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Abstract Amethod to optimize triangular and quadri-
lateral meshes on parameterized surfaces is proposed.

The optimization procedure relocates the nodes on the

surface to improve the quality (smooth) and ensures

that the elements are not inverted (untangle). We de-

tail how to express any measure for planar elements in
terms of the parametric coordinates of the nodes. The

extended measures can be used to check the quality

and validity of a surface mesh. Then, we detail how to

optimize any Jacobian-based distortion measure to ob-
tain smoothed and untangled meshes with the nodes on

the surface. We prove that this method is independent

of the surface parameterization. Thus, it can optimize

meshes on CAD surfaces defined by low-quality param-

eterizations. The examples show that the method can
optimize meshes composed by a large number of in-

verted elements. Finally, the method can be extended

to obtain high-order meshes with the nodes on the CAD

surfaces.

Keywords mesh quality; mesh optimization; smooth-

ing and untangling; CAD surfaces;

1 Introduction

In the last decades, unstructured methods such as the
Finite Element Method, the Finite Volume Method,

A. Gargallo-Peiró and J. Sarrate
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and the Discontinuous Galerkin Method have shown
to be powerful tools to simulate natural phenomena

in applied sciences and engineering. The main advan-

tage of unstructured methods compared to structured

methods, such as the finite differences, is the geomet-

rical flexibility. That is, unstructured methods can be
applied to complex and arbitrary three-dimensional do-

mains. To this end, one has to generate first a mesh of

the domain composed by polyhedra, such as tetrahe-

dral or hexahedral elements. In addition, the mesh has
to be composed by non-inverted elements (valid) with

a shape close to an ideal element (quality) [?,?,?]. On

the one hand, if at least one element that composes

the discretization of the domain is inverted, the varia-

tional formulation for that mesh is not valid, and the
unstructured method cannot be applied. On the other

hand, just a few low-quality elements can compromise

the accuracy of the solution in the whole domain.

The standard technique to improve the quality of
a mesh is referred as smoothing [?,?,?]. This technique

improves the quality of an initial mesh by relocating the

nodes without modifying the mesh topology. However,

some smoothing methods can lead to final meshes that

contain inverted elements. This issue is usually trig-
gered when the mesh boundary contains non-convex

features. Moreover, if the initial mesh contains inverted

elements, few smoothing methods can repair them (un-

tangle) and therefore, the final mesh is not valid. To
address this issue, there are several methods special-

ized to untangle the mesh [?,?,?]. Note that combining

an untangling method with a smoothing technique, we

can obtain the desired valid and high-quality mesh [?].

The application of a node relocation technique re-
quires to consider two types of nodes, the ones on the in-

terior and those on the boundary. In three-dimensional

meshes, the interior nodes can move freely inside their
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container volumes (three degrees of freedom), while the

boundary nodes can only move on their container sur-

faces (two degrees of freedom). Note that, an inverted

or low-quality face (triangle / quadrilateral), with the

nodes on the boundary surfaces, also determines a non-
valid or a low-quality volume element (tetrahedron /

hexahedron). Hence, relocating the nodes on the bound-

ary surfaces is required to ensure a valid and high-

quality three-dimensional mesh. In addition, valid sur-
face meshes are an essential ingredient to perform com-

putational mechanics simulations with shell elements.

The formulation of a relocation technique that en-
sures that the nodes move on a surface depends on

the surface representation. There are several compu-

tational techniques to represent a surface, such as a tri-

angular mesh, an implicit entity, or a CAD entity. The
last technique is the preferred representation for indus-

trial applications, where CAD models have to be simu-

lated during the design process. However, not all CAD

surfaces have high-quality parameterizations where the

derivative matrix is well-conditioned, non-singular, and
varies smoothly. Thus, a robust relocation technique

has to provide valid and high-quality meshes for both

low and high-quality parameterizations.

The main contribution of this work is to develop a

relocation method (constant mesh topology) that ro-

bustly untangles the elements on a given CAD surface.
The method does not modify the initial surface parame-

terization and therefore, does not approximate the sur-

face. Specifically, we present a simultaneous smoothing

and untangling technique for linear meshes (triangles

and quadrilaterals) with the nodes on a parameterized
surface. This technique allows obtaining valid and high-

quality linear meshes on surfaces represented by both

low and high-quality CAD parameterizations. To this

end, we propose:

– To extend any distortion and quality measure for

linear elements to elements with the nodes on pa-
rameterized surfaces, Section 3. The resulting mea-

sures are expressed on the parametric coordinates

of the element nodes. Moreover, we prove that they

are independent of the surface parameterization.

– To enforce the ideal element quality by solving an
optimization problem in terms of the parametric co-

ordinates, Section 4. We prove that this formulation

is independent of the surface parameterization. This

property ensures that the method can be applied
to optimize meshes on surfaces represented by low-

quality parameterizations.

To accomplish our purposes, we also adapt and ex-

tend two existing techniques. First, to avoid the vertical

asymptotes that appear in the untangling process, we

use the parameter dependent modification for Jacobian-

based distortions presented in [?]. Herein, we propose a

new formula to automatically choose the modification

parameter. Thus, the implementation of the method

can smooth and untangle meshes composed by a large
number of inverted elements. Second, to obtain opti-

mized meshes that preserve a prescribed element-size

field, we combine a shape and a size distortion (quality)

measure as in [?]. The main difference is that the pro-
posed measure is differentiable everywhere and there-

fore, can be used in the optimization process.

The rest of the paper is organized as follows. First,

in Section 2 we review the related work on surface mesh

optimization. In Section 3, we detail how to extend any

distortion (quality) measure for linear elements to ele-
ments with the nodes on a parameterized surface. Then,

we detail how to optimize the surface mesh, Section 4.

Specifically, we enforce the ideal element distortion by

means of a non-linear least-squares problem in terms of
the parametric coordinates, Section 4.1. This can be im-

plemented in terms of the deviation of the submesh dis-

tortion with respect to an ideal configuration, Section

4.2. This implementation of the optimization algorithm

is described in Section 4.3. For completeness, in Section
4.4 we detail how to incorporate several Jacobian-based

distortion measures in the optimization algorithm. In

particular, we detail how to choose the parameter of the

distortion measure modification. We also introduce the
combined shape and size distortion (quality) measure.

Finally, we present several examples to assess the prop-

erties of the proposed method, Section 5. In addition,

we outline how to extend the method to obtain valid

and high-quality high-order meshes on parameterized
CAD surfaces. Specifically, we illustrate this extension

by generating a high-order mesh on the surface of a

propeller.

2 Related work

The main purpose of the quality measures is to quantify
the geometric suitability of the elements of a mesh, see

[?] for a comparative analysis. To this end, we use the

framework of algebraic quality measures introduced by

Knupp [?,?]. In this framework, the distortion (qual-

ity) measures are defined in terms of an affine mapping
between an ideal element and the physical one. Specif-

ically, the Jacobian matrix of this mapping is used to

measure the deviation of the physical element with re-

spect to the ideal one (distortion). Therefore, the value
of the quality (distortion) measures is determined by

the physical coordinates of the element vertices. In this

work, we rewrite the expression of the Jacobian-based
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quality (distortion) measure in terms of the parametric

coordinates of the element vertices.

Quality measures can be also used to improve the

quality of a mesh by an optimization-based procedure.

In particular, Knupp proposed a smoothing method
based on the optimization of Jacobian-based measures

[?]. However, this type of optimization procedures does

not ensure that an initial mesh with inverted elements

can be untangled. To overcome this issue, Freitag pro-
posed in [?] a mesh improving procedure divided into

two steps: a linear untangling, and a maximization of

the element with minimum area (volume) of the mesh.

Later, similar techniques organized in two independent

optimization have been proposed [?,?]. Afterwards, Es-
cobar et al. [?] proposed a simultaneous smoothing and

untangling technique. They also extended this tech-

nique to non-planar triangular meshes [?,?]. To per-

form the simultaneous untangling and smoothing, they
propose a parameter dependent modification of the el-

ement distortion. In this way, they obtain a convex

goal function, with a similar minimum and without

the vertical asymptotes that separate the unfeasible

(tangled elements) and the feasible regions (valid el-
ements). Reference [?] uses the parameter-dependent

modification presented in [?] and proposes a new opti-

mization approach that takes as minimization variables

the node coordinates and the modification parameter.
In our work, we use the same modification of the el-

ement distortion than in [?]. However, we propose a

different approach to determine automatically the mod-

ification parameter.

Several relocation techniques for surface meshes have
been previously developed. These techniques can be

classified into two groups, depending on whether the

nodes are relocated indirectly or directly on a surface

representation. On the one hand, indirect relocation

methods compute an ideal location of the nodes. How-
ever, the resulting node locations can be off the surface.

Therefore, an additional step to relocate the nodes on,

or close to, the surface is required [?,?,?,?,?,?,?]. In

particular, Escobar et al. present in [?,?] a simultane-
ous untangling and smoothing method for triangular

surface meshes. They use, for each surface node, a lo-

cal projection plane where the patch around the node

is smoothed. Then, the new node location is projected

back close to the original triangulation. On the other
hand, direct relocation methods obtain an ideal loca-

tion of the nodes on the surface. To this end, the mesh

optimization is expressed in terms of the parametric

coordinates of an approximated representation of the
original surface [?,?,?]. In particular, Shivanna et al.

present in [?] two methods for the smoothing and un-

tangling of quadrilateral meshes defined on underlying

triangulated surfaces. The first is based on the opti-

mization of the mesh on local parametric spaces, and

the second is based on the projection of the advancing

directions on the discrete surface. We also formulate the

smoothing and untangling optimization in terms of the
parametric coordinates of the nodes. However, we use

the original CAD representation instead of a smooth

representation of an initial triangulation.

