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SUMMARY

A new continuous-discontinuous strategy to describe failure of quasi-brittle materials is presented. For
the early stages of the failure process, a gradient-enhanced model based on smoothed displacements
is employed. As soon as the damage parameter exceeds a critical value Dcrit < 1, a cohesive crack is
introduced. A new criterion to estimate the energy not yet dissipated by the bulk when switching models —
from continuous to continuous-discontinuous— is proposed. Then, this energy is transferred to the cohesive
crack thus ensuring that the continuous and the continuous-discontinuous strategies are energetically
equivalent. Compared to other existing techniques, this new strategy accounts for the different unloading
branches of damage models and thus, a more accurate estimation of the energy that has to be transferred is
obtained. The performance of this technique is illustrated with one- and two-dimensional examples.
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1. INTRODUCTION

In order to simulate failure of quasi-brittle materials —concrete or rock, for instance—
either continuous or discontinuous approaches may be used. The former are characterised
by a continuously differentiable displacement field, while the latter introduce a discontinuous
displacement field. That is, discontinuous strategies explicitly model the crack geometry, while
in continuous techniques, cracks are represented by continuum regions that have lost their load-
carrying capacity.

On the one hand, continuous models for failure analysis —damage or softening plasticity—
are used to model the first stages of failure, see [1]. They are based on constitutive laws with
strain softening. Thus, if standard local models are used, the prediction of the energy dissipated
during the failure process is physically unrealistic, see [2], and the thickness of the damaged zone
suffers from pathological sensitivity to the mesh size. This physically unrealistic behaviour can be
overcome by means of different approaches, see [3] and the recent review [4]. One of these possible
solutions consists of using gradient-type formulations, see [5] and [6], where a partial differential
equation —the regularisation equation— is added to the system relating a local state variable and its
non-local counterpart. Nevertheless, despite the regularisation, non-local continuous failure models
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cannot describe material separation, which is necessary for many applications. Indeed, modelling
the geometry of the crack is relevant in applications such as hydraulic fracture and leakage problems,
where the flow of the fluid (and thus, its pressure) strongly depends on the shape and opening of the
crack.

On the other hand, discontinuous models incorporate discontinuous displacement fields. In order
to characterise them, different approaches, essentially based on the cohesive crack concept, see [7],
have been devised. From a numerical viewpoint, the eXtended Finite Element Method (X-FEM)
—see [8], [9] and the review [10]— is the most widely used. Nevertheless, these models cannot be
employed to simulate the first stages of the failure process, where damage initiation and its diffuse
propagation take place.

Recently, some new approaches that merge these two classical theories —damage and fracture
mechanics— have been devised, see for instance [11–17]. The main idea of these continuous-
discontinuous strategies is to combine non-local damage mechanics —hence, numerical difficulties
associated with local formulations are overcome and physically realistic results of the first stages
of failure are obtained— with fracture mechanics, where the displacement field is characterised by
means of the X-FEM.

Three relevant issues, when considering the transition —from regularised damage models to
evolving cracks—, are (i) the switching criterion, (ii) the crack-path definition, and (iii) the energy
consistency. Regarding the first issue, the transition takes place when the damage (the strain or the
stress) field reaches a critical damage (strain or stress) value. The definition of this value is relevant:
if the switching is carried out when the material is almost fully degraded, traction-free cracks can
be introduced; otherwise, cohesive cracks should be inserted. The second issue, that of defining
the crack-path, is still a debated issue. Since linear elastic fracture mechanics cannot be used if a
regularised bulk is considered, the crack-path cannot be analytically derived and alternative criteria
should be used. The third issue consists in how to ensure that the damaged zone is replaced by an
energetically equivalent crack. Indeed, if the transition from a continuous to a discontinuous model
is carried out when the material is not fully degraded, the energy not yet dissipated by the bulk needs
to be transferred to the crack.

Several combined strategies, starting from the pioneering work [11], can be found in the literature.
For instance, in [12], embedded discontinuities are incorporated into a non-local damage model once
strain reaches a critical value; in [13], traction-free discontinuities are introduced to a softening
viscoplasticity model; a similar combined model is proposed in [14], where traction-free cracks
are merged with an implicit gradient-enhanced continuum damage model; in [15] energetically
equivalent cohesive cracks are introduced once the damage field reaches a critical damage value
Dcrit < 1; and similar energetic considerations are made in [16] when dealing with elastic-damage
models, in [17] for ductile materials and in [18] for damage-plasticity.

In this paper, a new continuous-discontinuous model is presented, see Figure 1. For the early
stages of the failure process, an implicit gradient-enhanced continuum model, where non-locality
is added by means of the displacement field, is used. As soon as the damage parameter reaches
a critical value Dcrit < 1, a cohesive crack is introduced. That is, the transition —from a purely
continuous damage model to a bulk damage model where discontinuities propagate— is triggered
when the material is not fully degraded. Thus, a cohesive crack needs to be incorporated. Regarding
the definition of the crack-path, here we use the criterion proposed in [19] and the companion paper
[20]. In contrast to traditional techniques, where mechanical criteria are used to locate and propagate
cracks, here a geometrical approach is employed. More specifically, given a regularised damage field
D(xxx), the discontinuity follows the direction dictated by the medial axis of the isoline (or isosurface
in 3D) D(xxx) = D∗. Special emphasis is placed on the criterion to determine the cohesive law. Here
it is defined in such a way that the continuous and the continuous-discontinuous approaches are
energetically equivalent. More specifically, a new criterion to determine the fracture energy not yet
dissipated in the damaged bulk —so it can be transferred to the cohesive crack— is proposed.

