j ≥ 0, i ∈I , j ∈J , (21)

zt
j ≥ 0, j ∈J . (22)

Therefore, the Benders subproblem can be written as Q(y) = ∑t∈T SubLP(y, t). Its
optimal solution provides the information about the goodness of the designed loca-
tion decisions. That solution provides an upper bound to the original multi-period
problem (1)–(8). It is worth to note that, in theory, a primal-dual feasible suboptimal
solution to (18)–(22)—that is, an inexact solution to the subproblem, or an inexact
Benders cut—is enough for the Benders decomposition algorithm, though the upper
bound obtained may be higher, thus of worse quality. Inexact cuts have been studied
and proven to guarantee convergence of the Benders method, for instance, in [27] for
linear problems. Mixed integer linear problems can be seen as a simpler case, since
the number of solutions of the Benders master problem is discrete and very often
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finite. To the best of the authors’ knowledge, the few references existing in the lit-
erature exploring the use of inexact cuts for mixed integer linear problems are very
recent, namely [16, 24].

For each t ∈ T , let x̂t
i j and ẑt

j (i ∈ I , j ∈J ) be the optimal (or suboptimal
feasible) values of the primal variables involved in SubLP(y, t) and let λ t

j and µ t
i j

(i ∈ I , j ∈J ) be the corresponding (feasible) dual variables associated with (19)
and (20), respectively. The idea underlying Benders decomposition is to use a cutting-
plane method to transfer the information about the goodness of the location decisions
specified by the y-variables from the subproblem to the master problem. This master
problem involves the dual variables of the subproblem as well as the original binary
variables. Considering an aggregation of all the cuts generated by SubLP(y, t) for
t ∈T , we can write the master problem as follows (see, e.g., [4] for further details):

minimize ∑
t∈T

∑
i∈I

f t
i yt

i +θ , (23)

subject to θ ≥ ∑
t∈T

∑
j∈J

λ
t
jd

t
j + ∑

t∈T
∑

i∈I
µ

t
i qiyt

i, (24)

∑
i∈I

yt
i ≤ pt , t ∈T , (25)

yt
i ≤ yt+1

i , t ∈T \{k}, i ∈I , (26)
yt

i ∈ {0,1}, t ∈T , i ∈I . (27)

The objective function of the master problem provides a lower bound to the original
multi-period problem (1)–(8). Cuts (24) can also be disaggregated by considering
one for each time period t ∈ T , of the form θ t ≥ ∑ j∈J λ t

jd
t
j +∑i∈I µ t

i qiyt
i , and

considering the objective function ∑i∈I f t
i yt

i +∑t∈T θ t . In this work we considered
aggregated cuts, since some preliminary computational experiments showed that this
reduces significantly the size of the master problem, yet producing high quality cuts.

For the particular case of the capacitated multi-period facility location problem
we are studying in this paper, the structure of the subproblem allows obtaining a
deeper insight on the quality of the Benders cuts. In order to see this, consider an
α−parameterized version of the problem with m = k = 1 (one period and one cus-
tomer), where the demand and the capacities are specified as d = α and qi = (1−α),
for i ∈ I . The corresponding subproblem can be written as follows (we simplify
some of the notation previously introduced since m = k = 1):

SubLP′(α) = min ∑
i∈I

cixi +hz, (28)

subject to ∑
i∈I

xi + z = α, (29)

xi ≤ (1−α)yi, i ∈I , (30)
xi ≥ 0, i ∈I , (31)
z≥ 0. (32)

Denote by λ , µi (i ∈ I ), νi (i ∈ I ), and γ the dual variables associated with
constraints (29), (30), (31), and (32), respectively.
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Proposition 1 In a Benders iteration, let IA be the subset of I associated to the
active constraints xi = (1−α)yi of SubLP′(α). The corresponding Benders cut is

θ ≥ α(h− γ)+(1−α) ∑
i∈IA

(h− ci− γ)yi. (33)

Proof The dual feasibility of SubLP′(α) implies λ − µi + νi = ci, for i ∈ I , and
λ +γ = h. Note that, µi = h−ci−γ , for all i ∈IA, and µi = 0, for all i ∈I \IA. (In
the special case when yi = 0, either νi or µi can be arbitrarily fixed, and this relation
still holds.) Based on (24), we have:

θ ≥ αλ +(1−α) ∑
i∈I

µiyi

= α(h− γ)+(1−α) ∑
i∈IA

(h− ci− γ)yi

�

Proposition 1 suggests two important elements which might substantially effect
the goodness of a Benders cut: (i) the relationship between demand and total capacity,
captured by α , (ii) the shortage cost h. When h is small enough, z > 0 and γ = 0, so
that θ ≥ αh+(1−α)∑i∈IA

(h− ci)yi. In particular, when h < ci, for all i = 1 . . .n,
the Benders cut is θ ≥ αh, since |IA|= 0. Similarly, when α approaches either zero
(the total capacity widely exceeds the demand) or one (the demand overcomes the
total capacity), the two limit cases reduce to θ ≥∑i∈IA

(h− ci− γ)yi or θ ≥α(h−γ)
respectively. It turns out that the information transmitted by the Benders cut reduces
when the demand grows large with respect to the total capacity, as reflected by the
smaller size of the term (1−α)∑i∈IA

(h− ci− γ)yi. Nonetheless, when the demand
is too small |IA|= 0 and (1−α)∑i∈IA

(h− ci− γ)yi = 0. Thus, both cases give rise
to conditions where the decisions of the subproblem poorly affect the decision to be
made in the master problem.