It is worth noting that in geometry processing opti-
mization approaches have been used to reparameterize

triangular surface meshes [?]. Then, the obtained pa-

rameterization can be used to remesh the discrete rep-

resentation of the initial surface [?,?]. On the contrary,

we use the initial continuous parameterization of the
CAD surface and not a piecewise linear approximation.

Moreover, our method is independent of the surface pa-

rameterization. Thus, we do not need to reparameterize

to obtain a high-quality mesh on a low-quality param-
eterization of the initial CAD surface.

Finally, we highlight that all the reviewed smooth-

ing and untangling methods use an approximated rep-

resentation of the geometry of the model. On the con-

trary, our method uses the initial CAD representation
of the geometry regardless of the quality of its param-

eterization. Note that a smoothing and untangling ap-

proach that deals with the exact CAD representation

and it is proved to be independent of the parameteri-
zation has not been proposed before.

3 Distortion and quality for elements on

parameterized surfaces

In this section, we first develop an analytical formula-

tion to extend any quality measure for planar triangles

to triangular meshes on a parameterized surface. As a

result, we obtain a quality measure expressed in the

two coordinates of the parametric space of the surface.
Then, we develop the formulation for quadrilateral el-

ements expressing it in terms of the formulation for

triangles.

Note that triangle elements on a surface are two-
dimensional planar entities immersed in R

3. Hence, a

possible approach to qualify surface elements is to use

planar quality measures in the plane where the sur-

face element lies. However, this approach does not al-

low a straight forward surface optimization procedure.
Parameterized surfaces enable the development of an

analytical and straightforward function to quantify the

quality of a surface triangular element. Herein, we pro-

pose a composition of the parameterization of the sur-
face together with a mapping of the surface element

to a similar one in a 2D space, where planar quality

measures are defined. This way, the proposed quality
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is expressed in terms of the parametric coordinates of

the surface. Such expression allows a natural smooth-

ing technique that avoids any additional constraint to

keep the nodes on the surface, since the procedure is

developed on its parametric space.

3.1 Preliminaries

Let η be a distortion measure for planar elements, with

image [1,∞), taking value 1 for an ideal configuration

of the element, and value ∞ when it is degenerated or

tangled. Let q be the corresponding quality measure,

defined as

q =
1

η
. (1)

The image of the quality measure q is [0, 1], taking value

1 for ideal configurations and 0 for degenerated or tan-

gled ones.

Given a distortion and its associated quality mea-

sure for triangles in the plane, our goal is to extend

these measure to triangles with the vertices on a param-

eterized surface, Σ. Assume that the surface Σ is pa-
rameterized by a continuously differentiable and glob-

ally invertible mapping

ϕ : U ⊂ R
2 −→ Σ ⊂ R

3

u = (u, v) 7−→ x = ϕ(u).
(2)

Through this work, we require that the nodes of

the triangles lie on the proper spaces. To this end, we
introduce the definition of the following triangle sets:

– The set of triangles with vertices on Σ ⊂ R
3:

TΣ := {t
Σ
= (x0,x1,x2) ∈ Σ×Σ×Σ ⊂ R

3×R
3×R

3}.

– The set of triangles in R
2:

T := {t = (y0,y1,y2) ∈ R
2 × R

2 × R
2}.

– The set of triangles in the parametric space U :

TU := {t
U
= (u0,u1,u2) ∈ U × U × U}.

Using these sets, the distortion and quality measures

for planar elements presented in Equation (1) can be
expressed as the mappings

η : T ⊂ R
2 × R

2 × R
2 −→ [1,∞) ⊂ R, (3)

q : T ⊂ R
2 × R

2 × R
2 −→ [0, 1] ⊂ R. (4)

Fig. 1 Diagram of mappings involved in the definition of the
quality measure.

3.2 Measures for triangles on parametric coordinates

To evaluate the quality of a triangle t
Σ
with vertices on

a surfaceΣ, we first express the vertices as the image by

the parameterization ϕ of the corresponding parametric

coordinates in U . Since t
Σ
is planar, but it is immersed

in R
3, we define the quality of the physical triangle

as the quality of a geometrically equivalent triangle t

on R
2. Once in R

2, the proposed formulation allows to

extend any existing distortion and quality measure for
planar elements. In Section 4.4, we detail the distortion

measures considered in this work.

We first extend the surface parameterization ϕ to

the corresponding triangle sets. To this end, we define

the mapping

ϕ̃ : TU −→ TΣ
t
U
7−→ t

Σ
= (ϕ(u0), ϕ(u1), ϕ(u2)).

(5)

This mapping transforms a triangle t
U
= (u0,u1,u2) in

the parametric space U , to a triangle t
Σ
= (x0,x1,x2)

with the nodes on the surface Σ determined by ϕ, see

Figure 1. Since t
Σ

defines a plane in R
3, we can map

t
Σ
to a geometrically equivalent triangle in R

2. That is,

we can define a mapping T̃ from TΣ to T . To define T̃,
we consider an auxiliary linear mapping T from R

3 to

the plane. The domain of this mapping is expressed in

the canonical basis of R3, and the image is expressed

in terms of a new 2D orthogonal basis determined by a

combination of two edges of the triangle. Let

e1 := x2 − x1,

e2 := x0 − x1,
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be the vectors determined by two edges of the triangle.

Then, we define

ẽ1 :=
e1

‖e1‖
,

ẽ2 := γ ẽ2,0, with ẽ2,0 :=
e2 − (eT2 · ẽ1) ẽ1

‖e2 − (eT2 · ẽ1) ẽ1‖
,

as the two orthonormal vectors of the new basis, where

γ is defined to ensure a well oriented orthonormal basis.

Specifically, we define γ as:

γ :=
(ẽ1 × ẽ2,0) · n

|(ẽ1 × ẽ2,0) · n|
=

det(ẽ1, ẽ2,0,n)

| det(ẽ1, ẽ2,0,n)|
,

where n ≡ n(x1) =
∂ϕ
∂u

(u1, v1) ×
∂ϕ
∂v

(u1, v1) is the nor-
mal to the surface at x1 = ϕ(u1, v1). Note that γ = ±1,

being 1 for counter-clockwise oriented triangles, and −1

for clockwise oriented ones. It is important to point out

that if e1 and e2 are linearly dependent, we define ẽ2

as the unitary vector orthogonal to ẽ1 that completes

a positive oriented base.

Now, we can define T as

T : R3 −→ R
2

x 7−→ y = M · (x − x1),
(6)

where M = (ẽ1 ẽ2)
T
is a 2× 3 matrix. In addition, we

define T̃ as:

T̃ : TΣ −→ T

t
Σ

7−→ t = (T(x0),T(x1),T(x2)).
(7)

Hence, we can express the distortion measure for a tri-
angle t

Σ
on the surface as:

η
Σ
: TΣ

T̃
−→ T

η
−→ R

(x0,x1,x2) 7−→ T̃(x0,x1,x2) 7−→ η(T̃(x0,x1,x2)).

That is, as the composition

η
Σ
= η ◦ T̃ : TΣ −→ [1,∞). (8)

Note that η
Σ
is a distortion measure on Σ since it is

the composition of a planar distortion measure η, and a

change of variable of the plane where t
Σ
lies. Moreover,

the reciprocal of η
Σ
,

q
Σ
:=

1

η
Σ

: TΣ −→ [0, 1],

is also a quality measure, in the sense of [?]. It is im-
portant to point out that this quality measure holds

the same properties of the corresponding original pla-

nar quality measure q.

Finally, we use the expression of the distortion η
Σ
,

Equation (8), to define the distortion and quality mea-

sures in terms of the parametric coordinates of the tri-

angle.

Fig. 2 Vector edges e1 and e2 for a triangle t
Σ

= (x0,x1,x2)
on a surface Σ, and diagram of function T̃.

Definition 1 The distortion measure for triangles on

parametric coordinates is:

η
U
:= η

Σ
◦ ϕ̃ = η ◦ T̃ ◦ ϕ̃ : TU −→ [1,∞). (9)

Definition 2 The quality measure for triangles on para-

metric coordinates is:

q
U
:=

1

η
U

: TU −→ [0, 1]. (10)

3.3 Properties of the proposed mappings

The following remarks highlight several properties of

the mappings T and T̃. Specifically, these properties

help to: simplify the implementation, provide a geo-
metrical interpretation of the mappings, and improve

the numerical robustness of the method.

Remark 1 We derive a geometrical interpretation of map-

ping T̃, Equation (7), in A.1. Specifically, we have that

T(x1) = (0, 0)T , (11)

T(x2) = (‖e1‖, 0)
T
, (12)

T(x0) = (‖e2‖ cos(α), γ ‖e2‖ | sin(α)|)
T
, (13)

where α the inner angle defined between e1 and e2 (see

Figure 2).

Remark 2 From Equations (11) and (12), we realize

that T(x1) and T(x2) are independent of the node x0.

This is of the major importance when using the distor-

tion measure to smooth a surface mesh, since it simpli-
fies the final expression when smoothing in terms of the

node x0 = ϕ(u0).