The new continuous-discontinuous approach is presented in Section 2. First, the continuous
gradient-type formulation is briefly reviewed in Section 2.1. Then, the coupling between this
gradient-enhanced formulation and cohesive cracks is treated in Section 2.2. The proposed criterion
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Figure 1. Proposed continuous-discontinuous model.

to estimate the energy not yet dissipated by the bulk when switching models is presented and
illustrated by means of some representative numerical examples in Section 3. The concluding
remarks of Section 4 close the paper.

2. MODEL FORMULATION

2.1. Continuous damage model with smoothed displacements

To describe the early stages of failure, an implicit gradient-enhanced continuum model based on
smoothed displacements is used. In this approach, first proposed for damage models in [21] and
extended to a general framework in [22], two different displacement fields coexist: (a) the standard
or local displacement field uuu and (b) the gradient-enriched displacement field ũuu. This smoothed
displacement field ũuu drives damage evolution, see Table I, and is the solution of the boundary value
problem

ũuu (xxx)− `2∇2ũuu (xxx) = uuu (xxx) in Ω (1a)
ũuu ·nnn = uuu ·nnn on ∂Ω (1b)

∇ (ũuu · ttt1) ·nnn = ∇ (uuu · ttt1) ·nnn on ∂Ω (1c)
∇ (ũuu · ttt2) ·nnn = ∇ (uuu · ttt2) ·nnn on ∂Ω (1d)

where ` is the diffusion parameter with dimension of length, nnn denotes the outward unit normal to
Ω and ttt1, ttt2 are tangent vectors such that {nnn, ttt1, ttt2} form an orthonormal basis for R3. Note that
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Equations (1b)-(1d) are boundary conditions for the regularisation equation (1a). Therefore, they
are prescribed for both the Dirichlet and Neumann boundaries of the mechanical problem.

Table I. Gradient damage model based on smoothed displacements.

Constitutive equation σσσ (xxx) =
(

1−D (xxx)
)
CCC : εεε (xxx)

Strains εεε (xxx) = ∇suuu (xxx)

Smoothed displacements ũuu (xxx)− `2∇2ũuu (xxx) = uuu (xxx)

Smoothed strains ε̃εε (xxx) = ∇sũuu (xxx)

Smoothed state variable Y (xxx) = Y
(
ε̃εε (xxx)

)
Damage evolution D (xxx) = D(Y )

As detailedly analysed, first in [23] for a two-dimensional setting and then in [20] for 3D
problems, these combined boundary conditions satisfy the necessary properties for regularisation
—see Table II for a comparison between these required properties and a different set of boundary
conditions. Firstly, conditions (1b)-(1d) guarantee reproducibility of order 1. That is, given a
constant strain field εεε, the stress field

σσσ (xxx) =
(

1−D(Ỹ )
)
CCC : εεε (xxx) =

(
1−D (Y )

)
CCC : εεε (xxx) (2)

is also constant. Secondly, the relative slip between local and non-local displacements, see
conditions (1c) and (1d), allows displacement smoothing along the boundary. This property is
especially relevant when dealing with problems where localisation starts at the boundary, as pointed
out in [24]. Thirdly, condition (1b) ensures that non-locality vanishes at the boundary in its normal
direction, as requested in [25] and [26]. Moreover, combined boundary conditions ensure volume
conservation. Indeed, let us suppose constant density and use the divergence theorem. Then,∫

Ω

∇ · (ũuu− uuu) dΩ =

∫
∂Ω

(ũuu− uuu) ·nnn dΓ = 0 (3)

is satisfied. Note that preservation of volume may be interesting in some constitutive models.
For instance, let us assume that the regularised plasticity model presented in [22] is used. Then,
preservation of volume ensures that given isochoric local strains (∇ · uuu = 0), isochoric non-local
strains (∇ · ũuu = 0) are obtained.

2.2. Continuous-discontinuous damage model with smoothed displacements

Once the damage parameterD(xxx) reaches a critical valueDcrit, a crack is introduced in that element.
From that moment on, the continuous implicit gradient-enhanced model is coupled with a cohesive
crack. In this stage of the process, the bulk Ω is bounded by Γ = Γu ∪ Γt ∪ Γd, as shown in
Figure 2(a). Prescribed displacements are imposed on the Dirichlet boundary Γu, while tractions
are imposed on the Neumann boundary Γt. Γd is the cohesive crack. Its orientation is given by a
unit vector nnn perpendicular to the discontinuity surface. By means of this vector, the two faces of
the discontinuity Γ+

d and Γ−
d can be distinguished, see Figure 2(b).