3.1 Solving the subproblem by a specialized interior-point method

As mentioned above, the Benders subproblem can be decomposed into k independent
linear optimization problems (18)–(22). For each t ∈ T , (18)–(22) can be written as
the following linear problem with primal block-angular constraints:

SubLP(y, t) = min ∑
j∈J

ct
j
>xt

j (34)

subject to


e>

e>

. . .
e>

L L . . . L I




xt

1
xt

2
...

xt
m

xt
0

=


dt

1
dt

2
...

dt
m

qt

 (35)

xt
j ≥ 0, j = 0,1, . . . ,m, (36)
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where matrix L = [I | 0] ∈ Rn×(n+1) is made up by an identity matrix with a zero
column vector on the right; for each j ∈ J , ct

j = [ct
1 j, . . . ,c

t
n j,h

t
j]
> ∈ Rn+1 and

xt
j = [xt

1 j, . . . ,x
t
n j,z

t
j]
> ∈Rn+1 represent, respectively, the shipping and shortage costs

involving customer j and the amount of commodity shipped to and shortage of cus-
tomer j; e∈Rn+1 is a vector of ones; xt

0 ∈Rn are the slacks of the linking constraints;
qt = [q1yt

1, . . . ,qnyt
n]
> ∈ Rn is the right-hand side vector for the linking constraints

and contains the supply capacities of the designed locations. Note that the block
constraints e>xt

j = dt
j, j ∈J , correspond to (19), whereas the linking constraints

∑ j∈J Lxt
j +xt

0 = qt are (20).
Formulation (34)–(36) exhibits a primal block-angular structure, and thus it can

solved by the interior-point method of [5, 8]. This method is a specialized primal-dual
path-following algorithm tailored for primal block-angular problems. A thorough
description of primal-dual path-following algorithms can be found in [26]. Shortly,
these kind of methods follow the central path until they reach the optimal solution.
The central path is derived as follows. Formulation (34)–(36) can be written in stan-
dard form as

minimize c>x, (37)
subject to Ax = b, (38)

x≥ 0, (39)

where c,x ∈ R(n+1)m+n contain, respectively, all the cost and decision variables vec-
tors ct

j, xt
j, and A ∈ R(m+n)×[(n+1)m+n] and b ∈ Rm+n are, respectively, the constraints

matrix and right-hand-side vector of (34)–(36). Denoting by λ and s the Lagrange
multipliers of the equalities and inequalities, and considering a parameter µ > 0, the
perturbed Karush-Kuhn-Tucker optimality conditions of (37)–(39) are

Ax = b (40)

A>λ + z = c (41)
XS = µe, (x,z)≥ 0 (42)

where e is a vector of ones, and X and S diagonal matrices whose diagonal entries
are those of x and s. The set of unique solutions of (40)–(42) for each µ is known as
the central path, and these solutions converge to those of (37)–(39) when µ → 0 (see
[26]).

Each iteration of a primal-dual path-following method requires the solution of the
normal equations system AΘA>∆λ = g, where Θ = XS−1 is diagonal and directly
computed from the values of the primal and dual variables at each interior-point iter-
ation, ∆λ ∈ Rm+n is the direction of movement for the Lagrange multipliers λ , and
g∈Rm+n is some right-hand side. Solving the normal equations is the most expensive
computational step of the interior-point method. Exploiting the structure of A in (35),
and appropriately partitioning Θ and ∆λ according to the m+ 1 blocks of variables
and constraints, we have
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AΘA>∆λ =


e>Θ1e e>Θ1L>

. . .
...

e>Θme e>ΘmL>

LΘ1e . . . LΘme Θ0 +∑ j∈J LΘ jL>

∆λ

=


Tr(Θ1) θ

>
1

. . .
...

Tr(Θm) θ
>
m

θ 1 . . . θ m D




∆λ11
...

∆λ1m

∆λ2

=

[
B C

C> D

][
∆λ1
∆λ2

]
=

[
g1
g2

]
,

(43)
where Tr(M) denotes the trace of matrix M, θ j = [Θ j11 , . . . ,Θ jnn ]

>, for j ∈J , and

D =


Θ011 + ∑

j∈J
Θ j11

. . .
Θ0nn + ∑

j∈J
Θ jnn

 (44)

is diagonal.
By eliminating ∆λ1 from the first group of equations, the system (43) reduces to(

D−C>B−1C
)

∆λ2 = (g2−C>B−1g1) (45)

B∆λ1 = (g1−C∆λ2). (46)

Systems with matrix B of the form Bu = v (for some u and v) in (45)–(46) are directly
solved as

u j =
v j

Tr(Θ j)
j = 1, . . . ,m.

The only computational effort is thus the solution of system (45)—the Schur comple-
ment of (43)—, whose dimension is n, the number of candidate locations.

System (45) is computationally expensive if solved by Cholesky factorization.
As suggested in [5]—for multicommodity flow problems—and in [6]—for general
block-angular problems, this system can be solved by a preconditioned conjugate
gradient. A good preconditioner is instrumental for the performance of the conjugate
gradient. As shown in [5, Prop. 4], the inverse of C>B−1C for this kind of block-
angular problems can be computed as

(D−C>B−1C)−1 =

(
∞

∑
i=0

(
D−1(C>B−1C)

)i
)

D−1. (47)

The preconditioner M−1 is an approximation of (D−C>B−1C)−1 obtained by trun-
cating the infinite power series (47) at some term φ . In general the best results are
obtained, for φ = 0 such that the preconditioner is just M−1 = D−1. In that case, the
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solution of (45) by the conjugate gradient only requires matrix-vector products with
matrix (D−C>B−1C)—computationally cheap because of the structure of D, C and
B—and the solution of systems with matrix D—which are straightforward since D is
diagonal.

It has been shown [8] that the quality of the preconditioner depends on the spec-
tral radius (i.e., the maximum absolute eigenvalue) of matrix D−1(C>B−1C), denoted
as ρ , which is real and always in [0,1). The farther from 1, the better is the precondi-
tioner. In practice it is observed that ρ comes closer to 1 as we approach the optimal
solution, degrading the performance of the conjugate gradient. Therefore, since there
is no need to optimally solve the Benders subproblem, the interior-point algorithm
can be prematurely stopped for some not-too-small µ > 0. The suboptimal primal-
dual point will guarantee the primal and dual feasibility conditions (40) and (41),
and its optimality gap can be controlled through µ . This way we can avoid the most
expensive conjugate gradient iterations, providing at the same time a good primal-
dual feasible point to generate a new cut for the master problem. We note that this
cannot be (efficiently) achieved using the simplex algorithm for the Benders subprob-
lem, since the points are either primal feasible (primal simplex) or dual feasible (dual
simplex), and primal-dual feasibility is not reached until the optimal solution.