Remark 3 By means of function T̃, Equation (7), any

element is always translated to the origin when its dis-

tortion measure is analyzed. This is of the major im-
portance for the robustness of the optimization process.

Specifically, the coordinates of the nodes of that ele-

ment are then of similar magnitude, without regards to

the physical location of the free node in the geometry.
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3.4 Properties of the proposed measures

In this section, we first prove that the defined measure

is independent of the surface parameterization.

Proposition 1 Let ϕ1 : U1 → Σ and ϕ2 : U2 → Σ be

two different diffeomorphic parameterizations of Σ. Let

M be a mesh on Σ, and t
Σ
a triangle with the vertices

on the surface. Then, the distortion measure for tri-

angles on parametric coordinates associated to t
Σ
, see

Equation (9), is independent of the surface parameter-

ization.

Proof Since both parameterizations are diffeomorphisms,

we can write

t
Σ
= (x1,x2,x3) = ϕ̃1(u

1
1,u

1
2,u

1
3) = ϕ̃2(u

2
1,u

2
2,u

2
3),

for unique ui
j ∈ Ui, i = 1, 2, j = 1, 2, 3. Then,

η
U1
(u1

1,u
1
2,u

1
3) = η

Σ
(ϕ̃1(u

1
1,u

1
2,u

1
3)) = η

Σ
(x1,x2,x3)

= η
Σ
(ϕ̃2(u

2
1,u

2
2,u

2
3)) = η

U2
(u2

1,u
2
2,u

2
3),

where η
Σ
is the distortion of the triangle with the ver-

tices on the surface, see Equation (8). In fact,

η
U1

= η
U2

◦ (ϕ̃−1
2 ◦ ϕ̃1)

where ϕ̃−1
2 ◦ϕ̃1 is a diffeomorphic change of variables, as

stated in the Proposition entitled Change of Parameters

in [?]. That is, functions η
U1

and η
U2

only differ by a
change of variables.

Note that the distortion measure for triangles on

parametric coordinates η
U
(Definition 1) is a distortion

measure, since: it is independent of the parameteriza-

tion (Proposition 1), and it is defined in terms of the dis-
tortion measure η

Σ
. Respectively, the quality measure

for triangles on parametric coordinates, Definition 2, is

a quality measure as stated in [?], that holds the same

properties of the corresponding planar quality measure

q.

Second, we also present a simplified expression for

the distortion measure for triangles on parametric co-
ordinates, see Equation (9), when there is one free node

in the triangle and the rest of nodes are fixed.

Remark 4 Let u be the free node of a triangle and u1
and u2 the two fixed nodes. In A.2, we prove that for
fixed values of u1 and u2, the restriction of η

U
to a free

node u, η
U
(u;u1,u2), corresponds to the expression

η̂
U
: U ⊂ R2 ϕ−→ Σ ⊂ R3 T−→ R2 η̂−→ R

u 7−→ ϕ(u) 7−→ T(ϕ(u)) 7−→ η̂(T(ϕ(u))),

where

η̂(y) := η(y,y1,y2), (14)

Fig. 3 Decomposition of a planar quadrilateral into four tri-
angles.

y1 := (0 0)T (Equation (11)), and y2 := (‖e1‖ 0)T

(Equation (12)). That is, it corresponds to the compo-

sition

η̂
U
= η̂ ◦T ◦ ϕ : U ⊂ R

2 −→ [1,∞), (15)

referred as the restricted distortion measure for trian-

gles on parametric coordinates.

3.5 Extension to quadrilaterals on parametric
coordinates

According to [?], the distortion measure for a planar

quadrilateral is evaluated through the decomposition
of the quadrilateral into four triangles, see Figure 3. In

this work, we also compute the distortion measure of a

quadrilateral element on a parameterized surface as the

mean value of the distortion measure of the four corner
triangles. To this end, let (x0,x1,x2,x3) be the vertices

of a quadrilateral element of a mesh with the nodes on a

parameterized surface, and let (u0,u1,u2,u3) be their

parametric coordinates.

Definition 3 The distortion measure for quadrilater-
als on parametric coordinates is:

η
U
(u0,u1,u2,u3) :=

1

4
(η

U
(u0,u1,u2) + η

U
(u0,u1,u3) +

η
U
(u0,u2,u3) + η

U
(u1,u2,u3)),

where η
U
(ui,uj ,uk) is the distortion on parametric

coordinates for the triangle (ui,uj,uk) ∈ TU , see Defi-

nition 1.

Definition 4 The quality measure for quadrilaterals on

parametric coordinates is:

q
U
(u0,u1,u2,u3) :=

1

η
U
(u0,u1,u2,u3)

. (16)

Note that it is straightforward to prove that q
U
,

Definition 4, verifies the properties a quality measure

should hold according to [?]. In addition, we also present
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a simplified expression for the distortion measure for

quadrilaterals on parametric coordinates when there is

one free node in the quadrilateral and the rest of nodes

are fixed. The main purpose of this expression is to sim-

plify the implementation of the optimization procedure.

Remark 5 Let u be the free node of a quadrilateral and
u1, u2 and u3 the fixed nodes. We define the restricted
distortion measure for quadrilaterals on parametric co-
ordinates as

η̂
U
(u) :=

η̂1
U
(u) + η̂2

U
(u) + η̂3

U
(u) + η

U
(u1,u2,u3)

4
, (17)

where η̂i
U
(u) for i = 1, 2, 3 is the restricted distortion

measure for the ith subtriangle, see Equation (15), and

η
U
(u1,u2,u3) is a constant term, see Equation (9). It is

important to point out that this extension for quadrilat-

eral elements require that the surface does not present
self-intersections. Note that this is true if the surface

parameterization is smooth and globally invertible, as

we assumed in Section 3.1.

4 Optimization of surface mesh quality

In this section, we present an algorithm to optimize the

distortion (quality) measure of triangular and quadri-

lateral meshes on parameterized surfaces. First, we for-

mulate the optimization problem. Second, we present

the proposed implementation. Third, we describe the
proposed algorithm. Finally, we specify some implemen-

tation details.

4.1 Global formulation: imposing an ideal mesh
distortion in the least-squares sense

The main goal of a simultaneous smoothing and un-

tangling method is to obtain high-quality meshes com-

posed by valid (non-inverted) elements. Note that the

best possible result, can be characterized in terms of the

distortion measure. That is, given a distortion measure
η
U
and a meshM on a parameterized surface composed

by nN nodes and nE elements, the node location is ideal

if

η
U
(tj

U
) = 1 j = 1, . . . , nE , (18)

where tj
U
= (uj1 , . . . ,ujs) is the jth element expressed

on parametric coordinates (s = 3 for triangles, s = 4

for quadrilaterals). However, for a fixed mesh topology

the node location that leads to an ideal mesh distortion

is not in general achievable. That is, the constraints in
Equation (18) cannot be imposed strongly and there-

fore, we just enforce the ideal mesh distortion in the

least-squares sense.

For a given mesh topology and a set of fixed nodes

(nodes on the surface boundary), we formulate the least-

squares problem in terms of the parametric coordinates

of a set of free nodes (inner nodes on the surface).

To this end, we reorder the parametric coordinates of
the nodes, ui, in such a way that i = 1, . . . , nF are

the indices corresponding to the free nodes, and i =

nF +1, . . . , nN correspond to the fixed nodes. Thus, we

can formulate the mesh optimization problem as

minu1,...,unF
f(u1, . . . ,unF

;unF+1, . . . ,unN
) =

minu1,...,unF

1
2

∑nE

j=1(ηU
(tj

U
)− 1)2,

(19)

where

f(u1, . . . ,unF
;unF+1, . . . ,unN

) :=
1

2

nE
∑

j=1

(η
U
(tj

U
)− 1)2

denotes the objective function.

Finally, the optimal configuration is found between
the candidates for the minimization of (19). The candi-

dates are the critical parametric coordinates (u1, . . . ,unF
)

of f . They are characterized by

∂f
∂ui

(u1, . . . ,unF
;unF+1, . . . ,unN

) =

∑nE

j=1(ηU
(tj

U
)− 1)

∂η
U

∂ui

(tj
U
) = 0, i = 1, . . . , nF .

(20)

Notice that these conditions are expressed in terms of

η
U
, which is independent of the surface parameteriza-

tion. Therefore, we can proof the following result.

Proposition 2 According to the objective function f ,

the optimal location for the mesh nodes xi = ϕ(ui) ∈

Σ, i = 1, . . . , nF , is independent of the surface param-

eterization.

Proof The conditions for the critical points of f are

expressed in terms of η
U
and its derivatives, Equation

(20). Since η
U
is independent of the surface parameter-

ization, Proposition 1, the critical points of f are also

independent of the surface mesh parameterization. To

finalize, the optimal configurations are also independent

of the surface parameterization since they are found be-
tween the candidate configurations.

Remark 6 In Proposition 2, we have proved that the

candidate configurations are independent of the surface
parameterization. In particular, the candidate configu-

rations have to be the same for high (smooth Jacobian)

and low quality (highly varying Jacobian) surface pa-

rameterizations. Therefore, the proposed method can
be applied to obtain candidate mesh configurations on

CAD surfaces represented by low-quality parameteriza-

tions.
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Remark 7 The goal of the proposed method is to obtain

the critical points independently of the surface param-

eterization. However, there are meshes that cannot be

untangled by the proposed method, such as when the

boundary edges of the mesh present self-intersections.
Nevertheless, the proposed method has properly smoothed

and untangled all the tested meshes.