The basic idea of this combined strategy is to describe the two displacement fields by means of the
eXtended Finite Element Method (X-FEM). Indeed, and with X-FEM, uuu and ũuu can be decomposed
as

uuu (xxx) = uuu1 (xxx) + ψ (xxx)uuu2 (xxx) (4a)

ũuu (xxx) = ũuu
1

(xxx) + ψ (xxx) ũuu
2

(xxx) (4b)
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Table II. Summary table: boundary conditions and their properties.

Homogeneous Non-homogeneous
Dirichlet Neumann Neumann Combined
ũuu = uuu ∇ũuu ·nnn = 000 ∇ũuu ·nnn = ∇uuu ·nnn ũuu ·nnn = uuu ·nnn

∇ (ũuu · ttt1) ·nnn = ∇ (uuu · ttt1) ·nnn
∇ (ũuu · ttt2) ·nnn = ∇ (uuu · ttt2) ·nnn

Reproducibility
of order 1 X × X X

Displacement
smoothing

along
the boundary × X X X

Local response
normal

to boundaries X × × X

Volume
preservation X × × X

(a) (b)

Figure 2. (a) Notations for a body with a crack subjected to loads and imposed displacements. (b) Notations
for the cohesive crack.

where uuui, ũuui (i = 1, 2) are continuous fields in Ω and ψ is the sign function centred at the crack Γd
—equals 1 at one side of the discontinuity and equals −1 at the other one. It is noted that if the body
Ω is not entirely crossed by the discontinuity Γd, ψ is ambiguously defined. However, this ambiguity
is not relevant, since after the finite element discretisation, the sign function is multiplied by nodal
shape functions that vanish in the region where ψ is ambiguous.

2.2.1. Governing equations. The strong form of the equilibrium equation and boundary conditions
for the body Ω̄ = Ω ∪ Γ without body forces and a cohesive discontinuity Γd is given by

∇ · σσσ = 000 in Ω (5a)
σσσ ·nnn = t̄̄t̄t on Γt (5b)
σσσ ·nnn = t̄ttd on Γd (5c)

uuu = uuu∗ on Γu (5d)
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where σσσ is the Cauchy stress tensor, uuu∗ is a prescribed displacement on the Dirichlet boundary, t̄̄t̄t
is the traction on the Neumann boundary, t̄ttd is the traction on the discontinuity surface and nnn is
the outward unit normal to the body. Note that equation (5c) represents traction continuity at the
discontinuity Γd.

The cohesive tractions are considered to be a function of the crack opening JuuuK, defined as the
difference between uuu+ and uuu−, where uuu+ = uuuΓ+

d
and uuu− = uuuΓ−

d
. That is

JuuuK = uuu+ − uuu− on Γd (6)

Different cohesive models can be found in the literature. As reviewed in [4], both initially rigid
and initially elastic models can be considered. On the one hand, initially rigid models are based
on a monotonic decrease in the cohesive traction, see Figures 3(a) and 3(b). On the other hand,
initially elastic models are characterised by an initial positive slope, see Figure 3(c). Here, only
initially rigid models are considered, since the cohesive crack is inserted at model switching, when
the critical traction tcrit 6= 0.

(a) (b) (c)

Figure 3. Typical one-dimensional cohesive models: (a) initially rigid linear cohesive model, (b) initially
rigid exponential cohesive model, (c) initially elastic linear cohesive model. Adapted from [4].

Regarding the regularisation of the bulk, smoothed displacements are employed here. Hence, see
the discussion of Section 2.1, combined boundary conditions

ũuu
i ·nnn = uuui ·nnn on ∂Ω (7a)

∇
(
ũuu
i · ttt1

)
·nnn = ∇

(
uuui · ttt1

)
·nnn on ∂Ω (7b)

∇
(
ũuu
i · ttt2

)
·nnn = ∇

(
uuui · ttt2

)
·nnn on ∂Ω (7c)

where i = 1, 2, are prescribed for the continuous displacement fields ũuu1 and ũuu2. Note that in a
discontinuous setting, ∂Ω is also composed of the crack. Therefore, when the cohesive discontinuity
propagates, these boundary conditions change.

2.2.2. Finite element approximation. Regarding the finite element discretisation, local and non-
local displacements read, in the domain of an element with enhanced nodes, as

uuu(xxx) ' uuuh(xxx) = N(xxx)u1 + ψ(xxx)N(xxx)u2 (8a)

ũuu(xxx) ' ũuuh(xxx) = N(xxx)ũ1 + ψ(xxx)N(xxx)ũ2 (8b)

where N is the matrix of standard finite element shape functions, u1, ũ1 are the basic nodal degrees
of freedom and u2, ũ2 are the enhanced ones. The discrete format of the equilibrium equation leads
to the discrete weak form ∫

Ω

BTσσσ dΩ =

∫
Γt

NT t̄̄t̄tdΓ (9a)∫
Ω

ψBTσσσ dΩ + 2

∫
Γd

NT t̄̄t̄td dΓ =

∫
Γt

ψNT t̄̄t̄tdΓ (9b)
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with B the matrix of shape function derivatives, while the regularisation equation leads to