As stated above, the dimension of the Schur complement system (45) is n, the
number of candidate locations. Therefore, we can expect a high performance of this
approach when the number of potential facilities is small, even if the number of cus-
tomers is very large. In fact, this “few locations and many customers” situation is
the most usual in practice. This assertion is supported by the empirical evidence pro-
vided in the next section, where problems of a few hundreds of locations and up to
one million of customers are efficiently solved.

In addition, theoretically, the method is also very efficient when the number of
candidate locations n becomes large. In this case, as shown by next proposition, in
the limit, the diagonal preconditioner M−1 = D−1 provides the inverse of the matrix
in the Schur complement system (45). We will assume the interior-point (x,s) of the
current iteration is not too close to the optimal solution, such that it can be uniformly
bounded away from 0 (in fact, at every iteration the current point is known to be
greater than 0 [26]).

Proposition 2 Let us assume there is a 0 < ε ∈R such that the current interior-point
(x,s) satisfies x > ε and s > ε . Therefore, when n→ ∞ (the number of candidate
locations grows larger) we have D−C>B−1C→ D.

Proof This reduces to showing that matrix C>B−1C → 0 when n→ ∞. From the
definition of C and B in (43), since B is diagonal, we have that entry (h, l) of C>B−1C
is

C>B−1Chl =
m

∑
j=1

Θ j,hhΘ j,ll
n

∑
i=1

Θ j,ii

≤ 1
n

m

∑
j=1

Θ j,hhΘ j,ll

min
i

Θ j,ii
.

Since Θ j = X jS−1
j and x j > ε > 0 and s j > ε > 0, we have that

lim
n→∞

1
n

m

∑
j=1

Θ j,hhΘ j,ll

min
i

Θ j,ii
= 0.
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The major implication of Proposition 2 is that for large n the number of precondi-
tioned conjugate gradient (PCG) iterations required for the solution of (45) is very
small using M−1 = D−1 as preconditioner. However, this was also empirically ob-
served when the parameter that grows larger is the number of customers, m, as shown
in the next section.

For the computational tests of next section we used the solver BlockIP, a C++
efficient implementation of the above specialized interior-point method, including
many additional features [7].

4 Computational tests

In this section we describe a series of computational experiments designed to empir-
ically support the efficiency of the proposed cutting-plane approach for capacitated
multi-period facility location using the specialized interior-point method for block
angular problems. All the runs were carried out on a Fujitsu Primergy RX300 server
with 3.33 GHz Intel Xeon X5680 CPUs (24 cores) and 144 GB of RAM, under a
GNU/Linux operating system (Suse 11.4), without exploitation of multithreading ca-
pabilities. CPLEX branch-and-cut (release 12.4) has been used for the solution of the
Benders master problems; Benders subproblems were solved with both the barrier
algorithm of CPLEX and BlockIP. The CPLEX barrier—which will be denoted as
“BarOpt”—was used since it resulted to be more efficient than simplex variants for
these large subproblems.

4.1 The effect of parameter specification

Consider a capacitated multi-period facility location problem of the form (1)–(8)
and the demands, capacities and costs reported in Table 1. Geometrically, this param-
eter specification can be interpreted as a setting where facilities and customers are
collinearly distributed along a one-dimensional line and the cost for operating a facil-
ity increases along that line. The transportation costs reflect some distance measure
between the facilities and the customers; the demands follow a similar increasing
pattern along the line, so that more expensive locations are geometrically closer to
customers with higher demand. The capacities of the I locations grow linearly with
respect to their costs and do not vary over time. The tuning parameters α and β allow
balancing the relation between the total demand and the total capacity in the system.

The computational tests performed involve 150 instances of problem (1)–(8) di-
vided into six groups of 25 instances all generated according to the parameter specifi-
cation of Table 1. Each group of 25 instances is associated with a specific combination
of m, n and k. The 25 instances in each group correspond to different combinations
of α and β—which have been chosen to take the values 0.1, 0,3, 0.5, 0.7, and 0.9,
resulting in 25 possible combinations. The first two groups are associated with single-
period time horizons (i.e., k = 1); the third and fourth groups include the instances
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Table 1: Parameter specification for the instances to be used in the computational tests

f t
i =

10+1000i
n

for location i = 1 . . .n in period t = 1 . . .k. The building costs do not vary over time and only de-
pend on the specific location i.

ct
i j =

10+ |i− j|
n+m

for location i = 1 . . .n, customer j = 1 . . .m,
in period t = 1 . . .k.

The transportation costs do not vary over time and
only depend on the distance between location i and
destination j.

ht
j = n×m for customer j = 1 . . .m, in period t = 1 . . .k. The unitary shortage cost at customer j is chosen to

overcome the maximum building cost.

dt
j = (1−α)t

10+ j
|T |

for customer j = 1 . . . |J |, in period t =
1 . . . |T |

The demands increase over time and vary in size de-
pending on the customer.

qt
i = α

100+2i
n

for location i = 1 . . .n, in period t = 1 . . .k. The capacities do not vary over time and only depend
on the specific location i.

pt = βn for period t = 1 . . .k. The maximum number of facilities that can be oper-
ating in period t does not vary over time.

Table 2: Average CPU times for the three tables in Appendix A. The average number of Benders
iterations is reported within parenthesis

Benders decomposition Branch-and-cutn m k const. bin.var. cont. var. BarOpt BlockIP
500 500 1 1001 500 250500 8.1 (3.28) 4.9 (3.16) 27.3 (36950)

1000 1000 1 2001 1000 1001000 62.2 (3.52) 44.5 (3.48) 257.0 (82632)
500 500 3 3003 1500 751500 17.0 (4.92) 7.2 (4.36) 118.6 (152792)

1000 1000 3 6003 3000 3003000 115.7 (4.48) 48.0 (4.28) 1440.1 (384906)
500 500 6 6006 3000 1503000 56.1 (7.76) 19.1 (7.52) 433.8 (291345)

1000 1000 6 12006 6000 6006000 253.6 (6.40) 140.1 (6.44) 2936.0 (783983)

with a 3-period planning horizon (k = 3); the fifth and sixth groups corresponds to
instances with a 6-period planning horizon (k = 6). The results are fully presented in
Appendix A. All the instances have been solved by the cutting-plane algorithm above
described, using both CPLEX BarOpt and BlockIP.