4.2 Local implementation: deviation of the submesh

distortion with respect to an ideal configuration

To solve the optimization problem in Equation (19), we

have to find the optimum between the candidate config-

urations. These configurations are characterized by the
global non-linear constraints in Equation (20). These

global constraints can be solved by means of a local [?]

or a global [?,?] non-linear solver. In our implementa-

tion, we choose a local non-linear iterative method that:
exploits the locality of the problem, avoids solving large

linear systems, and is well suited for parallelization (by

coloring the mesh nodes). Specifically, we use a non-

linear iterative Gauss-Seidel method determined by the

iteration for i = 1, . . . , nF

uk+1
i = uk

i − αk
i [∇2

iif(w
k
i )]

−1
∇if(w

k
i ) (21)

where αk
i is the step length, and

wk
i = (uk+1

1 , . . . ,u
k+1
i−1 ,uk

i ,u
k
i+1, . . . ,u

k
nF

;u0
nF +1, . . . ,u

0
nN

)

is the vector of updated node locations for the i−1 first
nodes. Note that ∇i and ∇

2
ii denote the gradient and

the Hessian with respect to the parametric coordinates

ui of node i.

To implement this iterative non-linear solver, we
have to compute the gradient ∇if , the Hessian ∇

2
iif ,

and the step length, αk
i . We first observe that the com-

putation of the gradient

∇if =

nE
∑

j=1

(η
U
(tj

U
)− 1)

∂η
U

∂ui

(tj
U
),

can be simplified. That is, the distortion η
U
(tj

U
) only

depends on the coordinates of the nodes of the element

tj
U
. Therefore, we have that

∂η
U

∂ui

(tj
U
) = 0

for all the elements j that do not contain the node i.

Thus, the gradient can be evaluated as

∇if =
∑

j∼i

(η
U
(tj

U
)− 1)

∂η
U

∂ui

(tj
U
),

where j ∼ i denotes that the summation is performed

only for the elements that contain the node i. Now,

Algorithm 1 Backtracking Line Search

1: function BackLineSearch(Vector wk
i , Vector pk

i )
2: Set α > 0, ρ ∈ (0, 1), c ∈ (0, 1);
3: w

α
i ← wk

i + (0, . . . ,0, αpk
i ,0, . . . , 0);

4: while f(w
α
i ) > f(wk

i ) + cα[∇if(wk
i )]

Tpk
i do

5: α← ρα;
6: w

α
i ← wk

i + (0, . . . ,0, αpk
i , 0, . . . ,0);

7: end while

8: return α;
9: end function

taking into account the definition of the restricted dis-
tortion measure, see Equation (15) for triangles and

Equation (17) for quadrilaterals, we have that

∇if =
∑

j∼i

(η̂
U
(ui)− 1)

∂η̂
U

∂ui

(ui).

Therefore, if we define

f̂(ui) :=
∑

j∼i

(

η̂j
U
(ui)− 1

)2
, (22)

we have that

∇if(u1, . . . ,unF
;unF+1, . . . ,unN

) = ∇if̂(ui) (23)

Moreover, the Hessian can be computed as

∇
2
iif(u1, . . . ,unF

;unF+1, . . . ,unN
) = ∇

2
iif̂(ui) (24)

Finally, we have to compute the step length αk
i . To

this end, we use the Backtracking Line Search algorithm

[?] detailed in Algorithm 1, where we set: α = 1, ρ = 0.5
and c = 10−4. Note that in this algorithm, we have to

evaluate the global objective function f and its gradi-

ent to check the sufficient decrease condition in Line 4.

By Equation (23), the sufficient decrease condition is
equivalent to

f(w
α

i ) > f(wk
i ) + cα[∇if̂(u

k
i )]

Tpk
i ,

wherewα
i is defined in Line 3 of Algorithm 1. Moreover,

we have that

f(w
α

i )− f(wk
i ) = f̂(u

α

i )− f̂(uk
i ),

since the contributions of the elements that do not de-

pend on the free node are mutually cancelled, being

uα
i = uk

i + αpk
i . Therefore, the sufficient decrease con-

dition is equivalent to

f̂(u
α

i ) > f̂(uk
i ) + cα[∇if̂(u

k
i )]

Tpk
i . (25)

Taking into account Equations (23), (24), and (25), we
conclude that in the implementation we only need to

compute the gradients, the Hessian, and the value of

the local function f̂ introduced in Equation (22).
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(a)

(b)

Fig. 4 Local submeshes in the physical space (marked in
grey) of node x8 on a: (a) triangular surface mesh, and (b)
quadrilateral surface mesh.

In our implementation, we exploit the computational

reduction associated with the evaluation of the function

f̂ . To this end, we denote byMu the elements that con-

tain a free node u. The set of elementsMu is referred as

the submesh associated with node u. Figure 4 illustrates
the submesh associated to a node for a triangular and

a quadrilateral surface mesh. In the following remark,

we use this notation to reinterpret the local function f̂

as a measure of the deviation of the submesh distortion
with respect to an ideal configuration. In addition, we

state the optimized implementation for the non-linear

iterative method.

Remark 8 Let uk
i be the parametric coordinates of node

i at step k, and let M
u

k

i

be the corresponding associ-

ated submesh composed by mi elements. Let η̂j
U
(ui) be

the restricted distortion measure on the jth element of

M
u

k

i

, see Equation (15) for triangles and Equation (17)

for quadrilaterals. We say that

f̂(ui) =
∑

j∼i

(

η̂j
U
(ui)− 1

)2
=

mi
∑

j=1

(

η̂j
U
(ui)− 1

)2
(26)

is a local merit function that measures the deviation

with respect to an ideal configuration of the submesh

distortion associated with ui. According to this merit

function, and to Equations (23), (24), and (25), we can

implement the iteration k+1 for node i, i = 1, . . . , nF ,

Algorithm 2 Optimization Algorithm

1: function SmoothMesh(MeshM)
2: rx, rf ←∞; tolx ← 10−3; tolf ← 10−3; k ← 0;
3: nF ← number of free nodes of M;
4: f0 ← f(w0

nF
);

5: while rx > tolx or rf > tolf do

6: rx, rf ← 0;
7: for i = 1 : nF do

8: (uk
i ,x

k
i )← coord. ith free node at kth step;

9: SetIdealElements(SubmeshM
uk

i

);

10: u0
i ← SetInitialPoint(Submesh M

uk

i

);

11: u
k+1
i ← OptimizeSubmesh(u0

i , SubmeshMu0
i

);

12: x
k+1
i ← ϕ(uk+1

i );

13: M← update u
k+1
i and x

k+1
i inM;

14: rix ←
‖xk

i
−x

k+1
i

‖

max edge submesh M
u
k
i

;

15: rx ← max(rx, rix);
16: end for

17: fk+1 ← f(wk+1
nF

);

18: rf ← ‖fk−fk+1‖

fk+1 ;

19: k ← k + 1;
20: end while

21: return MeshM;
22: end function

of the proposed non-linear method, Equation (21), as

uk+1
i = uk

i − αk
i [∇2

iif̂(u
k
i )]

−1
∇if̂(u

k
i ). (27)

4.3 Optimization algorithm

In this section, we detail the implementation of the

optimization procedure developed in Section 4.1. To
this end, we consider Algorithm 2, where until conver-

gence is achieved, Line 5, a loop on all the free nodes is

performed, Line 7. Specifically, convergence is achieved

when of the maximum of the relative displacement of
the nodes between step k and step k+ 1 (Line 15) and

the relative error of the objective function (Line 18)

are both below a given tolerance. Then, for each free

node three functions are called: SetIdealElements,

SetInitialPoint and OptimizeSubmesh.

Function SetIdealElements, Line 9, determines

the ideal for each element of the submesh associated

with the current free node. The determination of the

ideal element depends on the selected distortion mea-

sure. In this work, we only select measures that quan-
tify the shape or the size of isotropic physical elements,

see Section 4.4. For the shape measure, SetIdealEle-

ments sets the same ideal element (an equilateral trian-

gle, or square) for all the elements of the mesh. Whereas,
for the size measure, it sets the same ideal shape (an

equilateral triangle, or square) with a variable size that

depends on a prescribed element size field. The ideal
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Fig. 5 Mappings between the reference, the ideal and the
physical elements.

size is determined as the average of the size field eval-
uated on the nodes of the current element.

Next, SetInitialPoint sets the current location

of the node as the initial guess for the minimization

process, Line 10. If the initial guess is tangled, we use
the untangling technique presented in [?], see details in

Section 4.4 and B.

Finally, OptimizeSubmesh, Line 11, computes the
update k+1 of node i determined by Equation (27). It

is important to point out that, according to Remark 3,

the elements of the submesh are translated to the origin,

enhancing the robustness of the optimization process.

In C, we deduce the analytical expressions of the first
and second order derivatives of the objective function

f̂(u). Recall that if it is not possible to compute sec-

ond order derivatives of the surface parameterization,

the presented approach is still applicable. Other meth-
ods (with lower convergence rates) such as the Steepest

Descent can be used in order to determine the advanc-

ing direction in Equation (27).

4.4 Inclusion of several distortion measures

We apply the presented approach to define distortion
and quality measures on parameterized surfaces to three

Jacobian algebraic distortion measures for planar ele-

ments, presented in [?]. Specifically, we consider a shape,

a size, and a size-shape measure. Moreover, we detail
how to modify these measures to incorporate the un-

tangling capability to the optimization method. To this

end, we use the modification presented in [?]. This mod-

ification can be applied to distortion measures where
the determinant of the Jacobian appears in the denom-

inator.

