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Second life of electric vehicle batteries: relation between materials degradation and environmental 

impact 

 

1. Introduction: 

Air pollution, dependency on fuels of finite supply, climate change and the increase of energy cost are 

some important challenges of the present world. These concerns are aggravated by transportation and 

power generation sectors since they are the main consumers of fossil fuels and responsible of most of the 

greenhouse gases (GHG) emitted in the atmosphere. The transportation sector has found in the technology 

of electric vehicle (EV) an emerging solution for these problems that have gained importance during the 

last decade. This transition to electrified transportation is being facilitated by the European Union 

directives restricting the emissions coming from transportation as well as the recent advances in Li-ion 

battery technology.    

The main difference between a vehicle using electric power and a common internal combustion engine is 

the energy source. While one uses crude oil derivatives stored in a tank, the other one converts the stored 

electrochemical energy into electrical energy. This change forces car manufacturers to adapt all the 

traction, control, security and refrigerating systems (Hawkins et al 2012). This results in a lighter traction 

system, because of a smaller electric motor and no gearbox, but an overall weight increase of around 25% 

due to the battery system and all the electric and electronic additional components.  

Although EV has no tailpipe emissions, its well-to-tank energy efficiency, coming from the electricity 

generation and distribution to charge the EV battery, is less performing than the one of internal 

combustion engine vehicles (Bradley and Frank 2009). Therefore, most of the life cycle assessments 

(LCA) point out the relevance of the electricity generation Mix to identify the environmental impact of 

the EVs during the use phase (Helms et al 2010) (Campanari et al 2009). Additionally, an environmental 

impact increase of around 50% during the EV production phase has also been identified, being the battery 

manufacture responsible for more than 40% of this impact (Patterson et al 2011). Aware of this setback, 

some car manufacturers have started to conceive the EV production as a whole environmentally friendly 

industry. For example, some companies are promoting the use of natural lighting and ventilation, solar 

panels and rain water harvesting in their production plants (Maini et al 2013). 

On the economical side, the battery is the principal hurdle for EV competitiveness as its fabrication cost 

represents around 30 to 40% of the final EV price. This causes an important cost increase for the 

consumer. In order to solve this drawback, car manufacturers use different strategies to stimulate EV 

purchases. For example, Renault and Nissan offer a battery renting alternative, reducing the selling price, 

while other companies, like the joint venture 4R-energy (4R-energy 2013), are focused on battery second 

life strategies to recover some incomes by the battery re-selling or by the profit obtained from this life 

enlargement. This latter option is the one studied in this paper assuming that batteries are not considered 

appropriate for traction purposes once they reach a State of Health (SOH) of 80% (Wood et al 2011).  
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The study of the second life of an EV battery cannot be dissociated from the battery performance during 

its use in an EV (latter mentioned as “first life” in the text), the safety of the battery at the end-of-life and 

an accurate understanding of the loss of capacity. Therefore, in this study, we analyze the environmental 

impact of the second life of an EV battery in eight stationary scenarios. These obtained results have been 

added to the Global Warming Potential (GWP) from the first life. An overview of the different battery 

chemistries used for EV applications as well as their main degradation mechanisms is also presented. A 

correlation between the materials degradation and the second life applications is proposed.  

 

2. Methodology: 

There are many environmental impacts studied in the LCA of EV, such as climate change, resource 

depletion, human toxicity and eutrophication among others. However, the GWP, expressed in kg of 

carbon dioxide equivalent (kg CO2 e.), is the most common environmental indicator used for the LCA of 

EVs for its simplicity and overall impact comprehension (Hawkins et al 2012). The scarcity or critical 

reserves of determined materials, such as lithium, will have no impact on our analysis because only 

reused EV batteries are considered in this study. Additionally and considering that there are many 

possible second life applications, the use of the carbon footprint or the GWP as environmental indicator is 

thought to be the most indicated parameter in order to achieve comparable results. Therefore, the life 

cycle based on the CO2 emissions (LCCO2) methodology will be followed.  

The LCCO2 results strongly depend on the methodology and the defined system boundaries. In this paper, 

the boundaries include the first and second life of EV batteries. The assessment of the second life will be 

evaluated considering different case studies of battery re-use. Additionally, to procure a wider 

comprehension of the environmental impact reduction caused by the battery re-use, a survey of the 

different electrode materials forming the batteries will be done incorporating the study of their potential 

for second life use.  