Figure 1 shows the CPU time (averaged over 25 instances) for each of the six
groups, both for BarOpt and BlockIP. The vertical axis shows the CPU time (in sec-
onds), whereas the horizontal axis reports the five different values of α (for the left
plots) and β (for the right plots). The straightforward interpretation of these results
is that, for almost all values of m, n, k, α and β , BlockIP significantly outperformed
BarOpt when solving the Benders subproblems. Another interesting and relevant fact
is the non-linear effect of α , which is consistent with what we claimed when dis-
cussing the implications of Proposition 1: extreme values of α are associated to poor
effect of the second stage decision and transportation costs (subproblem solution)
upon the goodness of the first stage decisions (master problem solution).

The aggregated results for the six groups of instances (averaged over 25 single
problems) are reported in Table 2. In addition to the values of n, m and k, the ta-
ble reports the number of constraints (“const.”), binary variables (“bin. var”) and
continuous variables (“cont. var”) of the resulting optimization problems. Columns
“BarOPt” and “BlockIP” report the average CPU time and, within parentheses, the
average number of Benders iterations for the subproblems. The column “Branch-
and-cut” reports the average CPU time (seconds) and the average number of sim-
plex iterations required by the CPLEX branch-and-cut solver for the solution of the
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(a) m = n = 500, k = 1. (b) m = n = 500, k = 1.

(c) m = n = 1000, k = 1. (d) m = n = 1000, k = 1.

(e) m = n = 500, k = 3. (f) m = n = 500, k = 3.

(g) m = n = 1000, k = 3. (h) m = n = 1000, k = 3.

(i) m = n = 500, k = 6. (j) m = n = 500, k = 6.

(k) m = n = 1000, k = 6. (l) m = n = 1000, k = 6.

Fig. 1: Comparisons of the CPU times of Benders–with–BarOpt (red line) and Benders–with–BlockIP
(blue dashed line) for different values of α and β , corresponding to the parameter specification of Table 1

monolithic formulation (1)–(8). It should be noted that the larger the problems, the
more efficient the cutting-plane method—with either BarOpt or BlockIP—compared
to branch-and-cut. BlockIP seems to be approximately twice faster than BarOpt for
all the problem sizes.

Since the CPU times have been obtained for different combinations of α , β , n, m
and k, a full factorial experiment was performed allowing the estimation of the effect
of each parameter on the CPU time and on the number of Benders iterations. A linear
regression has been applied to the collection of 150 numeric observations reported in
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Table 3: Linear regression of Benders iterations and CPU time

Iterations CPU
factor effect p-value effect p-value
intercept 3.19E-16 1.00000 -9.15E-17 1.00000
|α−0.5| −0.20418 0.00428 -0.31078 3.26E-06
β 0.19115 0.00739 0.23008 0.00046
m = n −0.04309 0.54113 0.39638 6.30E-09
k 0.44965 2.11E-09 0.30965 3.52E-06

Table 4: Linear regression of simplex iterations and CPU time

Iterations CPU
factor effect p-value effect p-value
intercept -1.05E-16 1.00000 1.65E-16 1.00000
|α−0.5| -0.03690 0.34926 0.19710 0.00895
β -0.188437 3.98E-06 -0.24829 0.00011
m = n 0.472138 1.63E-23 0.43848 7.98E-11
k 0.718540 1.77E-39 0.37580 1.39E-08

Appendix A. The two response variables are given by the CPU time and either the
number of Benders iterations—for Table 3—or the number of simplex iterations—
for Table 4. Based on the non-linear effect of α , observed in Figure 1, the regression
model includes the linear effect |α − 0.5| (which is related to the excess of demand
or excess of capacities), rather than α .

From Table 3 we conclude that the length of the planning horizon is the main
responsible for the number of Benders iterations (0.44965), but its effect is compar-
atively reduced when the CPU time is taken into account. This is consistent with the
fact that the size of the subproblems per each time period is exclusively determined by
the number of potential locations and customers and this is the reason why the effect
of m and n plays the strongest role (0.39638). Another interesting insight that can be
deduced from the regression analysis performed is the fact that the excess of demand
or capacities (captured by parameter |α−0.5|) gives rise to two different outcomes in
the computational performance of the Benders decomposition and the branch-and-cut
algorithm. In fact, reinterpreting Proposition 1, high values of |α−0.5| should result
in a poor dependency between the second stage and first stage decisions. Clearly, the
same reasoning does not apply to the branch-and-cut algorithm, whose generation of
valid inequalities follow a completely different logic.

4.2 Solution of very large-scale instances

In addition to the instances analysed in the previous section, we generated a set of
18 very large-scale instances to test the efficiency of the cutting-plane approach us-
ing the specialized interior-point algorithm for the subproblems. These additional
instances were obtained by considering all the combinations for n ∈ {100,200},
m ∈ {100000,500000,1000000} and k ∈ {1,2,3}. The parameters α and β were
set to 0.9999 and to 1, respectively, for all the instances, to avoid problems with large
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Table 5: Dimensions and results with optimality tolerance 10−3 for the subproblems

BlockIP BarOpt
n m k const. bin.var. cont. var. iter. gap CPU iter. gap CPU rel. diff.