In order to define a Jacobian-based measure for tri-

angles, three types of elements are required: the refer-
ence, the ideal, and the physical. The reference element

has an auxiliary use, since it is straight forward to define

a linear affine mapping between the reference and any

other triangle. The ideal triangle represents the best

configuration of the geometrical property to quantify.

The physical is the element to be measured. Once the

mappings between the reference and the ideal and the

physical elements are obtained, a mapping between the
ideal and the physical elements is determined by (see

Figure 5)

φ : tI
ψ

−1
0−→ tR

ψ
−→ t.

The Jacobian of this affine mapping contains informa-

tion about the deviation of the physical element with re-
spect to the ideal. Hence, the distortion measure of the

physical element is defined in terms of S(y0,y1,y2) =

Dφ. These distortion measures quantify the deviation

of a geometrical property of the physical element with
respect to the ideal element in a range scale [1,∞).

Note that, in Section 3 we have defined the distortion

and quality measures for quadrilateral element in terms

of distortion and quality measures for triangles as in [?].

In this work, we consider three Jacobian distortion
measures [?] where the determinant of the Jacobian

appears in the denominator. To incorporate the untan-

gling capability to the optimization method, σ = det(S)

is replaced by

σδ(σ) =
1

2

(

σ +
√

σ2 + 4δ2
)

, (28)

where δ is a numerical parameter that has to be de-

termined [?]. Parameter δ is sensitive to the magnitude

of σ. Thus, special attention has to be focused on its
selection. In Appendix B, we derive a new formula to

determine δ automatically, see Equation (38). This ex-

pression determines a δ parameter that slightly modi-

fies the distortion measure to remove the appearance of
vertical asymptotes. The parameter δ is only set to non-

zero values when an invalid (tangled) configuration of

the mesh is being optimized. Note that when δ > 0 the

distortion measure is a smooth function, see Appendix

B, and therefore, its derivatives can be computed as de-
tailed in Appendix C. For quality evaluation, or once

all the elements are valid in the optimization process,

δ is set to zero and therefore, the distortion measure is

not modified.

Shape distortion measure

ηsh(y0,y1,y2) =
‖S(y0,y1,y2)‖

2

2|σδ(y0,y1,y2)|
, (29)

where ‖ · ‖ is the Frobenius norm. This distortion mea-

sure quantifies the deviation of the shape of the physical

triangle with respect to the ideal shape.
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(a)

(b)

Fig. 6 Plots of the original and modified: (a) size distortion
measure and (b) size quality measure.

Size distortion measure

ηsi(y0,y1,y2) =
1

µ(σδ(y0,y1,y2))
, (30)

where µ(σ) = min(σ, σ−1). This distortion measure

quantifies the deviation of the size of the element with

respect to the size of the ideal triangle. The size of the

ideal triangle is prescribed using a size field function,
h : U ⊂ R

2 −→ R, or using the size of the initial mesh.

Note that in Equation (30), the term µ(σ) is not dif-

ferentiable. Thus, it can not be used in a continuous

optimization procedure. To overcome this drawback we
propose to replace µ(σ) by a continuous and differen-

tiable function that holds the same minimum and a

similar behavior:

µ∗(σ) =
e

2

(

σe−σ + σ−1e−σ−1
)

. (31)

Figure 6 plots the size distortion and the size qual-

ity measures using the original, µ(σ), and the modified

functions, µ∗(σ), functions in terms of σ. It is worth to

notice that using the modification presented in Equa-
tion (31), the size distortion measure, ηsi, is still a dis-

tortion measure, i.e. it holds the properties stated in

[?].

Size-shape distortion measure

ηss(y0,y1,y2) = ηsh(y0,y1,y2) ηsi(y0,y1,y2). (32)

This distortion measure combines ηsh and ηsi, see de-

tails in [?]. Thus, it quantifies both the size and the

shape of the element.

4.5 Illustration of the smoothing and untangling

procedure

To illustrate the proposed method, we consider an ini-

tially tangled quadrilateral mesh on a cylindrical sur-

face. Specifically, we present the results obtained for
the minimization of the shape distortion measure. Note

that the position of the central node determines three

invalid elements with zero shape quality (blue). Figure

7 presents the sequence of steps required to optimize

an initially tangled configuration. We observe that the
proposed optimization method (δ > 0) requires just one

step to relocate the central node and therefore, to un-

tangle the mesh. To this end, the method also relocates

the nodes surrounding the node that invalidates the
mesh. Intuitively, the surrounding nodes help to accom-

modate the central node in a valid configuration. Once

the mesh is untangled, the position of all the nodes is

optimized (δ = 0) to obtain a mesh composed by high-

quality elements. In addition, in Figure 7(d) we show
the final mesh and the different locations of the central

node (white) during the optimization procedure.

5 Numerical examples

In this section, we present several examples in order to

assess the properties of the proposed smoothing method:
1. it is independent of the surface parameterization; 2.

it provides high-quality meshes even though the initial

mesh contains a large number of tangled elements (ro-

bustness); 3. it can incorporate several planar distortion
measures in order to achieve different properties in the

smoothed mesh, and 4. it can be used to optimize sur-

face meshes generated from industrial CAD models. For

all the examples, we present a table summarizing the

quality statistics of the meshes. Specifically, we provide:
the minimum, the maximum, the mean and the stan-

dard deviation of the quality of the elements, and the

number of tangled elements. We highlight that in all

cases, the smoothed mesh increases the minimum and
mean values of the mesh quality and decreases its stan-

dard deviation. All algorithms have been implemented

in C++ in the meshing environment ez4u [?,?,?].
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(a) (b) (c) (d)

Fig. 7 Shape quality during the smoothing and untangling procedure for a quadrilateral mesh. Figures (a-d) present the four
steps of the minimization procedure. Figure (d) presents in white the path of the central node.

5.1 Independence on the surface mesh

parameterization

The aim of this example is to show that the proposed

quality measure and the derived optimization proce-
dure, are independent of the surface parameterization.

To illustrate this property, we use the shape distortion

measure, Equation (29), and we consider two surfaces,

and for each one we define two different parameteri-

zations. Moreover, we use a different type of element
for each surface: triangles for the first one, and quadri-

laterals for the second. For both surfaces, we show the

meshes on the parametric space (first and third columns

in Figure 8) and on the physical space (second and
fourth columns in Figure 8). The meshes on the para-

metric space are colored according to the shape quality

of the elements on the physical space.

Surface 1. Given the parameterization

ϕ
Σ1

: U
Σ1

= [−1, 1]2 ⊂ R
2 −→ R

3

(u, v) −→ (u, v, 0),

we define the surface Σ1 = ϕ
Σ1

(U
Σ1

). Note that this

parameterization has a constant Jacobian. We define
two different parameterizations for Σ1:

ϕ1
Σ1

(u, v) = (u, v ǫ(u, v), 0), and

ϕ2
Σ1

(u, v) = (u ǫ(u, v), v ǫ(u, v), 0),

where ǫ(u, v) := e−2(1−u2)(1−v2), with a non-constant
Jacobian matrix.

For this case, the mesh is structured and composed

by 722 triangular elements and 400 nodes. Note that

the elements of the initial mesh on the parametric space
are rectangular isosceles triangles (see Figures 8(a) and

8(e)). These meshes are mapped to the physical space

according to ϕ1
Σ1

and ϕ2
Σ1

respectively, see Figures 8(b)

and 8(f). Therefore, the initial meshes on the physi-

cal space follow approximately the isolines of the cor-

responding parameterization. Note that both meshes
contain low-quality elements due to the use of parame-

terizations with varying Jacobian matrix. Figures 8(c)

and 8(g) show the optimized meshes in the parametric

domain, and Figures 8(d) and 8(h) show the optimized

meshes on the surface. It is important to point out that
the smoothing-untangling procedure, brought up with

different parameterizations, obtains equal final meshes.

Surface 2. Given the parameterization

ϕ
Σ2

: U
Σ2

= [−1, 1]2 ⊂ R
2 −→ R

3

(u, v) −→ (u, v, sin(πu) cos(πu)).

we define the surface Σ2 = ϕ
Σ2

(U
Σ2

). We define two

different parameterizations for Σ2:

ϕ1
Σ2

(u, v) = (u, v ǫ(u, v), sin(πu) cos(πv ǫ(u, v))) , and

ϕ2
Σ2

(u, v) = (u ǫ(u, v), v ǫ(u, v),

sin(πu ǫ(u, v)) cos(πv ǫ(u, v))).

For this case, the mesh is structured and composed

by 576 quadrilateral elements and 625 nodes. Note that

the elements of the initial mesh on the parametric space
are structured and square-shaped quadrilaterals, see

Figures 8(i) and 8(m). The image of these meshes on

the surface is presented in Figures 8(j) and 8(n). Again,

the parameterizations lead to low quality meshes. The

optimized meshes on the parametric surface are shown
in Figures 8(k) and 8(o), and on the physical surface

in Figures 8(l) and 8(p). Although in this case we have

a non-planar surface, the smoothing-untangling proce-

dure also provides the same meshes.
Table 1 presents the quality statistics for both sur-

face meshes. Note that since we have used poor param-

eterizations the initial meshes have low quality. How-
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ever, the optimization procedure can smooth the ini-

tial meshes and obtain a high-quality mesh (in both

cases the minimum value of the quality is significantly

increased). In addition, the smoothing-untangling pro-

cedure provides the same smoothed meshes up to mini-
mization tolerance for any diffeomorphic parameteriza-

tion.