Even though most of the electrified vehicles are hybrid cars using NiMH batteries, their power and energy 

characteristics are too low for most of the stationary applications (Andrew 2009). At the end of the hybrid 

vehicle life, the SOH of these batteries is very variable and well beyond the 80% defined for pure EV 

batteries before recycling (Leijen 2014). For these reasons, in this paper only the Li-ion batteries that 

have been used in an EV are considered while NiMH batteries are not included.  

Figure 1 describes the complete LCCO2 boundaries of an energy storage stationary application using a 

second life EV battery. It is the result of the combination of two existing approaches: LCCO2 of an EV 

and LCCO2 of a battery in a stationary application. 

- LCCO2 of an EV: This approach defines the system boundaries of an EV that has a battery used only in 

the EV. The boundaries of this assessment involve the battery and car production phases (including the 

GWP impacts of the materials acquisition all around the globe and the transportation between phases), the 

EV use and dismantling and the battery recycling phases (Fig. 1 until the end of 1
st
 life). From different 
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European funded projects (UMBRELA FSEM and THEMLA) (Held and Baumann 2011), (Helms et al 

2010), (Eiber and Grassmann 2012), and articles (N.Genikomakis et al 2013) it has been stated that the 

GHG emissions of an EV using the average European Union (EU) electricity Mix (421 g/kWh) is around 

35.000 kg CO2 e., being the EV production responsible of 11.000 kg CO2 e. Although these results might 

substantially change according to the electricity Mix used, the average EU mix is used to facilitate the 

comparison.  

- LCCO2 of a battery in a stationary application: This approach defines some possible stationary 

applications where EV batteries can be used according to their physical and functional specifications 

(from 8 to 25 kWh and 80 kW max. Power). Therefore, only small stationary applications will be studied 

(Andrew 2009). Some of these applications, such as solar powered island systems, are nowadays using 

new Lead-acid batteries. In these cases, the study will compare the impact reduction of substituting these 

batteries by re-used Li-ion batteries as it is shown in Figure 1. Using the LCA2GO software, and 

comparing with the literature (Matheys et al 2007), it is assumed that the GHG emitted by the fabrication 

of a Lead-acid battery are 60% of those emitted by the fabrication of a Li-ion battery with an equivalent 

capacity. However, their lifetime is reduced by 2.5 times (Teodorescu et al 2013). In order to do a proper 

LCCO2 analysis, the efficiencies of the different elements involved in the study should be considered. For 

the calculations, the inverters are assumed to have an efficiency of  90% (Vroey et al 2013) and the 

lithium batteries have around 90-95% of charge-discharge efficiency (Wang et al 2012). On the other 

hand, Lead-acid batteries have an efficiency around 80% (Dunn et al 2011), (Van den Bossche et al 

2006). Consequently, the overall charge-discharge cycle efficiency is considered to be 0.7 when using Li-

ion batteries and 0.6 when using Lead-acid batteries. 

 

- LCCO2 of a stationary application using an EV second life battery: Combining the two previous 

approaches, the complete system boundaries for the 1
st
 and 2

nd
 life of an EV battery are obtained. These 

system boundaries are presented in Fig.1 the addition, before the recycling phase, of the second life 

phases in the common LCCO2 of an EV (represented by a dashed square). These phases are the battery re-

manufacture and second life application. In this work we will maintain the same EU Mix for the energy 

exchanged with the grid during the second life. This final approach is the one used for the calculations all 

along the study. 

 

Our new approach, involves two additional transportation steps that need to be taken into consideration; 

these steps include the battery transportation from the EV dismantling place to the battery 

remanufacturing plant and from the remanufacturing plant to the second life application destination. In 

both cases, the generated emissions derived are calculated similarly.  

 

The transportation of the battery will be done by truck and only one battery will be transported at a time. 