(M + `2D)ũ1 + (Mψ + `2Dψ)ũ2 = (M + `2KBC)ũ1 + (Mψ + `2Kψ,BC)u2 (10a)
(Mψ + `2Dψ)ũ1 + (M + `2D)ũ2 = (Mψ + `2Kψ,BC)u1 + (M + `2KBC)ũ2 (10b)

Note that M and D are the standard mass and diffusivity matrices already obtained in [21], while
KBC is the matrix that takes into account the combined boundary conditions. The matrices Mψ,
Dψ and Kψ,BC are the enriched mass, diffusivity and boundary matrices, already obtained in the
companion paper [20], where traction-free cracks are introduced. Therefore, the only difference
between introducing a traction-free crack and a cohesive crack is the second term in the LHS of
Equation (9b). Indeed, if traction-free cracks are introduced, t̄̄t̄td = 000. Nevertheless, if a cohesive
crack is considered,

˙̄tttd = fff (Ju̇uuK) (11)

with fff relating the traction rate ˙̄tttd and the displacement jump rate Ju̇uuK. It is noted here that this extra
term is multiplied by a factor of two in Equation (9b) because of the sign function ψ.

3. ENERGY BALANCE TO DETERMINE THE COHESIVE LAW

One important issue concerning the transition from a continuous approach to cohesive cracks is the
description of the cohesive law. One means of obtaining the properties of this traction-displacement
relation is by enforcing that the energy not yet dissipated by the bulk when switching models is
transferred to the cohesive crack. This idea inspired the equivalent crack concept, see [11], and has
been used in some combined approaches, see [15], [16] and [27].

The strategy here proposed is based on the same idea. That is, the energy dissipated with a
continuous model, ΨC , and with a continuous-discontinuous model, ΨCD, are prescribed to be
equal:

ΨC = ΨCD (12)

It is noted that, at model switching, the analysis with the continuous model alone is interrupted
and replaced by the continuous-discontinuous strategy. Therefore, without a reference continuous
simulation, ΨC is not known and needs to be estimated.

The key idea of our new strategy is the way the energy dissipated by the continuous model ΨC is
computed. For the sake of clarity, this new proposal is first discussed by means of a one-dimensional
problem, see Section 3.1. Then, the extension to multidimensional settings is considered, see Section
3.2.

3.1. Energy balance for a uniaxial tension test

The proposed energy balance is first discussed by means of a uniaxial tension test, see Figure 4(a).
The one-dimensional particularisations of the damage model with smoothed displacements, see
Table I with Y (ε) = ε, and the linear softening law

D(Y ) =


0 if ε < ε0

εf
εf−ε0

(
1− ε0

ε

)
if ε0 < ε < εf

1 if εf < ε

(13)

see Figure 4(b), are used.
A central part of the bar is weakened (10% reduction in Young’s modulus) to trigger localisation.

A uniform mesh of 105 elements is considered and the geometric and material parameters are
summarised in Table III. The numerical tests are displacement-controlled.

Local damage model. To begin with, a continuous strategy with a local damage model is
considered. The results are shown in Figure 5.
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(a) (b)

Figure 4. Uniaxial tension test: (a) problem statement; (b) linear softening law.

Table III. Uniaxial tension test: geometrical and material parameters.

Meaning Symbol Value
Length of the bar L 100 mm
Length of the weaker part LW 14 mm
Cross-section of bar A 1 mm2

Young’s modulus E 20 000 MPa
Young’s modulus of the weaker part EW 18 000 MPa
Damage initiation state variable ε0 10−4

Final state variable εf 1.25× 10−2

(a) (b)

Figure 5. Uniaxial tension test (continuous strategy with a local damage model): (a) force-displacement
curves; (b) damage profiles.

On the one hand, Figure 5(a) shows the force-displacement curve. It is noted that it exhibits the
two expected branches. Indeed, since in the first load increments the strain is lower than ε0 in all the
bar, a first elastic branch with positive slope

∆F

∆u
=

1
L−LW

E + LW

EW

= 196.88 N/mm (14)
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is observed. Once the strain reaches the damage initiation threshold in the weakened part, all points
in LW unload following the softening branch. Due to equilibrium, the rest of the bar unloads
following the elastic branch thus leading to a force-displacement curve with negative slope

∆F

∆u
=

1
L−LW

E + LW

Esoft

= −10.62 N/mm (15)

where Esoft = σmax/ (ε0 − εf ), with σmax = EW ε0.
On the other hand, Figure 5(b) shows the damage profiles D. Due to locality, the width of the

damage profile λD is equal to the length of the weakened part LW . In addition, since a continuous
strategy is used from the beginning to the end of failure, the damage parameter reaches a maximum
value equal to 1, see the State C in Figure 5(b).

Let us now consider that as soon as damage reaches a critical value Dcrit = 0.9 (the state A shown
in Figure 5), a cohesive crack is introduced at x = L/2 and the proposed continuous-discontinuous
strategy is used. This model switching —from the continuous to the combined strategy— entails
two main changes.