5.2 Robustness of the smoothing and untangling
procedure

In this section, we check the robustness of the devel-

oped smoothing and untangling method. To this end,

we consider two different test cases. In the first case, we

show that the proposed approach can untangle meshes

composed by a large number of tangled elements. In the
second case, we illustrate that this method can smooth

and untangle meshes that present non-convex features

on the boundary.

Dealing with a large number of tangled elements

In this test case, we use the shape distortion measure,
Equation (29), and we consider two NURBS surfaces.

The first one is meshed using triangular elements, and

the second one is meshed with quadrilateral elements

(see Figure 9). For each surface, three figures are pre-
sented. First, we display an initial mesh generated on

the NURBS surface. Second, we show a mesh with the

same topology than the initial one, but with a large

number of tangled elements. This tangled mesh is the

input of the smoothing and untangling algorithm. Third,
we present the optimized mesh.

Figure 9(a) presents a triangular mesh generated on

a revolution surface. This mesh is composed by 1200

nodes and 2242 elements. Figure 9(b) shows a mesh
with 279 tangled elements, obtained by a random per-

turbation of the initial mesh. Figure 9(c) presents the

optimized mesh obtained using the proposed method.

Analogously, Figures 9(d), 9(e) and 9(f), present the

same scheme for a quadrilateral mesh on a rolled sur-
face. The mesh is composed by 3125 nodes and 2976

elements, and the perturbed configuration has 1589 tan-

gled elements.

Table 2 summarizes the shape quality statistics of
the meshes presented in Figure 9. Note that the pro-

posed algorithm untangles an input mesh composed by

a large number of tangled elements. In addition, for

both cases, the proposed method improves the quality

of the initial surface meshes.

Dealing with non-convex boundaries

In this test case, we show that the presented proce-

dure is capable of smoothing and untangling meshes on

domains with non-convex boundaries. To this end, we

first generate a valid triangular mesh on a cylindrical

surface with a non-convex boundary. Then, we com-

pare the results obtained with a Laplacian smoother

[?] with the proposed approach, Figure 10. First, we
observe that, as expected, the Laplacian smoother ob-

tains a final invalid configuration where four inverted

elements appear close to the non-convex boundary of

the domain. Second, we apply the proposed optimiza-
tion procedure to the invalid mesh obtained with the

Laplacian smoothing. The proposed procedure is able

to obtain a mesh composed by valid elements and with

a minimum shape quality of 0.22. Table 3 presents the

shape quality statistics for both smoothing approaches.
It is important to point out that for non-convex do-

mains, the Laplacian smoother can tangle initially valid

configurations. On the contrary, the proposed approach

is able to untangle initially non-valid configurations for
meshes on non-convex domains.

5.3 Preservation of an element size field

This example has two objectives. On the one hand,
we emphasize that the proposed quality measure for

meshes on parameterized surfaces can handle any qual-

ity for planar elements. On the other hand, we use this

property to illustrate the capability of the proposed
optimization procedure to maintain the prescribed el-

ement size while improving the shape of the elements.

To this end, we generate a mesh on a cylindrical surface

parameterized by

ϕ
Σ
: U

Σ
= [−2, 2]2 ⊂ R

2 −→ R
3

(u, v) −→ (sin(π6u), cos(
π
6 v),

π
6u),

with the prescribed element size on the parametric space:

h : U
Σ
⊂ R

2 −→ R

(u, v) −→ 0.2(min(|u|, |v|) + 0.1).
(33)

Note that h(u, v) assigns size 0.02 on the axis of the

parametric space and 0.42 at the corners, see Figure
11. First, we generate a triangular, Figure 12, and a

quadrilateral mesh, Figure 13, on the cylindrical surface

according to the element size field, Equation (33). Sec-

ond, we optimize these meshes using: the shape (Equa-
tion (29)), the size (Equation (30)) and the size-shape

(Equation (32)) distortion measures. Figures 12 and 13

show the obtained results, coloring the meshes accord-

ing to the size-shape quality measure. Table 4 presents

the shape quality statistics of the four meshes.

Figure 12(a) and 13(a) show the initial meshes. Fig-
ure 12(b) and 13(b) present the smoothed meshes using

the shape distortion measure. Despite improving the

shape of the elements, we observe that some spurious
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Srf. Mesh Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.

ϕ1
Σ1

Initial 8(b) 0.23 0.99 0.61 0.20 0
Smoothed 8(d) 0.87 0.87 0.87 0.00 0

ϕ1
Σ2

Initial 8(f) 0.28 1.00 0.60 0.20 0
Smoothed 8(h) 0.87 0.87 0.87 0.00 0

ϕ2
Σ1

Initial 8(j) 0.15 1.00 0.60 0.24 0
Smoothed 8(l) 0.88 1.00 0.97 0.03 0

ϕ2
Σ2

Initial 8(n) 0.34 0.99 0.64 0.17 0
Smoothed 8(p) 0.88 1.00 0.97 0.03 0

Table 1 Shape quality statistics of the meshes on Σ1 and Σ2.

Srf. Mesh Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.

Revol.
Initial 9(a) 0.63 0.90 0.79 0.07 0
Tangled 9(b) 0.00 1.00 0.60 0.31 274
Smoothed 9(c) 0.69 0.98 0.82 0.03 0

Rolled
Initial 9(d) 0.47 1.00 0.90 0.13 0
Tangled 9(e) 0.00 0.98 0.22 0.27 1578
Smoothed 9(f) 0.56 1.00 0.90 0.11 0

Table 2 Shape quality statistics of the meshes on the revolution and rolled surfaces.

Smoothing method Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.
Laplacian 10(a) 0.00 1.00 0.76 0.29 61
Proposed 10(b) 0.22 0.99 0.73 0.15 0

Table 3 Shape quality statistics for the optimized meshes on the cylinder.

Fig. 11 Contour plot of the size field for the cylinder exam-
ple.

changes on the element size appear. Since this measure
is scale-independent, it is free to change the prescribed

size of the initial mesh to improve the shape. Figures

12(c) and 13(c) displays the smoothed meshes using

the size distortion measure. Since this measure only

involves the determinant of the Jacobian matrix (i.e.
the area of the element multiplied by a constant), it

optimizes the size of the elements according to the pre-

scribed size field, but it is free to change the shape of the

elements. Thus, it can be used to check if a given mesh
verifies a prescribed size field, but distorted elements

can appear on the final mesh if it is used in an opti-

mization procedure. Figures 12(d) and 13(d) show the

smoothed meshes using the size-shape distortion mea-

sure. Note that it improves the shape of the elements,
and it also maintains the prescribed element size (no

spurious changes of the element size appear). In practi-

cal applications, the element size field is defined in the

physical space using, for instance, a background mesh.
If that is the case, the optimization procedure using the

size-shape function can also be used.

5.4 Surfaces composed of multiple patches

In this example, we apply the smoothing and untan-

gling procedure using the shape distortion measure,
Equation (29), to two CAD models composed by multi-

ple patches: a linking rod and a propeller. Figure 14(a)

shows the initial mesh on the linking rod. It is com-

posed by 6386 nodes and 6388 quadrilateral elements.

To illustrate the capabilities of the proposed method,
the initial mesh has been generated without using any

smoothing procedure. Thus, it contains degenerated el-

ements. Figure 14(b) presents the smoothed mesh. Fig-

ure 15(a) presents the initial mesh on the propeller.
It is composed by 4664 nodes and 9328 triangular el-

ements. Figure 15(b) presents the resulting mesh from

the smoothing procedure.

Table 5 details the shape quality statistics of the

presented meshes. Note that the smoothing procedure

properly improves the quality of the surface mesh in
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Optimization Measure Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.
Not optimized 12(a) 0.41 1.00 0.87 0.11 0

Shape 12(b) 0.32 1.00 0.87 0.10 0
Size 12(c) 0.15 1.00 0.76 0.16 0

Size-shape 12(d) 0.53 1.00 0.89 0.07 0
Not optimized 13(a) 0.13 0.95 0.69 0.17 0

Shape 13(b) 0.15 0.95 0.68 0.16 0
Size 13(c) 0.09 0.89 0.48 0.17 0

Size-shape 13(d) 0.33 0.95 0.69 0.10 0

Table 4 Size-shape quality statistics for the triangular and quadrilateral meshes on the cylinder.

Surf. Mesh Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.

Link.Rod
Initial 14(a) 0.00 1.00 0.91 0.20 231

Smoothed 14(b) 0.29 1.00 0.94 0.08 0

Propeller
Initial 15(a) 0.24 1.00 0.93 0.08 0

Smoothed 15(b) 0.64 1.00 0.94 0.05 0

Table 5 Shape quality statistics of the meshes on the linking rod and the propeller.

both cases. In addition, it increases the minimum and

the mean value of the quality of the mesh.