This assumption is most likely not going to evolve much in the near future as the EV market is below the 

1% in most of European countries. Hence, the average trip distance for the battery acquisition is assumed 

to be 1.000 km. The derived GHG emissions from this trip are 317 kg CO2 e. As the studied second life 

applications are expected to work with one battery only, all these assumptions can also be used for the 
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battery delivery to the final destination. This value represents less than 1% of the total emissions of an EV 

during its first life. Hence, despite logistic optimizations, not much improvement on the environmental 

impact will be obtained 

 

There are different ways to address the battery re-manufacture processes: the direct re-use of the battery; 

the dismantle of the battery into modules to re-build it as a new battery pack adapted to the second life 

application; and, finally, the dismantling of the battery at cell level to re-build it depending on their State 

of Health (SOH). As it has been shown in previous works, the best possibility to reach a positive 

economic balance is the direct re-use of the batteries without module manipulation (Canals Casals et al 

2014). Consequently, this option will be the one used in this study. The process of remanufacture entails a 

visual check, a Capacity and Pulse test to determine the SOH and the few necessary adjustments to adapt 

the battery to the new application. The energy consumption in the remanufacture phase is calculated to be 

27 kWh per battery check, which corresponds to 11,5 kg CO2 e. that need to be added to the previous 

values. 

 

In order to obtain comparable results, it is important to define the functional unit (FU) that will be used. 

In the LCA of an EV, the FU normally considered is the kg CO2 e. emitted per range or per km. However, 

in stationary applications, the FU generally used is kg CO2 e. emitted per battery weight (kg), per battery 

capacity (Ah) or per energy (kWh) exchanged with the grid (Matheys et al 2007). In this study, kg CO2 e. 

emitted per functional kWh will be used given that it has no sense to use km, battery weight or battery 

capacity for second life applications. A functional kWh is defined as the energy (kWh) received by the 

consumer directly from the battery (not to confuse with the energy received from the grid or power 

source). 

In the case of second life applications, the factors that have a major environmental impact contribution are 

the battery lifetime, the energy source and the system efficiency: 

- Lifetime: The battery lifetime depends on the materials present in the battery and on the 

requirements of the application. The shorter the battery lifetime, the higher its environmental 

impact.  

- Energy source and system efficiency: The pollution coming from the energy sources is 

essential for the sustainability; i.e. it is obviously cleaner to use solar panels than to burn 

coal. The efficiency deals with a similar issue; if a system is more efficient than another, the 

energy losses will be lower and, consequently, the environmental impact will be lower.  

The battery lifetime factor depends on: the temperature (T), the charge and discharge requirements (C-

rate), the average State of Charge (SOC), the number of cycles and the Depth of Discharge (DOD) per 

cycle. These identified aspects can be linked to the capacity fade as presented in Eq.1. From literature, 

(Schmalstieg et al 2014), (Teodorescu et al 2013), (Delaille et al 2013), (Ecker et al 2012) the Li-ion 

battery lifetime equations are obtained (Eq.2), and considering the experimental data of these studies on 

specific Li-ion battery systems, which is the most common in EV batteries (Canals Casals and Amante 

García 2014), the parameters are determined (Eq.3). Hence, the battery lifetime can be predicted. 
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Where Cfade is the capacity loss, r(i,T) is the internal resistance, I is the current intensity, V is the battery 

voltage, T is temperature, Cini is the initial capacity of the battery, t is the time elapse and Accum is the 

accumulated current discharged by the battery. 

The lifetime of the battery can be estimated from these equations by identifying the variable parameters 

from the second life’s requirements. To facilitate the calculations, all these parameters were considered 

constant for monthly periods. For example, an application that has a daily DOD of 100% will have an 

average voltage corresponding to 50% SOC, and the Accum would be equal to the battery capacity 

multiplied by the number of days per month; i.e. 37 Ah (battery capacity)  · 31 days =  1147Ah.   

The stationary applications can be classified according to the beneficiaries, which are basically: the 

electric companies and the end-users. The electric companies are paying special attention to the 

developments on storage systems providing energy services, such as “area regulation”, “transmission and 

distribution deferral” and “power quality” among others (D. Rastler 2010), (Cready et al 2003), (Ciccioni 

et al 2012). However, these applications require high power and energy systems that imply the 

incorporation of hundreds of EV batteries (Heymans et al 2014) that are still not yet available. Therefore, 

they won’t be assessed in this study.  

