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Abstract

A function assigning a composition to space-time points is called a compositional or simplicial
field. These fields can be analysed using the compositional analysis tools. A study of linear models
for evolutionary compositions depending on one variable, usually time, was formulated by Egozcue
and Jarauta-Bragulat (2014) in terms of the so-called simplicial linear differential equations. The
foundations of differential and integral calculus for simplex-valued functions of one real variable,
was presented by Egozcue, Jarauta-Bragulat and Dı́az-Barrero (2011).

In order to study compositions depending on space and/or time, reformulation and interpretation
of traditional partial differential operators is required. These operators such as: partial deriva-
tives, compositional gradient, directional derivative and divergence are of primary importance to
state alternative models of processes as diffusion, advection and waves, from the compositional
perspective. This kind of models, usually based on continuity of mass, circulation of a vector field
along a curve and flux through surfaces, should be analyzed when compositional operators are used
instead of the traditional gradient or divergence. This study is aimed at setting up the definitions,
mathematical basis and interpretation of such operators.

1 Introduction

In a large number of processes studied in Sciences and in Engineering, magnitudes or variables
involved can be modelled by a vector. This vector may be a function of one or several variables.
Furthermore, in many cases the studied vector is a composition. Study of the evolutionary compo-
sitions depending on one variable was introduced by Egozcue and Jarauta-Bragulat (2014). The
present work focuses on compositions whose evolution depends on several variables; in many cases,
these variables are spatial coordinates and time. For example, the study of the evolution of a
pollutant carried by a fluid stream.

For spatial coordinates, a subset S ∈ Rd of a d-dimensional real space is considered and identified
with a physical domain; consequently d = 1, d = 2 and d = 3 are the common choices of that
dimension. A location in this space is denoted s ∈ S and represented in a Cartesian coordinate
system; for d = 1 the spatial coordinate is usually denoted s = x; for d = 2, s = (x, y) and so
on. For time, a subset T ⊆ R is considered and a point is denoted t ∈ T . For spatial and time
evolutionary processes, a domain S × T ⊆ Rd × R (d = 1, 2, 3) is considered.

A space-time vector-valued field with positive components Z is a function Z : S×T ⊆ Rd×R→ Rn
+

that assigns a positive component vector Z(s, t) ∈ Rn
+ to a space-time point (s, t) ∈ S×T . If closure

operation is then applied: CZ(s, t) = z(s, t) a space-time simplicial field z (STSF) is obtained.
Consequently, a STSF is a function z : S×T ⊆ Rd×R→ Sn, that assigns a composition z(s, t) in
the n-part simplex Sn to any space-time point (s, t) ∈ S×T . In general, differentiability of z(s, t)
up to the second order is assumed, thus guaranteeing the existence of continuous derivatives up to
second order.
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2 Derivatives and Integrals of a Space-Time Simplicial Field

In the following, definitions and properties are developed for d = 2 and extension to other values
of d are natural. Based on the definition of (ordinary) simplicial derivative (Egozcue et al., 2011)
and the real calculus, natural definitions for partial simplicial derivatives of a STSF follow.

Definition 2.1 (spatial and time simplicial derivatives) Let z : S × T ⊆ R2 × R→ Sn be
a STSF and (x, y) ∈ S. The spatial-partial simplicial derivatives of z are

∂⊕x z(x, y, t) = lim
h→0

(
1

h
� (z(x+ h, y, t)	 z(x, y, t))

)
,

∂⊕y z(x, y, t) = lim
h→0

(
1

h
� (z(x, y + h, t)	 z(x, y, t))

)
.

The time-partial simplicial derivative is

∂⊕t z(x, y, t) = lim
h→0

(
1

h
� (z(x, y, t+ h)	 z(x, y, t))

)
.

Definition 2.2 (directional simplicial derivatives) Let z : S × T ⊆ R2 × R → Sn be a
STSF. Let (x, y) ∈ S and ~u = (ux, uy) be a vector in R2. The simplicial derivative of z with
respect to ~u is

∂⊕~u z(x, y, t) = lim
h→0

(
1

h
� (z(x+ hux, y + huy, t)	 z(x, y, t))

)
.

If ~u is a unit vector, the derivative is called the directional simplicial derivative of z.

Spatial-partial and time-partial simplicial derivatives are computed as they were ordinary simpli-
cial derivatives of a single variable simplex-valued function as developed in Egozcue et al. (2011).
Consequently, they can be computed as ordinary derivatives of the log-transformation of the STSF,
and then transformed back into compositions. The same scheme works for clr and ilr transforma-
tions of z (Aitchison, 1986; Egozcue et al., 2003). The following proposition summarizes this kind
of computation.