First, damage is fixed to Dcrit in all points in LW . Hence, from that moment on, all these points
unload following the secant unloading branch with slope EW (1−Dcrit), see Figure 6(a), while the
rest of the bar unloads following the elastic branch with slope E, see Figure 6(b).

(a) (b)

Figure 6. Once damage reaches a critical value, the model switching is carried out. Hence, (a) points in LW
unload following the secant unloading branch with slope EW (1−Dcrit) while (b) the rest of the bar unloads

following the elastic branch with slope E.

Second, after the switching, no more energy dissipation in the bulk occurs, since all points unload
elastically. In other words, the energy dissipated by the bulk if a combined technique is used is
the energy already dissipated in the bulk at model switching. Therefore, in order to ensure energy
consistency —that is, continuous and continuous-discontinuous strategy should dissipate the same
amount of energy— the energy not yet dissipated by the bulk needs to be transferred to the cohesive
crack. If a local damage model is employed, this quantity, see Figure 7(a), can be exactly computed.
Indeed, for each point of the bar, the energy not yet dissipated is (at model switching) a known
quantity. First, due to the elastic response, outside the damaged zone, this quantity is

ψelas
C = 0 (16)

Second, for each point in LW , the energy not yet dissipated is equal to

ψdam
C =

1

2
σcritεf , (17)
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see Figure 7(b). Therefore the total amount of energy that needs to be transferred to the cohesive
crack is

Ψtransfer = ALW
1

2
σcritεf . (18)

(a) (b)

Figure 7. (a) The energy that needs to be transferred to the crack (striped area) can be exactly computed due
to the local behaviour of the solution. (b) Outside the damaged zone, this quantity is 0, while for each point

inside LW , this quantity is σcritεf/2

.

Since the unloading behaviour of the damage model is linear, it is natural to enforce the
same behaviour for the cohesive law. Therefore, a linear traction-separation law with slope T is
considered, see Figure 8. Then, the exact value of T is obtained by prescribing that the energy not
yet dissipated by the bulk at model switching, see Equation (18), is transferred to the crack. Thus,

T = − σcrit

ALW εf
= −9.40 N/mm3 (19)

Figure 8. If a linear traction-separation law is considered, the energy dissipated by the crack (area under the
σ − JuK curve) is −σ2

crit/ (2T )

.

The results for the continuous and the combined strategies are shown in Figure 9. As shown in
Figure 9(a), the two strategies are energetically equivalent. Indeed, the force-displacement curve
obtained with the combined strategy overlaps the curve obtained with the continuous approach. The
difference between these two strategies can be seen in Figure 9(b). On the one hand, if a continuous
strategy is employed, the damage profile reaches a maximum value equal to 1. On the other hand,
if a combined strategy is used, damage is fixed to Dcrit = 0.9 in all points of LW . That is, after
switching, all energy dissipation is due to crack opening and there is no more energy dissipation
due to bulk degradation.
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(a) (b)

Figure 9. Uniaxial tension test (continuous and continuous-discontinuous approaches with a local damage
model): (a) force-displacement curves; (b) damage profiles.

Non-local damage model. The uniaxial tension test is simulated now with a non-local damage
model. A characteristic length ` =

√
5 mm is chosen. First, the continuous strategy is employed.

Results are shown in Figure 10.

(a) (b)

Figure 10. Uniaxial tension test (continuous strategy with a non-local damage model): (a) force-
displacement curves; (b) damage profiles.

Figure 10(a) shows the force-displacement curve. Analogously to local results, a first elastic
branch, whose slope is given by Equation (14), is observed. Nevertheless, due to non-locality, the
force-displacement behaviour after the peak force is reached is qualitatively different. If a local
model is used, all points in LW reach the damage initiation strain ε0 at the same time and all
points start to unload following the softening branch simultaneously. Thus, the stiffness of the bar is
piecewise constant: E, Esoft, E. However, if a non-local model is employed, the non-homogeneous
behaviour leads to a stiffness that is not piecewise constant.

Damage profiles are shown in Figure 10(b). Analogously to local results, see Figure 5(b), if a
continuous strategy is employed from the beginning to the end of failure, the damage parameter
reaches a maximum value equal to 1, see the State C in Figure 10(b). Nevertheless, compared to
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local damage results, two main differences arise. First, the damage profile is not piecewise constant.
Second, the width of damage profile λD is not equal to the length of the weakened part. In fact,
it depends on the maximum between the width of the localisation zone λloc (that depends on
the characteristic length `) and LW , see [22] for a detailed localisation analysis that provides an
approximation to λloc. If the proposed parameters are used (` =

√
5 mm and the parameters of

Table III), λloc > LW and thus, the damaging zone depends on ` (rather than LW ). These two key
differences result from non-locality.

As discussed for the local model, let us consider now that as soon as damage reaches a critical
valueDcrit = 0.9 (the state A shown in Figure 10), a cohesive crack (with a linear traction-separation
law, see Figure 8) is introduced at x = L/2 and the proposed continuous-discontinuous strategy is
used. As discussed above, this model switching has two main consequences.