100 100000 1 100101 100 10100000 3 0.0010 17.35 3 0.0002 40.14 0.0000
100 100000 2 200302 200 20200000 4 0.0007 32.04 4 0.0001 117.45 0.0000
100 100000 3 300503 300 30300000 5 0.0009 63.31 6 0.0035 373.97 -0.0017
100 500000 1 500101 100 50500000 2 -0.0040 69.17 ∗ —
100 500000 2 1000302 200 101000000 3 0.0006 272.39 ∗ —
100 500000 3 1500503 300 151500000 5 0.0007 760.93 ∗ —
100 1000000 1 1000101 100 101000000 2 -0.0002 123.53 2 0.0008 655.72 -0.0003
100 1000000 2 2000302 200 202000000 2 -0.0010 312.23 † —
100 1000000 3 3000503 300 303000000 3 0.0009 891.81 † —
200 100000 1 100201 200 20100000 3 0.0010 17.39 3 0.0002 100.54 0.0000
200 100000 2 200602 400 40200000 4 0.0007 32.09 4 0.0001 297.03 0.0000
200 100000 3 301003 600 60300000 5 0.0009 63.55 6 0.0035 912.05 -0.0017
200 500000 1 500201 200 100500000 3 0.0010 110.02 3 0.0000 1146.60 0.0001
200 500000 2 1000602 400 201000000 4 0.0010 309.68 ‡ —
200 500000 3 1501003 600 301500000 6 0.0010 868.43 † —
200 1000000 1 1000201 200 201000000 3 0.0009 729.79 † —
200 1000000 2 2000602 400 402000000 4 0.0010 1109.64 † —
200 1000000 3 3001003 600 603000000 6 0.0009 3254.21 † —
∗ Repeated solution in master, Benders would not converge
† CPLEX ran out of memory (required more than 144 Gigabytes of RAM)
‡ CPLEX aborted

Table 6: Dimensions and results with optimality tolerance 10−5 for the subproblems

BlockIP BarOpt
n m k const. bin.var. cont. var. iter. gap CPU iter. gap CPU rel. diff.

100 100000 1 100101 100 10100000 3 0.0000 25.39 3 0.0000 42.01 0.0000
100 100000 2 200302 200 20200000 4 0.0000 63.36 4 0.0000 129.91 0.0000
100 100000 3 300503 300 30300000 6 0.0000 166.86 6 0.0000 336.20 0.0000
100 500000 1 500101 100 50500000 2 0.0003 552.66 2 0.0011 474.67 -0.0004
100 500000 2 1000302 200 101000000 3 0.0000 2534.44 3 0.0004 1391.85 -0.0004
100 500000 3 1500503 300 151500000 4 0.0071 5524.19 4 0.0004 3932.30 0.0067
100 1000000 1 1000101 100 101000000 2 0.0001 1292.37 2 0.0002 1221.85 0.0000
100 1000000 2 2000302 200 202000000 2 0.0002 3124.20 † —
100 1000000 3 3000503 300 303000000 3 0.0000 11218.75 † —
200 100000 1 100201 200 20100000 3 0.0000 25.45 3 0.0000 102.69 0.0000
200 100000 2 200602 400 40200000 4 0.0000 63.59 4 0.0000 310.33 0.0000
200 100000 3 301003 600 60300000 6 0.0000 167.76 6 0.0000 787.70 0.0000
200 500000 1 500201 200 100500000 3 0.0000 1402.13 3 0.0000 1064.93 0.0001
200 500000 2 1000602 400 201000000 5 0.0000 5814.12 ‡ —
200 500000 3 1501003 600 301500000 6 0.0000 8652.29 † —
200 1000000 1 1000201 200 201000000 ∗ † —
200 1000000 2 2000602 400 402000000 4 0.0001 14514.18 † —
200 1000000 3 3001003 600 603000000 6 0.0001 40744.86 † —
∗ Preconditioned conjugate gradient solver failed
† CPLEX ran out of memory (required more than 144 Gigabytes of RAM)
‡ Execution aborted

shortages due to lack of capacity. The dimensions of these instances are inspired by
real-world location problems that may be faced, for instance, by internet-based re-
tailer multinational companies. Such problems call for a few dozens or hundreds of
locations spread around the world for the warehousing activities, and hundreds of
thousands of “customers” related, for instance, to cities over some threshold popula-
tion. To the best of the authors’ knowledge, the resolution of facility location prob-
lems with such dimensions have never been reported in the literature.

We ran those instances twice with the cutting-plane approach, using optimality
tolerances 10−3 and 10−5 for the interior-point solver in the subproblems. As stated
in previous sections, inexact solutions to subproblems save the last and thus often
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the most expensive interior-point iterations with BlockIP since the performance of
PCG degrades near the optimal solution. For a fair comparison with the off-the-shelf
solver in use, these same optimality tolerances were set for CPLEX BarOpt, although
its performance should not be significantly affected by this tolerance since it does
not rely on PCG. The master problems were also suboptimally solved with CPLEX
branch-and-cut by using a positive optimality tolerance to avoid too expensive solu-
tions; this tolerance was reduced at each Benders iteration multiplying it by a factor in
the interval (0,1) (in particular, we used 0.95). A positive small optimality gap was
also used for the global Benders decomposition; Benders iterations stop when the
relative difference between the best lower and upper bounds is below this tolerance.

Tables 5 and 6 report the results obtained for optimality tolerances 10−3 and 10−5

in the subproblems, respectively. The information contained in the columns “m”, “n”,
“k”, “const.”, “bin. var” and “cont. var” is the same as in Table 2. Columns “iter.”,
“gap” and “CPU” show the number of interior-point iterations, the achieved Benders
optimality gap, and the CPU time, respectively, for both BlockIP and BarOpt. In
column “rel. diff” we report the relative difference in terms of the best solutions
(i.e., best Benders upper bounds) obtained by BlockIP and BarOpt. A negative value
indicates that the upper bound obtained with BlockIP was smaller (and thus better)
than that obtained using BarOpt. Although these values are omitted in the tables, it is
worth noting that, as it was advanced in Section 3.1, BlockIP required in average only
two PCG iterations for the solution of system (45) in the largest instances. (Analogous
results for primal block-angular problems with the form (34)–(36) have been also
observed in the field of complex network problems [9].)