5.5 Extension to high-order meshes

In this example, we outline and illustrate how the pre-
sented framework for smoothing and untangling linear

triangular meshes on parameterized CAD surfaces can

be extended to high-order meshes. To optimize high-

order meshes, we propose to use the definition of quality

measure for planar high-order triangles introduced in
[?]. In that work, the distortion measure of a high-order

planar triangle is defined as an integral on the triangle

of a Jacobian distortion measure. That is, this distor-

tion measure is computed in terms of the Jacobian of
the high-order isoparametric mapping. Therefore, and

similarly to our approach for linear elements, we can

use any of the distortion measures detailed in Section

4.4. Note that the Jacobian of the surface element is a

3×2 non-constant matrix. Nevertheless, similarly to the
approach detailed in Section 3.2 for linear elements, we

can use the embedding (6) to extend the measures for

planar high-order elements to elements on parameter-

ized surfaces. Then, we consider to use a generalization
of the process presented in Section 4.3 to optimize the

high-order mesh on the CAD geometry.

To illustrate this generalization, we consider the CAD

model of the propeller presented in Figure 15. First,

we generate a low-quality mesh of interpolation degree
five composed by 1374 elements and 18343 nodes that

contains 153 tangled elements, see Figure 16(a). Then,

we apply the extension of the method to high-order

elements and obtain a high-quality mesh of interpola-
tion degree five without any tangled element, see Figure

16(b). To highlight the improvement on the quality of

the mesh, Figures 16(c) and 16(d) show a detail of the

initial and optimized meshes, respectively. Table 6 dis-

plays the shape quality statistics of the initial and opti-

mized meshes. Note that the procedure proposed for
high-order meshes also simultaneously smoothes and

untangles the mesh, removing inverted elements and

improving the minimum and the overall quality of the

high-order elements.

It is important to point out that detecting in a vi-

sual manner non-valid high-order elements is harder
than with linear elements. In the linear case, there are

two configurations of the element nodes that character-

ize a non-valid element. That is, the nodes are either

clock-wise oriented or they determine a degenerated el-
ement (area 0). In the high-order case, an element is

non-valid if the determinant of the Jacobian of the iso-

parametric mapping presents non-positive values. Sev-

eral of the non-valid configurations can be identified vi-

sually such as when: the whole element is inverted; the
element is degenerated (area 0); or the edges cross each

other. However, there are configurations that can not

be identified visually since the non-positive values of

the determinant of the Jacobian appear in the interior
of the element. That is, non-valid configurations can

appear even when the interpolation nodes seem to be

properly distributed. This is actually the explanation

for the appearance of several of the non-valid elements

in the initial mesh, colored in blue in Figures 16(a) and
16(c).

6 Concluding remarks

This paper presents two main contributions. First, we
detail a new technique to extend any distortion (qual-

ity) measure defined for planar elements to parame-

terized surfaces. Similar to the planar case, it has been
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Surf. Mesh Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.

Propeller
Initial 16(a) 0.00 1.00 0.80 0.30 153

Smoothed 16(b) 0.73 1.00 0.95 0.05 0

Table 6 Shape quality statistics for the meshes of interpolation degree five on the propeller.

developed for triangle elements and extended to quadri-

lateral elements. It is worth noticing that the proposed

measure expresses the quality of the elements on the

surface in terms of the parametric coordinates of its
nodes. Second, we develop a continuous optimization

procedure to improve (smooth and untangle) the qual-

ity of meshes on parameterized surfaces. Since the dis-

tortion (quality) measure is defined in terms of the
parametric coordinates, the optimization procedure is

also written in terms of the parametric coordinates.

Thus, by construction, it ensures that the nodes are

always placed on the surface, avoiding any additional

constraint (e.g., a projection procedure). It is important
to point out that both, the measure (quality) defini-

tion and the optimization procedure, are independent

of the surface parameterization. Therefore, this tech-

nique is particularly suited for smoothing meshes on
multi-patch CAD surfaces defined by low-quality pa-

rameterizations.

To illustrate the capabilities of the proposed tech-

nique, we have selected three Jacobian-based distortion

measures. The shape distortion measure optimizes the

mesh focusing on the shape of the element. Thus, after

the optimization process, some elements may not verify
the prescribed element size. The size distortion measure

improves the mesh taking into account the prescribed

element size. Hence, poor-shaped elements can appear

in the mesh after the optimization process. To overcome
these drawbacks, we have also used the size-shape dis-

tortion measure that combines the previous distortion

measures to produce a mesh that preserves a prescribed

element size field and generates well-shaped elements.

For these measures, we have detailed how to incorpo-
rate them in a continuous optimization procedure that

allows untangling meshes. To quantify the advantages

and disadvantages of the proposed approach, we have

considered to perform in the near future an exhaustive
comparison with other existing methods.

Finally, to underline the feasibility to extend this

technique to high-order meshes on CAD surfaces, we
have included a preliminary result of the optimization

for a mesh of interpolation degree five on a propeller.

However, further research is required in order to ana-

lyze several key issues of this extension. For instance, its
independence of the quality of the parameterization, or

its robustness to untangle high-order meshes. We have

also considered to extend the proposed technique to

smooth and untangle high-order tetrahedral and hexa-

hedral meshes for domains with curved boundaries. To

this end, we have planned a hierarchical and a posteriori

approach: first, to generate a linear volume mesh; sec-
ond, to curve the boundary faces; third, to smooth and

untangle the boundary faces with the technique pro-

posed in this work; and fourth, to smooth and untangle

the elements in the interior of the volume mesh.
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A Further details

A.1 Derivation of Remark 1

In this appendix, we compute the image by mapping T, Equa-
tion (6), of the three vertices of a triangle t

Σ
= (x0,x1,x2) ∈

TΣ :

T(x1) = M (x1 − x1) =

(

0
0

)

,

T(x2) = M (x2 − x1) =





e
T

1

‖e1‖

γ (ẽ2,0)
T



 e1 =

(

‖e1‖
0

)

,

T(x0) = M (x0 − x1) =







e
T

1 e2

‖e1‖

γ
e
T

2 e2−(eT2 ẽ1)ẽ
T

1 e2√
eT2 e2−(eT2 ẽ1)

2







=

(

‖e2‖ cos(α)

γ
√

‖e2‖2 − (‖e2‖ cos(α))2

)

=

(

‖e2‖ cos(α)

γ ‖e2‖ | sin(α)|

)

.

A.2 Derivation of the restricted distortion measure for

a triangle on parametric coordinates

To restrict function η
U
, Equation (9), to function η̂

U
, Equa-

tion (15), through the composition of ϕ, T and η̂ (Equations
(2), (6) and (14), respectively), we have to check that y1 and
y2 in Equation (14) can be computed independently of the
free node x = ϕ(u). First, x1 = ϕ(u1) and x2 = ϕ(u2) do not
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depend on u0 ≡ u. Second, by Equations (11) and (12) the
image by T of x1 and x2 are also independent on x. In fact:

η̂
U
(u) = (η̂ ◦T ◦ ϕ)(u) = η(T(ϕ(u)),y1,y2)

= η(T(ϕ(u)),T(x1),T(x2)) = η(T̃(ϕ(u),x1,x2))

= η(T̃(ϕ̃(u,u1,u2))) = η
U
(u,u1,u2).

(34)

Thus, Equation (34) proves that η̂
U
(u) and η

U
(u,u1,u2) are

equivalent when u1 and u2 are fixed.

B Selection of the untangling parameter δ

The modification of the objective function by means of σδ, see
Equation (28), is sensitive to the selection of the δ parameter.
To determine the right value of parameter δ we have to con-
sider the value of σ. On the one hand, δ has to be large enough
to ensure that δ2 is significant compared to σ2. On the other
hand, it has to be small enough to ensure a small perturbation
of the location of the minimum of the objective function. It is
important to point out that δ 6= 0 is only considered for tan-
gled configurations during the untangling process. Once the
minimization of the modified distortion measure has driven
the free node inside the feasible region, we use the standard
distortion measure to obtain the minimum.

In order to simplify the computation of the derivatives
of the distortion measure, at each step of the optimization
process, we select a constant value of δ for each submesh.
In particular, if the submesh is composed by m triangles,
we determine δ taking into account the initial value of σ for
all the elements in the submesh: σ∗

k, for k = 1, . . . , m. We
propose to use the modified distortion measure only if there
is an invalid triangle in the analyzed submesh. That is, if
the submesh contains an element with σ∗

k ≤ 0. Moreover, we
define σ∗ = mink=1,...,m(σ∗

k) and we use it to control unde-
sired numerical cancellations in the expression of σδ(σ∗), see
Equation (28). These numerical cancellations appear in tri-
angle configurations where σ∗ ≪ 0 and 0 < δ ≪ 1 because
(σ∗)2 + 4δ2 ≈ (σ∗)2, and therefore σδ(σ∗) ≈ 0.

To deduce an expression to compute the value of δ, we
propose to select the lowest value of δ that ensures that σδ(σ∗)
is numerically always positive. Therefore, we impose

σδ(σ
∗) =

1

2

(

σ∗ +
√

(σ∗)2 + 4δ2
)

= τ > 0, (35)

being τ a given tolerance. Hence,

δ(σ∗) =
1

2

√

(2 τ + |σ∗|)2 − (σ∗)2 =
√

τ2 + τ |σ∗|. (36)

Parameter τ should be a significantly small value compared
to the magnitude of σ, but it can not be zero. Therefore, we
propose to select

τ = α |σ∗|, (37)

where α ∈ [10−3, 10−6]. Finally, using (37) in (36) we get the
final expression for δ:

δ(σ∗) = |σ∗|
√

α2 + α. (38)

Note that with the presented development, we control
that (see Figure 17):

σδ(σ∗)(0) = δ(σ∗),

σδ(σ∗)(σ
∗) = τ.