This study is focused on single battery second life systems which are the most suitable for end-users 

applications. Considering the capacity and power specifications of the EV battery, three stationary 

applications have been determined. Each application has its particular battery cycling conditions:  

- Energy arbitrage: In this application, the energy is bought at low fare rates (e.g. during the 

night) to recharge the battery and the accumulated energy is consumed during the periods 

when the electricity is more expensive (e.g. during the day) (Heymans et al 2014). For the 

calculations, the European electricity Mix is used. In this situation the battery will be fully 

charged and discharged (close to 100% DOD).  

- Island installations: In this application, the system will be connected to renewable energy 

sources (RES) charging the batteries when the energy production excesses the demand, 

restituting it to the house when there is not enough energy production (Wang et al 2012). 

This represents an alternative to the actual systems using Lead-acid batteries or fuel 

generators to power up the installations. In this situation, the DOD of the battery will be 

around the 50%.  

Cfade = 1 – (C-rate factor) – (SOC and Temperature factor) – (cycling factor)   Eq. 1 

𝐂𝐟𝐚𝐝𝐞 = 𝟏 −  𝐫(𝐢,𝐓) ∙ 𝐈 −   𝐚 ∙ 𝐕 − 𝐛 𝟏𝟎𝟔 ∙ 𝐞
𝐜

𝐓 𝐭𝟎.𝟓 −  
𝐝

 𝐂𝐢𝐧𝐢 𝐞−𝐟∙𝐋𝐨𝐠𝟏𝟎 
𝐃𝐎𝐃

𝟐
   

 𝐀𝐜𝐜𝐮𝐦    Eq. 2 

𝐂𝐟𝐚𝐝𝐞 =

𝟏 −  𝐫(𝐢,𝐓) × 𝐈 −   𝟕.𝟓𝟒𝟑𝐕 − 𝟐𝟏.𝟕𝟓 𝟏𝟎𝟔 × 𝐞
𝟔𝟗𝟕𝟓

𝐓  𝐭𝟎.𝟓 −  
𝟎.𝟏𝟓

 𝐂𝐢𝐧𝐢 𝟔𝟎𝟎𝟎−𝟑𝟎𝟎𝟎×𝐋𝐨𝐠𝟏𝟎 
𝐃𝐎𝐃

𝟐
   

 𝐀𝐜𝐜𝐮𝐦 Eq. 3 
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- Autonomous use: In this application, the batteries are charged by the RES but the whole 

system is connected to the grid, providing an energy support in case of a lack of generation 

from the RES (Guo et al 2014). In this case, the DOD of the battery will also be around 

50%.  

Based on these three stationary applications using second life batteries, the results were compared with 

different alternatives to power up each application, that go from using Lead-acid batteries to an electricity 

diesel generator, obtaining the 8 analyzed scenarios described in table 1.  

 

The battery lifetime is obtained from Eq.3 considering the first and second life. This way, after using the 

battery during 10 years in an EV, we obtain a SOH of 78% at the end of the 1
st
 life. Then the battery will 

continue working in the second life application until it achieves a final SOH of 60%. In the studied cases 

this limit corresponds to 8 or 20 years of additional use depending on the second life application. This 

difference in lifetime is explained by the different requirements between the island and autonomous 

applications corresponding to a DOD of 50% and 100%, respectively, and consequently, on C-rate. 

 

Finally, in order to properly identify the environmental impact of the battery re-use, a comparison of the 

impact loads of the production, uses and end-of-life phases on a battery lifetime (considering 1
st
 and 2

nd
 

life) will be presented. 

To present growing opportunities, future expectations and research recommendations, an analysis of the 

materials used in the actual EV battery cells and their properties will be offered.  

 

3. Materials 

Li-ion battery technology can be divided in different chemistries presenting their own characteristics and 

advantages (Armand and Tarascon 2008). Over the last decades, tremendous progress has been done in 

developing cathode, anode and electrolyte materials, which represent the most important components of 

Li-ion batteries and at the same time will determine the battery performances. In this work the study is 

mainly focused on the cathode and the anode materials as they are the source of many degradation 

processes. The electrolyte is also a key component as it has many limitations such as the temperature and 

voltage window. However, organic electrolytes incorporate many additives which play a crucial role in 

improving the battery performances. These additives are usually not made public in order to preserve the 

competitiveness of the battery manufacturers. Therefore electrolytes will not be considered in the study. 