Proposition 2.1 Partial simplicial derivatives of z(x, y, t) can be computed as

∂⊕x z(x, y, t) = C exp (∂x log(z(x, y, t))) = C exp


∂xz1(x,y,t)
z1(x,y,t)

...
∂xzn(x,y,t)
zn(x,y,t)

 .

Additionaly

clr
(
∂⊕x z(x, y, t)

)
= ∂xclr(z(x, y, t)); ilr

(
∂⊕x z(x, y, t)

)
= ∂xilr(z(x, y, t)) .

Similar expressions hold for ∂⊕y z(x, y, t) and ∂⊕t z(x, y, t).

Definitions and properties related to integral of simplex-valued functions of one variable have been
stated in (Egozcue et al., 2011). They are summarized in the next Proposition.

Proposition 2.2 Let f : I ⊆ R→ Sn be a continuous simplex-valued function of real variable.



• A differentiable function F : I ⊆ R → Sn is an antiderivative of f on I if, and only if,
∂⊕F(ξ) = f(ξ), ξ ∈ I.

•
∫ ⊕

dξ � f(ξ) = C exp
(∫

log(f(ξ))dξ
)
.

•
∫ ⊕

[a,b]
dξ � f(ξ) = C exp

(∫ b

a
log(f(ξ))dξ

)
.

• clr
(∫ ⊕

[a,b]
dξ � f(ξ)

)
=
∫ b

a
clr(f(ξ))dξ.

• ilr
(∫ ⊕

[a,b]
dξ � f(ξ)

)
=
∫ b

a
ilr(f(ξ))dξ.

Some natural extended definitions and properties can be stated for double and line integrals.

Definition 2.3 (double integrals) Let z : S × T ⊆ R2 × R → Sn be a STSF. The double
integral of z in S is a composition in Sn given by∫∫ ⊕

S

(dξdη)� z(ξ, η, t) = C exp

(∫∫
S

log(z(ξ, η, t)) dξdη

)
.

Proposition 2.3 Properties of double integrals are:

clr

(∫∫ ⊕
S

(dξdη)� z(ξ, η, t)

)
=

∫∫
S

clr(z(ξ, η, t))dξdη ,

ilr

(∫∫ ⊕
S

(dξdη)� z(ξ, η, t)

)
=

∫∫
S

ilr(z(ξ, η, t))dξdη .

Definition 2.4 (line integrals) Let z : S × T ⊆ R2 ×R→ Sn be a STSF. The line integral of
z along a regular curve Γ ⊂ S of finite length, is∫ ⊕

Γ

ds� z(x(u), y(u), t) = C exp

(∫ b

a

log(z(x(u), y(u), t)) s′(u) du

)
,

where γ1 = (x(a), y(a)), γ2 = (x(b), y(b)) are the end points of the curve Γ and s′(u) denotes the
ordinary derivative of s with respect to the parameter u.

Proposition 2.4 Properties of line integrals are:

clr

(∫ ⊕
Γ

(ds� z(x(u), y(u), t))

)
=

∫ b

a

clr(z(x(u), y(u), t)) s′(u) du ,

ilr

(∫ ⊕
Γ

(ds� z(x(u), y(u), t))

)
=

∫ b

a

ilr(z(x(u), y(u), t)) s′(u) du .

3 Simplicial Mass Continuity Equation and
Differential Operators

When n species are mixed in a continuum, a common assumption is that the mass of each species
changes according the input-output of it through the border of a fixed control volume V . When
working in a space of dimension d = 2, volume means area, or alternatively, for d = 1 is just a
length. Notation V is used both for referring to the volume itself and for indicating its magnitude in



some volume unit. The continuity of mass for each species is normally described by the continuity
equation (Landau and Lifshitz, 1987; White, 1991). It can be written as

∂tρk + div(ρk~vk) = 0 , k = 1, 2, . . . n , (1)

where ρk is the mass density of the k-species, and ~vk = (vkx, vky) is its velocity in a planar
movement. Attention should be paid to the definition of ρk. It is the ratio of the mass mk to the
volume Vk occupied by the mass of the k-species. Accordingly, ρk = mk/Vk and the units can
be, for instance, g/cm3. Interest is centered in the behaviour of (mass) concentration ck = mk/M
of each species, which is given as the ratio of the mass of the k-species to the total mass M
within some given control volume V . The overall density is ρ = M/V which leads to a convenient
expression of ρk in terms of concentrations

ρk =
mk

Vk
=
mk/M

Vk/ρV
= ρ

mk/M

Vk/V
= ρ

ck
ak

= ρdk , k = 1, 2, . . . , n , (2)

where ak = Vk/V is the volume fraction or volume concentration of the k-species. The ratio of
mass to volume concentration is denoted dk = ck/ak. Note that the continuity equations hold for
each species but not for the total, as the change of concentrations modifies the mass content of
V and the diffusion or selective transport of some species may change the overall density ρ. As a
conclusion continuity equation (1) does not hold for the overall density ρ and different velocities
~vk. For a planar flow the fields of densities are considered functions of space location s ∈ S ⊆ R2

and time t ∈ T ⊆ R. The explicit dependence is suppressed unless it is necessary, for instance,
ρ(s, t) is denoted ρ.