Some results presented in Tables in these tables 5 and 6 require an extra expla-
nation. In Table 5 we can observe three cells marked with ∗ which correspond to
the resolution of the instances using BarOpt for solving the subproblems. This indi-
cates that the master problem reported the same binary solution in two consecutive
iterations. In such a case, the Benders subproblem would generate the same new con-
straint for the master and the algorithm would iterate forever. This happens due to
the nonzero optimality tolerance considered, which makes the inequality generated
by the (inexact) solution to Benders subproblem not really a cut, but only a valid
inequality for the master problem. This situation only occurred in Table 5—where
the subproblem optimality tolerance is 10−3—, never in Table 6 when a tighter opti-
mality tolerance was considered. It is also worth noting that only runs using BarOpt
suffered from this effect.

It is also worth to note that three executions with BlockIP in Table 5 reported
slightly negative gaps for the Benders method. In those cases only two Benders iter-
ations were performed (only one master was needed, the first one is a dummy one).
This is due both to the inexact solutions of both the subproblem and master. Even
in that case, however, for the only instance with this effect that could also be solved
by CPLEX, the upper bound obtained with Benders with BlockIP was slightly better
than the one obtained with CPLEX.

Observing Table 5 we conclude that using the optimality tolerance 10−3 Benders
decomposition with BlockIP outperformed Benders with CPLEX BarOpt in all the
instances. When using the smaller tolerance 10−5, BlockIP was not so competitive for
the smaller instances, as it can be observed in Table 6; in fact, the last interior-point



19

iterations were very time consuming due to the use of PCG. However, the subproblem
solutions reported were slightly better with this tighter tolerance, as we conclude from
the better gaps reported in Table 6. In spite of this worse performance with the tighter
tolerance, Benders with BlockIP was able to provide a good solution to the largest
instances, while CPLEX with BarOpt run out of memory. Remarkably, Benders with
BlockIP was able to solve the largest cases, namely those with a number of opened
facilities equal to 181 in period 3. This means that the dimension of the subproblems
solved by BlockIP was up to 181 million of continuous variables.

As for the memory requirements, from tables 5 and 6 we conclude that BlockIP is
much more efficient than CPLEX with BarOpt. CPLEX exhausted the 144 Gigabytes
of RAM of the computer in the largest instances (executions marked with † in those
tables), while BlockIP just required a small fraction of the available memory. Indeed,
Benders with BlockIP was able to solve all the instances but one among those re-
ported in Table 6 (marked with ∗); in this instance the PCG solver failed and BlockIP
was stopped since otherwise it would have switched to the solution of normal equa-
tions by Cholesky factorization, which happened to be computationally prohibitive
(both in terms of CPU time and memory requirements). CPLEX also failed in one of
the instances—n = 200, m = 500000 and k = 2—but for both optimality tolerances;
it just aborted without any message error.

5 Conclusions

In this work we exploited the use of a specialized interior-point method for solv-
ing the Benders subproblems associated with the decomposition of large-scale capac-
itated multi-period discrete facility location problems. This was accomplished by tak-
ing advantage from the primal block-angular structures of the underlying constraints
matrices. The computational tests performed and reported in the paper show that this
led to a substantial decrease in the computational effort for the overall Benders proce-
dure. The effect of different modeling conditions on the computational performance
was also investigated, which provided a deeper understanding of the significant fac-
tors influencing the overall efficiency.

Overall, the extensive computational results reported in Section 4 show that in all
the instances tested, a Benders decomposition approach embedding BlockIP clearly
outperformed other approaches, such as branch-and-cut or Benders using a generic
interior-point method, even when the latter makes use of the full strength of an off-
the-shelf solver such as CPLEX. Furthermore, the specialized interior-point method
was able to solve the Benders subproblems of the largest instances, namely, those
in which the number of opened facilities in the last period was 181 and thus with
subproblems involving up to 181 million of continuous variables.

The research presented in this paper opens new possibilities for solving exactly
large instances of more comprehensive multi-period facility location problems, A
straightforward extension that can be considered is the mixed phase-in/phase-out
problem that in addition to the features considered in this paper assumes that some
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facilities are already operating before the beginning of the planning horizon and that
can be closed in any period.

Another challenging area in which the developments proposed in this work may
have a strong impact concerns stochastic single- and multi-period discrete facility
location problems.

Summing up, the cutting-plane approach proposed in this work is promising and
can be now easily adapted to discrete facility location problems whose underlying
constraints matrices have a block-angular structure.
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A Tables of numerical experiments

One period
Tables 7, 8 and 9 show the CPU times required by the Benders decomposition and the Branch and Cut

to solve instances of (1)–(8), with one, three and six time periods respectively. The parameter specification
has been defined in Table 1, with different combinations of α and β and for two sizes m = n = 500 and
m = n = 1000.

Table 7: CPU time of instances of two sizes m= n= 500 and m= n= 1000, with one time period (k= 1).
The three tables report the CPU times of the three analyzed solution methods: Benders–with–BlockIP,
Benders–with–BarOpt and Branch–and–cut. The values inside the parenthesis are either the number of
Benders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)
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β ,α
Benders–with–BlockIP

0.1 0.3 0.5 0.7 0.9
0.1 3.04 (2) 7.62 (2) 3.95 (3) 2.59 (3) 3.84 (5)
0.3 3.25 (2) 8.22 (2) 5.14 (3) 4.59 (5) 3.78 (4)
0.5 3.68 (2) 8.45 (2) 7.00 (4) 3.63 (4) 3.79 (4)
0.7 4.25 (2) 9.03 (2) 9.12 (4) 3.72 (4) 3.68 (4)
0.9 5.02 (2) 11.52 (2) 9.14 (4) 3.27 (4) 3.11 (4)