In this section an overview of the most common cathode an anode materials will be done, describing the 

most remarkable advantages and their main drawbacks.  

 

Among the cathode materials, spinel oxides, olivine phosphates and layered oxides have attracted a 

significant interest for applications in EV (Yan et al 2014). Table 2 gathers the most commonly used 



7 
 

cathode materials and their main characteristics (T and Makimura 2001), (Padhi et al 1997),  (David et al 

1983).  

 

Currently one of the most popular cathode compounds is the spinel LiMn2O4 (LMO) as it presents many 

advantages such as low cost, non-toxicity, abundant manganese resources, simple production and 

excellent safety (Thackeray 1995), (Xia 1996). Manganese appears as Mn (III) and Mn (IV) active 

species, which offers the possibility of redox reaction by insertion and extraction of Li
+
 ions through the 

tridimensional channels of the framework. Although LMO and its variants have many advantages, they 

still suffer from capacity fading during cycling (Xia 1997). The spinel LMO suffers from manganese 

dissolution in the liquid electrolyte. The surface of the LMO particles is especially vulnerable to chemical 

reactions. This issue is aggravated by the Jahn-Teller distortion of Mn (III) ions and the change in crystal 

lattice arrangement during cycling. This effect has been highlighted when cycling the battery at 60ºC and 

promotes an early loss of capacity of the battery.. 

 

On the other hand, since 1997 LiFePO4 (LFP) olivine has become a promising material for cathodes due 

to its good electrochemical properties with a very flat potential profile at 3.45 V vs. Li/Li
+
 (Goodenough 

and Kim 2010). The lithium ions move through tunnels that are formed in the structure. Additionally, 

LFP presents low cost, non-toxicity, thermal stability and environmentally friendliness compared to other 

compounds. However, this material has low energy density due to a limited operating voltage, it has a 

poor rate capability, which is limited by the one dimension ionic conductivity and poor intrinsic 

electronic conductivity. 

 

Regarding to layered structures, LiMO2 materials (where M is one or more transition metal) are 

considered as a good choice for cathode materials because the MO2 slabs in the structure enabling good 

lithium ion insertion/extraction. Although the conventional layered oxide LiCoO2 has been 

commercialized as Li-ion battery cathode for twenty years, it can only deliver about 140 mAh/g capacity 

which is half of its theoretical capacity (Whittingham et al 2004). Consequently, partially substituted 

compounds were developed to increase the stability and the capacity values of this material. Nowadays, 

Ni and Mn transition metals are used for EV application. Thus NMC (LiCo1/3Ni1/3Mn1/3O2) materials are a 

better choice to use as cathode for high performance Li-ion batteries (Thackeray et al 2005). The Li-Ni 

disorder in the lattice is a major factor affecting the material rate capability. In this sense, the presence of 

Co can help to reduce the Li
+
/Ni

2+
 exchange. Moreover, NMC materials have a moderate thermal stability 

and tolerate fast charging rates. Other layered compounds have gained interest for EV applications; it is 

the case of Ni rich layered oxide (Shizuka et al 2005), LiNi0.8Co0.15Al0.05O2 (NCA), which has a high 

usable discharge capacity of 200 mAh/g (Chen et al 2004). However, it has been reported that capacity 

fade of this material may be severe at elevated temperature (40-70ºC) due to SEI growth and micro-crack 

formation at the grain boundaries, which can lead in some cases to the explosion of the battery (Bloom et 

al 2003).   
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Given to the merits of high power density, safety, long cycle life and good rate capability, another 

candidate for cathode materials used in EVs is the monoclinic phosphate Li3V2(PO4)3 (LVP) (Yan et al 

2012). The three dimensional structure of this phosphate allows the extraction of all three lithium ions 

from the lattice with a theoretical capacity of 197 mAh/g in the voltage range of 3.0 V to 4.8 V. However, 

the intrinsic electronic conductivity of this material is low (Hu et al 2013). In this sense and in order to 

improve its conductivity, substitution of vanadium by other metal cations has been proposed as it also 

improves its structural stability (Mateyshina and Uvarov 2011). 