Substituting in Eq. (1) the expression of ρk in Eq. (2) and developing the divergence

∂t(ρdk) + div(ρdk~vk) = ∂t(ρdk) + ∂x(ρdkvkx) + ∂y(ρdkvky) = 0 , k = 1, 2, . . . n . (3)

In order to introduce logarithmic derivatives, the equation is divided by ρdk

∂t(ρdk)

ρdk
+
∂x(ρdkvkx)

ρdk
+
∂y(ρdkvky)

ρdk
= 0 , k = 1, 2, . . . n . (4)

This equation is transformed into

∂t log(ρdk) = − (vkx∂x log(ρdk) + vky∂y log(ρdk))− (∂xvkx + ∂yvky)

= −〈~vk, grad log(ρdk)〉 − div(~vk)

= −∂~vk log(ρdk)− div(~vk) = 0, k = 1, 2, . . . , n , (5)

where 〈·, ·〉 is the standard Euclidean inner product in R2 and known properties of derivatives of
functions of several variables have been applied. Equations (5) for k = 1, 2, . . . , n can be placed in
an array as 

∂t log(ρd1)
∂t log(ρd2)

...
∂t log(ρdn)

 =


−D~v1 log(ρd1)
−D~v1 log(ρd2)

...
−D~v1 log(ρdn)

+


−div(~v1)
−div(~v2)

...
−div(~vn)

 . (6)

Logarithmic derivatives in left-hand side of Equation (6) are transformed into a simplicial derivative
by taking clr−1

C exp


∂t log(ρd1)
∂t log(ρd2)

...
∂t log(ρdn)

 = C exp


∂t log ρ
∂t log ρ

...
∂t log ρ

⊕ C exp


∂t log d1

∂t log d2

...
∂t log dn

 = ∂⊕t d , (7)



where d is a n-part composition obtained by the closure of the Rn-vector which positive components
are the dk’s. Note that a composition with equal components is the neutral element in Sn and this
is the reason for cancelling the array containing the terms ∂tρ in Eq. (7). Vectors in the right-hand
side of Eq. (6) need additional definitions and properties. In the standard vector field analysis,
the (spatial) gradient and divergence are useful differential linear operators. Previous Eq. (5-6)
suggest that similar concepts can be defined for space-time simplicial fields. Definitions and some
properties of such operators for d = 2 follow.

Definition 3.1 (Simplicial (spatial) gradient) Let z : S × T ⊆ R2 × R → Sn be a STSF.
The simplicial (spatial) gradient is defined as a bivariate STSF, taking values in Sn× Sn, given by

grad⊕z(s, t) =
(
∂⊕x z(s, t) , ∂⊕y z(s, t)

)
.

Directional derivatives can be expressed as a kind of Rd-inner product of the simplicial gradient
and the direction in which the directional derivative is taken. However, the fact that simplicial
derivatives are in Sn and spatial directions are in Rd, introduces notational intricacies.

Proposition 3.1 (Simplicial gradient and directional derivatives) Let z : S×T ⊆ R2×
R→ Sn be a STSF and ~u = (ux, uy) be a vector. Directional derivative and gradient satisfies

∂⊕~u z(s, t) = ~u � grad⊕z(s, t) ,

where � is interpreted as a perturbation-linear combination (Egozcue et al. (2011))

~u � grad⊕z(s, t) = ux � ∂⊕x z(s, t) ⊕ uy � ∂⊕y z(s, t) ,

and grad⊕z has been decomposed in their two components ∂⊕x z and ∂⊕y z.

Proof It results from properties of differentiable functions related with directional derivative. �.

Definition 3.2 (Simplicial derivative along a multiple vector field) Let z : S × T ⊆
R2 × R→ Sn be a STSF with positive components zk (k = 1, 2, . . . , n). Let v = (~v1, ~v2, . . . , ~vn) be
a multiple vector field, being ~vk = (vkx, vky), k = 1, 2, . . . , n. The simplicial derivative of z along
the multiple vector field v is

∂⊕v z(s, t) = C exp


∂~v1 log(z1(s, t))
∂~v2 log(z2(s, t))

...
∂~vn log(zn(s, t))

 ,

where ∂~vk log(zk(s, t)) = vkx∂x log zk + vky∂y log zk is an inner product of ~vk and grad(log zk) in
R2.