β ,α
Benders–with–Baropt

0.1 0.3 0.5 0.7 0.9
0.1 4.52 (2) 7.85 (2) 5.84 (3) 6.06 (3) 9.60 (5)
0.3 4.59 (2) 7.76 (2) 6.79 (3) 9.61 (5) 8.68 (4)
0.5 5.35 (2) 7.90 (2) 10.71 (5) 8.26 (4) 8.39 (4)
0.7 5.86 (2) 9.11 (2) 15.88 (5) 8.15 (4) 8.25 (4)
0.9 6.08 (2) 10.93 (2) 15.52 (5) 8.09 (4) 8.23 (4)

β ,α
Branch–and–cut (CPLEX)

0.1 0.3 0.5 0.7 0.9
0.1 24.78 (23534) 24.39 (35422) 28.20 (29337) 30.16 (46270) 29.31 (44764)
0.3 26.64 (24741) 22.83 (36596) 25.90 (32865) 28.45 (46158) 29.99 (44584)
0.5 26.41 (27408) 22.18 (36994) 26.09 (35442) 27.92 (44459) 30.07 (44584)
0.7 26.24 (27394) 22.76 (39697) 23.10 (29404) 27.91 (44459) 30.18 (44584)
0.9 26.36 (27147) 22.14 (39457) 24.02 (29404) 27.70 (44459) 31.06 (44584)
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Benders–with–BlockIP

0.1 0.3 0.5 0.7 0.9
0.1 3.04 (2) 7.62 (2) 3.95 (3) 2.59 (3) 3.84 (5)
0.3 3.25 (2) 8.22 (2) 5.14 (3) 4.59 (5) 3.78 (4)
0.5 3.68 (2) 8.45 (2) 7.00 (4) 3.63 (4) 3.79 (4)
0.7 4.25 (2) 9.03 (2) 9.12 (4) 3.72 (4) 3.68 (4)
0.9 5.02 (2) 11.52 (2) 9.14 (4) 3.27 (4) 3.11 (4)

β ,α
Benders–with–Baropt

0.1 0.3 0.5 0.7 0.9
0.1 4.52 (2) 7.85 (2) 5.84 (3) 6.06 (3) 9.60 (5)
0.3 4.59 (2) 7.76 (2) 6.79 (3) 9.61 (5) 8.68 (4)
0.5 5.35 (2) 7.90 (2) 10.71 (5) 8.26 (4) 8.39 (4)
0.7 5.86 (2) 9.11 (2) 15.88 (5) 8.15 (4) 8.25 (4)
0.9 6.08 (2) 10.93 (2) 15.52 (5) 8.09 (4) 8.23 (4)

β ,α
Branch–and–cut (CPLEX)

0.1 0.3 0.5 0.7 0.9
0.1 24.78 (23534) 24.39 (35422) 28.20 (29337) 30.16 (46270) 29.31 (44764)
0.3 26.64 (24741) 22.83 (36596) 25.90 (32865) 28.45 (46158) 29.99 (44584)
0.5 26.41 (27408) 22.18 (36994) 26.09 (35442) 27.92 (44459) 30.07 (44584)
0.7 26.24 (27394) 22.76 (39697) 23.10 (29404) 27.91 (44459) 30.18 (44584)
0.9 26.36 (27147) 22.14 (39457) 24.02 (29404) 27.70 (44459) 31.06 (44584)
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Three periods

Table 8: CPU time of instances of two sizes m= n= 500 and m= n= 1000, with three time periods (k =
3). The three tables report the CPU times of the three analyzed solution methods: Benders–with–BlockIP,
Benders–with–BarOpt and Branch–and–cut. The values inside the parenthesis are either the number of
Benders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)
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β ,α
Benders–with–BlockIP

0.1 0.3 0.5 0.7 0.9
0.1 2.41 (2) 2.40 (2) 2.45 (2) 2.67 (3) 4.22 (6)
0.3 2.49 (2) 2.72 (2) 7.19 (5) 9.88 (7) 3.58 (6)
0.5 2.57 (2) 5.81 (3) 17.65 (8) 7.05 (6) 3.57 (6)
0.7 2.71 (2) 18.32 (3) 15.10 (6) 7.97 (6) 3.55 (6)
0.9 2.90 (2) 27.39 (4) 15.12 (6) 7.89 (6) 3.59 (6)

β ,α
Benders–with–Baropt

0.1 0.3 0.5 0.7 0.9
0.1 4.97 (2) 4.86 (2) 5.06 (2) 7.64 (3) 15.97 (6)
0.3 5.23 (2) 5.53 (2) 16.09 (5) 30.91 (9) 16.34 (6)
0.5 5.84 (2) 11.05 (3) 41.81 (10) 28.07 (8) 16.25 (6)
0.7 6.84 (2) 15.12 (3) 41.36 (8) 28.12 (8) 16.09 (6)
0.9 8.05 (2) 23.98 (4) 41.39 (8) 28.15 (8) 15.93 (6)

β ,α
Branch–and–cut (CPLEX)

0.1 0.3 0.5 0.7 0.9
0.1 75.80 (82767) 91.62 (145763) 121.33 (162566) 141.96 (199826) 119.93 (161368)
0.1 77.37 (88267) 99.69 (156288) 117.77 (158843) 441.77 (236393) 121.26 (157888)
0.1 83.79 (86095) 95.19 (143148) 1027.8 (361530) 122.68 (166711) 120.32 (157888)
0.1 77.61 (84922) 93.10 (141979) 102.11 (129615) 122.58 (166711) 120.77 (157888)
0.1 79.98 (88707) 85.02 (130412) 102.23 (129615) 122.32 (166711) 122.2 (157888)

10
00

fa
ci

lit
y

lo
ca

tio
ns

–
10

00
de

st
in

at
io

ns β ,α
Benders–with–BlockIP

0.1 0.3 0.5 0.7 0.9
0.1 18.04 (2) 18.15 (2) 18.07 (2) 19.25 (3) 29.09 (7)
0.3 18.38 (2) 18.82 (2) 27.71 (3) 63.34 (8) 27.21 (6)
0.5 18.09 (2) 27.84 (2) 70.03 (5) 53.83 (6) 27.33 (6)
0.7 19.46 (2) 74.71 (3) 208.92 (8) 54.00 (6) 27.05 (6)
0.9 20.16 (2) 100.52 (3) 157.41 (6) 53.89 (6) 27.87 (6)