 

With respect to anode materials, graphite is the most generally used active material even though some car 

manufacturers have preferred the use of the lithium and titanium based spinel anode. The main 

characteristics of these materials are shown in Table 3 (Han et al 2014).   

 

As it has been mentioned before, graphitic carbon has been predominantly employed as the anode 

material of choice due to a number of desirable characteristics, which include low cost, easy processing 

and chemical stability. In addition, it has a desirable electrochemical profile (Thackeray et al 2005). 

However the Li-ion insertion/extraction during the charge cycle induces a significant volumetric gain 

(around 9–10%) which places stress on the electrodes and could be determinant for cycling stability. 

Furthermore, with a low operating voltage of around 100 mV (vs. Li+/Li), the graphite anode may react 

with the electrolyte, resulting in lithium metallic deposition. This not only reduces the battery 

performances but poses serious concerns in terms of safety such as thermal runaway which could be 

aggravated at low temperature. 

To overcome these issues, the spinel Li4Ti5O12 material has become a promising alternative anode 

(Scrosati and Garche 2010). This compound shows excellent structural stability of almost zero-strain 

during lithium ion insertion/extraction, leading to high rate capability and reversibility during discharge-

charge cycling. It also provides a stable voltage of 1.55 V against a lithium electrode with a theoretical 

capacity of 175 mAh/g and an actual discharge capacity of over 160 mAh/g . Furthermore, Li4Ti5O12 is 

cheap, non-toxic, and it is easier to produce than other alloy-based anodes. On the other hand, regarding 

to the reaction mechanism of this spinel, it has been reported that lithium reacts according to the kinetic 

reaction: 

Li4Ti5O12 + 3Li
+
 + 3e → Li7Ti5O12,  (Ohzuku et al 1995), (Zaghib et al 1999).  

The rate capability of Li4Ti5O12 is relatively low, as the poor electrical conductivity and slow lithium-ion 

diffusion lead to large polarization at high charge–discharge rates. 

All the exposed electrode materials are the main ones used nowadays by car manufacturers and are 

detailed in ref 7 (Lu et al 2013). The dominant cathode material used for EV battery is LMO as it is used 

by Nissan, Chevrolet and Renault, associated with graphite anode. Tesla and Subaru used the same anode 

associated with NCA or LVP, respectively. Honda has developed a vehicle using the spinel LTO 

chemistry as anode, associated with the layered oxide NMC spinel. 
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There are many choices of battery materials for EV applications and each battery manufacturer will select 

the compounds that are most appropriate for their vehicle requirements. The fast improvements on the Li-

ion battery topic, force the car manufacturers to be flexible and open to any new technology. 

 

4. Results & discussion: 

In this section the GWP analysis will be performed for the 8 different scenarios presented in Table 1. The 

evolution of GHG emissions for the first and second life of the batteries is presented in Figure 2. The 

35.000 kg CO2 e. emitted during the first life in an EV is considered the same in all the case studies, this 

impact corresponds to the sum of the black and dark grey parts in Figure 2. On the other hand, the GHG 

emissions of the battery at the second life diverge depending on the energy source and application. To 

analyze these results, it is important to take into consideration the lifetime of the battery. As it has been 

mentioned in the methodology section, all batteries do not have the same lifetime during their second life. 

Based in the second life endurance of Li-ion batteries (deduced from Eq.3), the battery durability on 

autonomous and on energy arbitrage stationary applications is 8 years, while on the rest of cases it can 

last up to 20 years. This could be partly attributed to the harder cycling conditions described in the 

methodology. Therefore, the total lifetime will be 18 years for the batteries that are used in autonomous or 

energy arbitrage applications and 30 years for the other cases. The accumulated GHG emissions during 

these periods are identified with different shades of gray in Figure 2.  

Additionally, from Figure 2, it can be observed that during the first 18 years, the highest impact is found 

in the island fuel generator case with 60.341 kg CO2 e. emissions. The use of batteries for energy 

arbitrage releases more than 52.000 kg CO2 e., proving that the pursuit of economical profit does not 

necessarily brings any environmental benefit.  The increase of GHG emissions for these cases is higher 

than that of the base case due to the efficiency and energy losses of energy storage systems. 