First, due to the cohesive law, all points in λD unload following the secant unloading branch with
slope

E(x)
(

1−D(x)
)

=

 EW

(
1−D(x)

)
if x ∈ LW

E
(

1−D(x)
)

otherwise
(20)

Note that, compared to the local framework, only the point located at x = L/2, see Figure 11(b),
unloads following the branch with slope EW (1−Dcrit). Indeed, the rest of the points in λD unload
following the secant unloading branch with the stiffness at model switching, see Figure 11(a) while
the rest of the bar unloads following the elastic branch with slope E, see Figure 11(c).

Second, analogously to the local model, no more energy dissipation in the bulk occurs after
switching strategies. Therefore, in order to ensure energy consistency, the energy not yet dissipated
by the bulk needs to be transferred to the cohesive crack. If a non-local damage model is employed,
this quantity, see Figure 12(a), cannot be exactly computed (without a reference continuous
simulation). Indeed, for each point of the bar, the energy not yet dissipated depends on the unloading
branch, which is not known at model switching, see Figure 12(b). Therefore, it needs to be estimated
as accurately as possible.

One possible way to estimate this energy consists of assuming that all points in λD unload
following the local softening branch (from switching to zero stress). This assumption, shown
schematically in Figure 13 and made in [15], is quite crude if a non-local model is used: due to
non-locality, only the point x = L/2 unloads following this softening branch, while all the other
points in λD unload secantly to the origin. Hence, this leads to an overestimation of the energy to
be transferred to the cohesive crack.

A more accurate estimation may be obtained if the unloading behaviour —either secant or
softening— is taken into account. The key idea of our method is to estimate the energy to be
transferred by means of the tangent line to σ (ε) at model switching, see Figure 14. In other words,
we propose to estimate this energy by computing the numerical derivative dσ (ε) /dε at switching.
Here, the difference derivative

dσ
dε

(εn) ' σ(εn)− σ(εn−1)

εn − εn−1
(21)

is used, where εn and εn−1 stand for the strain at current time-step tn and at previous time-step tn−1

respectively.
It must be stressed that, for simplicity, an abuse of notation is being made. Indeed, due to non-

locality, the stress σ does not depend only on the strain but also on the smoothed strain ε̃, see Table
I for details. Thus, the stress σ (ε) is used here to indicate σ (ε, ε̃) = σ

(
ε, ε (ε̃)

)
.

It is noted that a better approximation of the energy to be transferred may be obtained if, after
switching models, some load increments with the continuous approach are carried out, see Figure
15. Indeed, once the model switching is determined, some extra load steps with the continuous
model can be carried out to estimate the energy not yet dissipated by the bulk with more accuracy.
Then, back to the switching point, the simulation is resumed with the continuous-discontinuous
strategy. The computational cost of this refinement is marginal, because only a few load steps are
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(a) (b)

(c)

Figure 11. Once damage reaches a critical value, the model switching is carried out. Hence, (a) points in λD
unload following the secant unloading branch with slope E (x)

(
1−D (x)

)
. In contrast to local models, (b)

here only the point x = L/2 unloads following the branch with slope EW (1−Dcrit). (c) All points outside
the damaged zone λD unload following the elastic branch with slope E.

computed twice (first with the continuous approach and then with the continuous-discontinuous
one).

The results for the combined strategy (with the cohesive slope obtained by prescribing
the proposed energy balance) are shown in Figure 16. Both the continuous and continuous-
discontinuous results are plotted.

In Figure 16(b), the profiles D are shown. As discussed for the local model, the damage profile
reaches a maximum value equal to 1 if a continuous strategy is used. If a combined technique
is employed, damage is fixed to Dcrit at x = L/2 and, after switching, there is no more energy
dissipation due to bulk deformation.

Figure 16(a) shows the force-displacement curves. Here, the cohesive parameter T computed by
means of the tangent line to σ (ε) at switching point is used. As seen, the area under the combined
force-displacement curve (Area = 2.88 mJ) is larger than twice the area under the continuous curve
(Area = 1.29 mJ). This is due to the fact that the energy to be transferred to the cohesive crack
has been overestimated. In order to obtain a better approximation of this energy, and suggested by
the above discussion, some extra load steps with the continuous technique are carried out. Thus, a

13



(a) (b)

Figure 12. (a) In contrast to local models, the energy that needs to be transferred to the crack (the energy not
yet dissipated by the bulk at model switching) cannot be exactly computed, since (b) for each point in λD ,
the energy not yet dissipated depends on an unloading behaviour, which is not known at model switching.

Figure 13. If all points in λD are considered to unload following the softening branch, the energy to be
transferred is overestimated.

better solution, see Figure 17(a), is obtained. It is observed that the more extra steps we use, the
more accurate the energy to be transferred is, see Figure 17(b).