In this work, we have selected α = 10−3. This value has
shown empirically to remove the vertical asymptotes and to
slightly modify the location of the distortion minima.

Fig. 17 Representation of σδ(σ).

C Derivatives of the objective function on

parametric coordinates

In this Appendix we deduce the analytical expressions of the
first and second order derivatives of the objective function
presented in Equation (26). We symbolically denote by α and
β the derivative with respect to the parametric variables, u

or v.

First and second order derivatives of f̂ and η̂
U

∂f̂

∂α
= 2

m
∑

k=1

(η̂k
U
− 1)

∂η̂k
U

∂α
,

∂2f̂

∂α∂β
= 2

m
∑

k=1

(

∂η̂k
U

∂α

∂η̂k
U

∂β
+ (η̂k

U
− 1)

∂2η̂k
U

∂α∂β

)

,

∂η̂
U

∂α
=

∂(η̂ ◦T ◦ ϕ)
∂α

= Dη̂ DT
∂ϕ

∂α
,

∂2η̂
U

∂α∂β
=
(

η̂acT
c
bϕ

b
β

)

Ta
bϕ

b
α + η̂a

(

Ta
bcϕ

c
β

)

ϕb
α + η̂aT

a
bϕ

b
αβ ,

where fabc denotes the derivative with respect to variable b and
c of the component a of function f .

First and second order derivatives of T

∂T

∂α
(x) =

∂M

∂α
(x) (x − x1) +M(x) Iα,

where Iα is the zero vector with a 1 value on coordinate α.
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We introduce definitions e
p
2 := e2 − (eT2 ẽ1)ẽ1 and D :=

det(ẽ1, ẽ2,0,n):

∂M

∂α
=

(

0
∂ẽ2

∂α

)T

,

∂ẽ2

∂α
=

∂γ

∂α
ẽ2,0 + γ

∂

∂α
ẽ2,0,

∂γ

∂α
=

∂D

∂α

1

|D|
+ D

∂

∂α

1

|D|
,

∂

∂α

1

|D|
= − ±1

|D|2
∂D

∂α
,

∂

∂α
D = (n × ẽ1)

∂

∂α
ẽ2,0,

∂

∂α
ẽ2,0 =

1

‖ep2‖
∂e

p
2

∂α
+ e

p
2

∂

∂α

1

‖ep2‖
,

∂

∂α

1

‖ep2‖
= − 1

‖ep2‖3

(

(ep2)
T ∂e

p
2

∂α

)

,

∂

∂α
e
p
2 = Iα − ẽα

1 ẽ1,

∂2T

∂α∂β
(x) =

∂M

∂β
(x) Iα +

∂M

∂α
(x) Iβ +

∂2M

∂α∂β
(x) (x − x1),

∂2M

∂α∂β
=

(

0
∂2ẽ2

∂α∂β

)T

,

∂2ẽ2

∂α∂β
=

∂2ẽ2,0

∂α∂β
γ +

∂ẽ2,0

∂α

∂γ

∂β
+

∂ẽ2,0

∂β

∂γ

∂α
+ ẽ2,0

∂2γ

∂α∂β
,

∂2γ

∂α∂β
=

∂2D

∂α∂β

1

|D|
+

∂D

∂α

∂

∂β

1

|D|
+

∂D

∂α

∂

∂β

1

|D|
+ D

∂2

∂α∂β

1

|D|
,

∂2

∂α∂β

1

|D|
=

2

|D|3
∂D

∂α

∂D

∂β
− ±1
|D|2

∂2D

∂α∂β
,

∂2

∂α∂β
D =

1

‖ep2‖
∂2e

p
2

∂α∂β
+

∂‖ep2‖−1

∂β

∂e
p
2

∂α
+

∂e
p
2

∂β

∂‖ep2‖−1

∂α
+ e

p
2

∂2‖ep2‖−1

∂α∂β
,

∂2

∂α∂β

1

‖ep2‖
=

2

‖ep2‖3
∂

∂β
‖ep2‖

∂

∂α
‖ep2‖ −

1

‖ep2‖2
∂2

∂α∂β
‖ep2‖,

∂2

∂α∂β
‖ep2‖ =

∂

∂β
ẽ2,0

∂

∂α
e
p
2 , since

∂2e
p
2

∂α∂β
= 0.

First and second order derivatives of η̂

∂η̂ss

∂α
=

∂η̂sh

∂α
η̂si + η̂sh

∂η̂si

∂α
,

∂η̂sh

∂α
= 2η̂sh

(

(

∂S
∂α

,S
)

|S|2
−

∂σ
∂α

2
√
σ2 + 4δ2

)

,

∂σ

∂α
= σ tr

(

S−1 ∂S

∂α

)

, see [?],

∂S

∂α
=

∂A

∂α
W−1,

∂A

∂x
=

(

−1 −1
0 0

)

,
∂A

∂y
=

(

0 0
−1 −1

)

,

∂η̂si

∂α
= −µ−2

∗

∂µ∗

∂σ

∂σ

∂α
,

∂µ∗

∂σ
=

e

2

(

e−σ − σe−σ − 1

σ2
e−

1
σ +

1

σ3
e−

1
σ

)

,

∂2η̂ss

∂α∂β
=

∂2η̂sh

∂α∂β
ηsi +

∂η̂sh

∂α

∂η̂si

∂β
+

∂η̂sh

∂β

∂η̂si

∂α
+ η̂sh

∂2η̂si

∂α∂β
,

∂2η̂sh

∂α∂β
=

∂2(S,S)

∂α∂β

1

2σδ
+

∂(S,S)

∂α

∂

∂β

1

2σδ
+

∂(S,S)

∂β

∂

∂α

1

2σδ
+ (S,S)

∂2

∂α∂β

1

2σδ
,

∂2(S,S)

∂α∂β
= 2(

∂S

∂α
,
∂S

∂β
),

∂2

∂α∂β

1

2σδ
=

1

σ3
δ

∂σδ

∂β

∂σδ

∂α
− 1

2σ2
δ

∂2σδ

∂α∂β
,

∂2σδ

∂α∂β
=

2δ2

(σ2(S) + 4δ2)3/2
∂σ(S)

∂β

∂σ(S)

∂α
,

∂2η̂si

∂α∂β
= 2µ−3

∗

(

∂µ∗

∂σ

)2
∂σ

∂α

∂σ

∂β
−

µ−2
∗

∂2µ∗

∂σ2

∂σ

∂α

∂σ

∂β
− µ−2

∗

∂µ∗

∂σ

∂2σ

∂α∂β
,

∂2µ∗

∂σ2
=

e

2

(

−2e−σ + σe−σ +
2e−

1
σ

σ3
− 4e−

1
σ

σ4
+

1e−
1
σ

σ5

)

.
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Initial Smoothed
U Σ U Σ

ϕ1
Σ1

(a) (b) (c) (d)

ϕ2
Σ1

(e) (f) (g) (h)

ϕ1
Σ2

(i) (j) (k) (l)

ϕ2
Σ2

(m) (n) (o) (p)

Fig. 8 Independence of the optimization procedure on the surface parameterization. Meshes on Σ1 parameterized by ϕ1
Σ1

:

(a,b) initial meshes on U1
Σ1

and on Σ1; (c,d) smoothed meshes on U1
Σ1

and on Σ1. Meshes on Σ1 parameterized by ϕ2
Σ1

: (e,f)

initial meshes; (g,h) smoothed meshes. Meshes on Σ2 parameterized by ϕ1
Σ2

: (i,j) initial meshes; (k,l) smoothed meshes. Meshes

on Σ2 parameterized by ϕ2
Σ2

: (m,n) initial meshes; (o,p) smoothed meshes. All meshes colored according to the shape quality
measure.
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(a)
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(d)
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Fig. 9 Meshes colored according to the shape quality measure for a revolution surface: (a) initial mesh, (b) tangled mesh,
and (c) smoothed and untangled mesh. Meshes colored according to the shape quality measure for a rolled surface, (d) initial
mesh, (e) tangled mesh, and (f) smoothed and untangled mesh.
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(a) (b)

Fig. 10 Smoothed meshes on a cylinder using (a) Laplacian smoothing, and (b) minimization of the shape distortion measure.
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(a) (b)

(c) (d)

Fig. 12 Surface triangular meshes on a cylinder colored according to the size-shape quality measure. (a) Initial mesh. Smoothed
meshes using (b) shape, (c) size and (d) size-shape distortion measures, respectively.
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(a) (b)

(c) (d)

Fig. 13 Surface quadrilateral meshes on a cylinder colored according to the size-shape quality measure. (a) Initial mesh.
Smoothed meshes using (b) shape, (c) size and (d) size-shape distortion measures, respectively.



24 Abel Gargallo-Peiró et al.

(a) (b)

(c) (d)

Fig. 14 Quadrilateral meshes colored according to the shape quality measure on a linking rod: (a) initial mesh, (b) smoothed
mesh, (c) detail of the initial mesh, and (d) detail of the smoothed mesh.
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(a)

(b)

(c) (d)

Fig. 15 Triangular meshes colored according to the shape quality measure on a propeller: (a) initial mesh; (b) smoothed mesh;
(c) detail of the initial mesh, and (d) detail of the smoothed mesh.
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(a)

(b)

(c) (d)

Fig. 16 Triangular meshes of interpolation degree five colored according to the shape quality measure on a propeller: (a) initial
mesh; (b) smoothed mesh; (c) detail of the initial mesh, and (d) detail of the smoothed mesh.