 

It is visible how the GWP increases if the employed energy source has a pollutant character. In order to 

enable a comparison between the GWP and the durability of the battery for each application, the 

evolution of emissions as a function of time is presented in Figure 3.  The continuous, dotted and dashed 

lines represent the cases without battery, with Lead-acid batteries and with 2
nd

 life Li-ion battery 

respectively. 

 

It can be observed that the emission’s slope changes after the 1
st
 life of the battery in the vehicle (year 10 

in Figure 3) proving how it strongly depends on the second life application. Using this type of 

representation, the variation among the different battery technologies is more visible. The first difference 

is related to the steps found in the dotted curves using Lead-acid battery systems. These steps are caused 

by the battery replacement due to its shorter life-length. The second major difference is the softer impact 

slope of Li-ion battery systems, which could be ascribed to their higher efficiency. 
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Another way to identify the environment impact of the 8 different cases studied is to calculate the total kg 

CO2 e. emitted per functional kWh (Fig.4). This representation shows the net GWP per kWh at the battery 

end-of-life, providing a clear understanding of the overall impact behavior. The line between columns is 

the impact balance, which represents the variations of the GWP per functional kWh taking the base case 

as reference. Consequently, if the emissions per functional kWh are lower (i.e. RES), the balance will be 

negative. On the other hand, a positive balance means that the environmental impact is higher than 

without battery re-use. It can be observed that the use of batteries (no matter the technology) for energy 

arbitrage has more than a 30% GWP increase. Moreover, in the case of Lead-acid batteries the impact 

balance is even higher than the direct fuel combustion, while the re-use of EV batteries in island 

installations (Island 2
nd

 life) have a reduction of a 32%. Therefore, it is not environmentally desirable to 

use batteries for energy storage if no renewable energy sources are used. 

 

In this diagram it can be observed that the cases leading to the worst environmental impact are the island 

fuel generation and energy arbitrage. In addition the use of Li-ion batteries also provides better results 

than the ones using Lead-acid batteries. Surprisingly the results after 30 years of the base case with the 

European energy Mix and no battery re-use has a ratio of 0,694 kg CO2 e./kWh which is similar to the 

0,689 ratio found for the re-use of EV batteries in autonomous installations using RES. This situation is 

the result of different battery lifetimes and it is explained by the evolution of the kg CO2 e./kWh ratio 

along time (Fig.5).  

 

Before the battery starts to be used in an EV, it has already emitted more than 4.000 kg CO2 e. due to its 

fabrication and installation processes. From this point of view, as the battery provides a higher amount of 

kWh, the ratio of emission per functional kWh will be lower. Figure.5 shows that steeper slopes do not 

directly correspond to a lower final ratio at the end-of-life. In fact, the slopes of the energy arbitrage cases 

are steeper than the island fuel generation. However, as the energy arbitrage cases last 12 years less than 

the island fuel combustion with a diesel generator they have a similar value at the end-of-life. This same 

situation is found in the RES system in autonomous applications. 

 

Note that all the cases start at the beginning of the second life with a 1.6 kg/kWh. This value has been 

obtained dividing the emitted 35.000 kg CO2 e. by the 22.500 kWh used during the vehicle 1
st
 life. 

 

As a general observation, the longer the battery endures the lower its impact per functional kWh will be. 

In this sense, it is important to note that the capability of a battery to be used in a second life application 

strongly depends on the degradation of the battery at the end of the EV life (i.e. for a capacity below 

80%). It is therefore a priority to understand the degradation mechanisms of the battery components in 

order to determine its potential for re-use. The main degradation mechanisms of the electrode compounds 

presented previously are described in the following section. 

During the second life, the EV batteries will be cycled under different conditions according to the selected 

application. It has been previously calculated how these cycling conditions affect the battery lifetime. 

Indeed when the battery is used for energy arbitrage or in autonomous application, it suffers a nominal 
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capacity drop from 80 to 60% within only 8 years. On the contrary, the lifetime of a battery connected to 

an island 2
nd

 life system reaches 20 years due to more favorable condition of use. This difference is 

mainly due to the cycling conditions and more particularly the DOD of the charge/discharge cycles. An 

adequate choice of the battery chemistry in relation with the working condition is necessary to improve 

the battery lifetime, minimize the risks for the end-users and therefore reduce the environmental cost. 