The simplicial derivative along a multiple vector field is not linear in the simplex. A linear combi-
nation of compositions like (α1�z1)⊕(α2�z2) is not equal to the perturbation-linear combination
of the two derivatives. However, it is linear in the simplex for linear combinations of multiple vector
fields.

Definition 3.3 (simplicial divergence) Let z1, z2 : S×T ⊆ R2×R→ Sn be two STSFs. The
simplicial divergence of the pair (z1, z2) is a composition in Sn given by

div⊕(z1, z2) = ∂⊕x z1 ⊕ ∂⊕y z2

= clr−1 [∂xclr(z1) + ∂yclr(z2)] .



Taking into account previous definitions, and computing clr−1 of the vectors in the right-hand side
of Eq. (6)

C exp


−∂~v1 log(ρd1)
−∂~v2 log(ρd2)

...
−∂~vn log(ρdn)

⊕ C exp


−div(~v1)
−div(~v2)

...
−div(~vn)

 = ∂⊕v d⊕ div⊕(wx,wy) , (8)

where wx = clr−1(vx), wy = clr−1(vy); moreover, vx, vy are Rn-vectors grouping the first and
second components of ~vk for k = 1, 2, . . . , n respectively. Note that clr(wx) = vx − vx0, where vx0

is a constant-component vector which components are the aritmetic mean of the components of
vx; and similarly for clr(wy).

Hence, considering Eqs. (7) and (8), the simplicial mass continuity equation can be written as

∂⊕t d = ∂⊕v d⊕ div⊕(wx,wy) . (9)

An important feature is that the overall density ρ does not appear in Eq.(9), therefore, this equation
is purely compositional. Note that, in general, this is not a linear equation in the simplex due to
the non-linearity of ∂⊕v d with respect to d.

Furthermore, if each fluid species is incompressible, that is ρk is constant, then Eq. (9) reduces to

div⊕(wx,wy) = n , n = C(1, 1, . . . , 1) ,

quite similar to standard continuity equation for an incompresible fluid flow (White, 1991).

In some cases the simplicial fields z1 and z2 can be the two components of a simplicial gradient,
that is, there is a simplicial field w such that (z1, z2) = grad⊕w = (∂⊕x w, ∂⊕y w). In these cases, the
bivariate simplicial field (z1, z2) is said to derive from the potential composition w, again following
the ideas of the standard vector analysis. An important differential operator in this situation is
the Laplacian ∆ = ∂2

x + ∂2
y . The compositional counterpart of the Laplacian can be defined as

follows.

Definition 3.4 (simplicial Laplacian) Let ~x be a location in R and w be a STSF defined in
a neighbourhood of (~x, t) = (x, y, t). The simplicial Laplacian of w is a composition in Sn given by

∆⊕w = div⊕(grad⊕w) = ∂⊕2
x w ⊕ ∂⊕2

y w ,

where the symbol ∂⊕2 is the second order simplicial derivative (Egozcue et al., 2011).

To show the relevance of previous definitions, it is worth to state a compositional extension of the
Gauss divergence theorem, here stated in R2.

Theorem 3.1 Let z1, z2 : S×T ⊆ R2×R→ Sn be two STSF’s, differentiable up to second order.
Let R be a bounded and connected domain in the plain with piecewise regular and closed boundary Γ.
Consider x, y as the Cartesian plain coordinates, and a piecewise regular parametrization x = x(u),
y = y(u) of the boundary Γ. Then,∫∫ ⊕

R

(dxdy)� div⊕(z1(x, y, t), z2(x, y, t)) =

∫ ⊕
Γ

ds�
(
∂~nx

z1(x(u), y(u), t)⊕ ∂~ny
z2(x(u), y(u), t)

)
where ~nx = −y′(u) , ~ny = x′(u) are, respectively, the vector fields of the first and second components

of the normal direction to the boundary Γ; and ds =
√
x′(u)2 + y′(u)2 du.



4 Conclusions

The study of space-time simplicial fields reveals some interesting aspects and properties for appli-
cations in problems related with space-time evolutionary compositions. The present contribution
is not complete and needs to be developed further.

It is possible to define, in a natural way, simplicial differential operators, similar to standard
equations appearing in fluid mechanics and vector fields in general. The continuity equation
of mass in fluid mechanics has been studied in some detail as a motivation to introduce some
definitions. However, one of the needed simplicial differential operators, is not linear in the simplex,
thus introducing features which are not dealt with in the standard formulation. It seems possible
and useful to study the simplicial version of some important equations in Fluid Mechanics and
other parts of Physics, such as advection-diffusion, Navier-Stokes and others in their compositional
formulation.
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