β ,α
Benders–with–Baropt

0.1 0.3 0.5 0.7 0.9
0.1 35.09 (2) 36.20 (2) 36.72 (2) 59.44 (3) 144.28 (7)
0.3 40.30 (2) 41.18 (2) 72.47 (3) 216.97 (8) 140.21 (7)
0.5 42.69 (2) 48.20 (2) 164.24 (5) 193.69 (7) 140.30 (7)
0.7 48.32 (2) 96.80 (3) 267.14 (7) 192.33 (7) 140.55 (7)
0.9 53.19 (2) 115.36 (3) 249.55 (6) 192.58 (7) 141.01 (7)

β ,α
Branch–and–cut (CPLEX)

0.1 0.3 0.5 0.7 0.9
0.1 1092.41 (190457) 1128.3 (497498) 1341.32 (433991) 1771.85 (521141) 3140.49 (364098)
0.3 1083.25 (183858) 1432.37 (503591) 1341.28 (/398657) 2371.77 (517030) 1040.00 (366078)
0.5 1048.64 (185015) 1344.06 (477182) 1328.27 (431055) 1384.44 (446753) 1218.97 (366078)
0.7 1113.06 (183404) 1215.51 (491545) 1505.74 (409296) 1753.35 (446753) 1036.53 (366078)
0.9 1066.31 (185925) 1199.02 (447635) 1256.25 (396701) 1361.38 (446753) 1118.97 (366078)
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Six periods

Table 9: CPU time of instances of two sizes m = n = 500 and m = n = 1000, with six time periods (k =
6). The three tables report the CPU times of the three analyzed solution methods: Benders–with–BlockIP,
Benders–with–BarOpt and Branch–and–cut. The values inside the parenthesis are either the number of
Benders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)
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β ,α
Benders–with–BlockIP

0.1 0.3 0.5 0.7 0.9
0.1 4.86 (2) 4.85 (2) 5.29 (3) 6.21 (5) 15.62 (10)
0.3 5.01 (2) 6.81 (3) 18.32 (8) 30.85 (12) 8.59 (9)
0.5 5.32 (2) 14.53 (4) 75.02 (19) 20.54 (9) 8.59 (9)
0.7 15.30 (2) 39.33 (5) 95.68 (18) 20.53 (9) 8.34 (9)
0.9 27.09 (3) 108.11 (7) 95.76 (18) 20.50 (9) 8.16 (9)

β ,α
Benders–with–Baropt

0.1 0.3 0.5 0.7 0.9
0.1 9.86 (2) 10.02 (2) 15.12 (3) 27.63 (5) 112.91 (20)
0.3 10.28 (2) 17.66 (3) 46.21 (7) 98.39 (14) 53.49 (10)
0.5 11.82 (2) 31.66 (4) 172.06 (20) 81.40 (11) 53.48 (10)
0.7 14.15 (2) 51.10 (5) 103.71 (10) 78.04 (11) 53.07 (10)
0.9 27.95 (3) 90.66 (7) 100.21 (10) 77.86 (11) 53.82 (10)

β ,α
Branch–and–cut (CPLEX)

0.1 0.3 0.5 0.7 0.9
0.1 160.15 (174912) 237.84 (306138) 305.12 (320752) 358.98 (363900) 281.51 (311002)
0.3 162.65 (171758) 240.52 (312191) 314.58 (324738) 475.19 (307862) 498.59 (315966)
0.5 169.77 (174745) 272.58 (322766) > 3600 (611082) 282.61 (299578) 490.38 (315966)
0.7 170.17 (170519) 233.78 (294001) 251.62 (266350) 313.44 (299578) 495.00 (315966)
0.9 166.23 (168989) 199.87 (252973) 277.84 (266350) 321.92 (299578) 499.23 (315966)
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Benders–with–BlockIP

0.1 0.3 0.5 0.7 0.9
0.1 35.19 (2) 36.11 (2) 36.29 (2) 40.02 (4) 105.62 (10)
0.3 36.93 (2) 48.30 (3) 62.84 (4) 253.28 (18) 63.02 (9)
0.5 38.27 (2) 85.19 (4) 269.69 (7) 145.83 (9) 65.63 (9)
0.7 39.52 (2) 200.53 (4) 670.59 (14) 145.77 (9) 64.11 (9)
0.9 44.90 (2) 388.82 (5) 415.43 (11) 145.03 (9) 64.86 (9)

β ,α
Benders–with–Baropt

0.1 0.3 0.5 0.7 0.9
0.1 76.39 (2) 73.05 (2) 74.45 (2) 153.22 (4) 233.15 (10)
0.3 81.84 (2) 134.18 (4) 195.97 (4) 298.28 (16) 103.91 (9)
0.5 87.89 (2) 225.99 (4) 458.89 (7) 275.83 (10) 174.63 (9)
0.7 100.74 (2) 274.54 (4) 1129.83 (14) 235.77 (9) 179.04 (9)
0.9 118.49 (2) 422.32 (5) 831.57 (10) 221.14 (9) 178.31 (9)

β ,α
Branch–and–cut (CPLEX)

0.1 0.3 0.5 0.7 0.9
0.1 2806.43 (438667) 2615.41 (947346) > 3600 (1037026) > 3600 (936011) 3234.75 (703221)
0.1 2699.30 (458865) 3379.19 (946117) 3416.73 (1055603) > 3600 (1030661) 2195.65 (709446)
0.1 2261.68 (447090) 3450.16 (931857) > 3600 (970240) > 3600 (765625) 2199.04 (709446)
0.1 2449.55 (432943) 3572.15 (980130) 3144.12 (912201) > 3600 (792742) 2192.47 (709446)
0.1 2223.04 (405934) 2626.27 (871642) 3571.51 (918625) > 3600 (779241) 2194.18 (709446)


	Introduction
	Problem description and formulation
	The cutting-plane approach
	Computational tests
	Conclusions
	Tables of numerical experiments