 

For the energy arbitrage application, the battery will be fully charged during the night and fully or 

partially discharged during the day. In this case, full charges and discharges of the battery should be 

considered, equivalent to 100% DOD: the entire electrochemical profile. For this type of application, it is 

important to choose an electrode chemistry able to withstand large voltage amplitude. It is well 

established that graphite electrodes may easily form lithium dendrites at high C-rates or when reaching 

low voltage of discharge (Agubra and Fergus 2013), (Sarasketa-Zabala et al 2015). The use of graphite 

electrodes for this energy arbitrage application will further promote the formation of dendrites and lead to 

a faster capacity decay of the battery. Therefore it is not advisable to use graphite as anode but another 

material presenting a higher voltage, such as LTO. Indeed this spinel material shows better stability 

during the discharge as its electrochemistry restricts the voltage to 1.55 V, which is sufficiently high to 

prevent lithium platting. However the use of LTO as anode will decrease the energy density of the battery 

and will definitely have cost consequences for the consumer. These observations will also be valid when 

using RES in autonomous applications as similar deep charge / discharge cycling profiles will be 

executed.  

 

On the cathode side, any chemistry can be considered as each of them present pros and cons. An 

established choice cannot be defined as easily as for the anodes. In terms of safety, it would be preferable 

to use LMO or LFP cathodes as they present a better stability than NMC (Whittingham 2004), however 

the faster capacity fade of LMO will most probably be an important drawback for the second life use. The 

use of NMC cathode could also compensate the loss of energy density due to the high voltage plateau of 

LTO as NMC presents an energy density above 1000 Wh/kg.  

 

The island applications present another type of cycling profile. It is expected that the battery will rarely be 

fully charged or discharged. The battery will accumulate the energy depending on the availability of the 

renewable energy and will also use it directly for the house. In this sense it is important to focus the 

chemistry of the battery towards materials enabling good cycling capability but discarding the properties 

at the end of charge and discharge. According to these constraints, both LTO and graphite can be present 

in the anode. The lower cost of graphite will clearly be an advantage of choice and as the full discharge of 

the battery is not expected regularly, the degradation of the electrode due to the lithium platting will be 

limited. On the cathode side, the high voltage of LMO or LVP will be an advantage as it will reduce the 

DOD and the absence of nickel reduces the cost of the battery. All these observations are summarized in 

Table 4. 

 

4. Conclusions: 
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In this study, the LCCO2 of an EV has been performed for different scenarios. These scenarios, mainly 

focused on the battery point of view, depend on the second life of the battery in stationary application. 

Besides, an overview of the most relevant battery chemistries used for EV applications as well as their 

degradation mechanisms has been presented. The study reveals that the environmental impact per 

functional kWh decreases with the use of the battery. 

 

Anyhow, from an environmental point of view, the use of batteries is only advisable in association with 

renewable energy sources. If that is not the case, the environmental impact caused by the losses derived 

from the energy storage should be added to the emissions coming from the pollutant energy source acting 

as a multiplier factor. 

 

Nowadays the improvements of the Li-ion battery performances for EV applications are mainly focused 

towards high energy and power density. However cycling and calendar behavior are necessary to improve 

the re-use of the battery in a second life application. As it stands graphite is commonly used as anode 

among car manufacturers due to its low cost and good electrochemical performance. However this 

material presents important degradation mechanisms such as lithium platting. Other anode such as LTO 

could also be a candidate to electrode material in the second life use but its high voltage prevents its 

development in EV batteries. On the cathode side, oxides and phosphates are widely used and reveal good 

stability upon cycling. LFP material presents good cycling stability whereas manganese-based electrodes 

suffer from a faster degradation that may be unfavorable for second-life use.  

 

We observed that it is necessary to select the battery chemistry according to the secondary application of 

the EV battery. These applications are directly related to the energy source and will influence the battery 

charge and discharge conditions such as the working DOD: full charge-discharge cycles that consume the 

battery life-length rapidly and partial charge-discharge cycles extending the battery life. However, further 

investigation on the degradation of the electrode at the end of the second life would be necessary to 

identify the most suitable systems. 
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