It is noted that the linear behaviour of the force-displacement curve obtained with the combined
approach is due to two reasons. First, a linear cohesive law is considered. Second, once the crack
is introduced, the stiffness of the bar is constant. Indeed, since damage is frozen in all the damaged
bulk, each point of the damaged band unloads with a constant elastic stiffness E(x) ·

(
1−D(x)

)
.
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Figure 14. For a given point in λD , the energy not yet dissipated by the bulk (striped area) is estimated with
the tangent line to σ (ε) (dash-dot line). Hence, an approximation (light grey area) of the actual remaining

energy is computed.

(a) (b) (c)

Figure 15. (a) If the energy to be transferred is estimated by means of the tangent line to σ (ε) at model
switching (black circle), a worse approximation is obtained than (b) if the tangent to σ (ε) with some more
load steps (white circle) is used. (c) The more load steps, the more accurate estimation of the energy not yet

dissipated is obtained.

(a) (b)

Figure 16. Uniaxial tension test (continuous and continuous-discontinuous approaches with a non-local
damage model): (a) force displacement curves; (b) damage profiles.

3.2. Energy balance for a multidimensional problem

The extension of the proposed energy balance to a multidimensional setting is discussed in this
section by means of a two-dimensional three-point bending test, see Figure 18.
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(a) (b)

Figure 17. The more extra load steps are carried out with the continuous approach, the more accurate the
energy to be transferred is estimated.

h

Figure 18. Three-point bending test: problem statement.

Here, the simplified Mazars damage model,

Y =

√√√√ 3∑
i=1

(max(0, εi))
2 (22)

with εi (i = 1, 2, 3) the principal strains, and a bilinear damage evolution law, see Equation (13),
are considered. A uniform mesh of 1 640 (41× 40) bilinear quadrilateral elements is used and the
geometric and material parameters are summarised in Table IV.

To begin with, a continuous simulation is carried out. A characteristic length ` = 1 mm is
considered. Results are shown in Figure 19.

Let us now consider that as soon as damage reaches a critical value Dcrit = 0.995, a cohesive
crack is introduced in that element and the proposed combined strategy is used. Due to the mode I
behaviour of the three-point bending test, the traction-separation law

t̄d =

{
t̄n
t̄s

}
= T

{
JuuuKn
JuuuKs

}
+

{
tcrit
0

}
=

(
T 0
0 0

){
JuuuKn
JuuuKs

}
+

{
tcrit
0

}
(23)

is employed, where JuuuKn and JuuuKs are the normal and sliding components of the crack opening JuuuK
respectively and tcrit is the critical normal component of the traction vector.

This model switching —from the continuous to the combined strategy— entails one main
consequence: damage in the cracked element is fixed to Dcrit and all points of this element start
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Table IV. Three-point bending test: geometrical and material parameters.

Meaning Symbol Value
Length of the beam L 300 mm
Height of the beam h 100 mm
Young’s modulus E 30 000 MPa
Damage initiation state variable Y0 10−4

Final state variable Yf 1.25× 10−2

Poisson’s ratio ν 0.00

(a) (b)

Figure 19. Three-point bending test (continuous approach): (a) force-displacement curve; (b) damage
pattern.

to unload following the branch with slope E (1−Dcrit). In addition, points located near the crack
faces unload following the secant branch with the stiffness at model switching.

Nevertheless, in contrast to the one-dimensional framework, ahead of the crack tip, damage keeps
growing. In other words, the energy dissipated by the bulk with a combined technique is not the
energy already dissipated in the bulk at model switching. This difference —between the one- and the
multidimensional settings— is crucial when prescribing the energy balance. Indeed, in the uniaxial
tension test discussed above, the energy balance is prescribed in all points of the bar, since all points
unload secantly once the crack is introduced. However, if two- and three-dimensional problems are
considered, the energy balance should be only prescribed in the area where points unload secantly.

In order to define this zone, that we have called crack influence zone, the following technique is
used. First, the perpendicular to the direction of crack growth at the crack tip is considered. Then,
the crack influence zone is defined as the area behind the crack tip, see Figure 20.

Once this area is defined, the energy balance presented by means of the uniaxial tension test can
be used. That is, for each point in the crack influence zone, the energy not yet dissipated by the
bulk is transferred to the crack. In order to estimate it, the tangent operator ∂σσσ/∂εεε is computed via
numerical differentiation, as in the one-dimensional case.

The results for the continuous and combined strategies are shown in Figure 21. In Figure 21(a), the
force-displacement curves are seen. For comparison purposes, two different values of the cohesive
parameter T are considered. First, the energy balance proposed in [15] is employed. That is, an
energy balance considering that all points unload following a softening branch is enforced. Second,
our energy balance is prescribed. It is noted that considering the unloading behaviour of each
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Figure 20. The perpendicular to the direction of crack growth allows to define the crack influence zone
(striped area).

point in the crack influence zone —either softening or secant— the energy to be transferred is
more accurately estimated. In Figures 21(b)-21(g), the obtained results —with the proposed energy
balance— in terms of damage and deformation patterns (amplified by a factor of 100) are shown.
Firstly, the continuous gradient-enhanced damage model with smoothed displacements is used, see
Figures 21(b)-21(c) . Then, as soon as damage reaches the critical damage value, a cohesive crack
is introduced, see Figure 21(d). From that moment on, the crack propagates through a regularised
damaged bulk, where damage keeps evolving ahead of the crack tip, see Figures 21(e)-21(g).

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 21. Three-point bending test (continuous and continuous-discontinuous approaches): (a) force-
displacement curves; (b)-(g) damage and deformed patterns (× 100) for increasing imposed displacements

u∗.

As discussed, the main difference between the one- and the multidimensional settings is the
domain where the energy balance is prescribed. Indeed, in 1D, the energy equilibrium is prescribed
in all the damaged band. However, in 2D or 3D, the so-called crack influence zone must be defined.
One means of avoiding the definition of this zone is to use a one-dimensional reference continuous
simulation to extract the cohesive parameter T . In other words, as soon as the model switching is
determined, an equivalent uniaxial tension test —that is, a uniaxial test with the same geometrical
and material parameters of the multidimensional test— is carried out to compute the cohesive
parameter T .

The capabilities of this new approximation are illustrated here by means of the previous three-
point bending test. Indeed, as soon as damage reaches a critical value Dcrit = 0.995, a cohesive
crack, whose law is given by the softening parameter T in Equation (23), is introduced. To compute
the cohesive parameter, the one-dimensional energy balance discussed in Section 3.1 —with the
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material and geometrical parameters of the three-point bending test— is prescribed. Results are
shown in Figure 22. As seen, little differences are observed if the energy balance is prescribed by
means of the one-dimensional uniaxial test or with the two-dimensional setting. However, regarding
the computational cost, this alternative way to define T is very appealing.

Figure 22. Three-point bending test (continuous and continuous-discontinuous approaches).

As a final remark, it is worth pointing out that the overall mechanical response and the crack
opening are independent of the critical damage value, which is somewhat arbitrary, provided that the
corresponding cohesive parameter T is computed accurately. To show this, the three-point bending
test is considered again. Now, the continuous-discontinuous strategy is activated later, for a critical
value Dcrit = 0.999 (instead of Dcrit = 0.995). The results are shown in Figure 23. With an accurate
estimation of the energy to be transferred to the crack, two different values of Dcrit lead to two
different values of T , which in turn result in very similar force-displacement and force-CMOD
(crack-mouth opening displacement) curves, see the left column in Figure 23. On the contrary, a
poor estimation of the cohesive law results in a different mechanical response and crack opening,
see the right column in Figure 23.

4. CONCLUDING REMARKS

The continuous-discontinuous damage model presented in the companion paper [20] has been
extended to cohesive cracks. That is, a non-local continuous formulation with smoothed
displacements is combined with a propagating cohesive crack as soon as damage parameter equals
or exceeds a critical value Dcrit < 1.

As suggested by the equivalent crack concept, the cohesive crack law is defined in such a way that
the energy dissipated with a continuous damage model alone and with a continuous-discontinuous
model are equal. The main difficulty of this energy balance is that after the switching —from the
continuum to the discrete strategy— the continuous model is interrupted. Hence, without a reference
continuous simulation, the energy to be transferred is not known and needs to be estimated.

Here, a new criterion to estimate this energy is proposed. The key idea of this new strategy consists
in accounting for the different unloading branches of damage models —both secant and softening—
at switching. In other words, the unloading branch is approximated by means of the numerical
derivative dσ (ε) /dε at switching. Compared to other existing techniques, where all points are
considered to unload following the softening branch, here the energy that has to be transferred
is more accurately estimated, as illustrated by means of two benchmark numerical tests.
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So far the proposed energy balance has been tested by means of a uniaxial tension test and a three-
point bending test. That is, only mode I loading conditions have been considered. Hence, it would
be interesting to extend the proposed methodology to mode II and mode III loading conditions.
Moreover, as discussed by means of the three-point bending tension test, carrying out a one-
dimensional reference continuous simulation to extract the cohesive parameter T is an appealing
way to compute the energetically equivalent cohesive crack law. Hence, it would be interesting to
analyse the capabilities of this alternative way to define the cohesive slope in a more generalised
setting.
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[9] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing.
International Journal for Numerical Methods in Engineering 1999; 46(1):131–150, doi:
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.

[10] Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods
for material modeling. Modelling and Simulation in Materials Science and Engineering 2009;
17(4):043 001, doi: 10.1088/0965-0393/17/4/043001.

[11] Mazars J, Pijaudier-Cabot G. From damage to fracture mechanics and conversely: A combined
approach. International Journal of Solids and Structures 1996; 33(20–22):3327–3342, doi:
10.1016/0020-7683(96)00015-7.
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(a) (b)

(c) (d)

(e) (f)

Figure 23. Three-point bending test (continuous and continuous-discontinuous approaches). Left column
(results with the proposed energy balance): (a) force-displacement curves, (c) traction-separation law and
(e) force-CMOD curves. Right column (results with the energy balance proposed in [15]): (b) force-

displacement curves and (d) raction-separation law and (f) force-CMOD curves.
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