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Abstract 

A natural zeolite (Z-N), rich in clinoptilolite, was modified (Z-Al) by incorporation of hydrated 

aluminum oxide (HAlO) for the simultaneous phosphate and ammonium removal. The incorporation 

of surface hydroxyl groups (≅Al-OH) into the zeolite structure, as active groups for phosphate 

removal, was characterized by acid-base titrations (pHPZC=4.5±0.2). The phosphate sorption 

increases from 0.6 mg-P/g for Z-N up to 7.0 mg-P/g while only a slight decrease on the ammonium 

sorption capacity from 33 mg-N/g of Z-N to 30 mg-N/g for Z-Al was observed. The HAlO modified 

zeolite sorption capacity for both phosphate and ammonium was slightly reduced by common ions 

typically present in secondary waste water effluents. Column experiments revealed higher 

enrichment factor for ammonium (120) than for phosphate (50) using 1 M NaOH as elution solution. A 

reduction of zeolite phosphate capacity with regeneration cycles was observed.  
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1. Introduction 

Nitrogen and phosphorus are essential nutrients for all living forms. However, an excessive growth of 

algae and the consequently depletion of the dissolved oxygen is an effect of the nutrient overloading 

(phosphate and ammonium) in natural water bodies [1, 2]. Therefore, it has become a great 

challenge addressed to the simultaneous removal of both species (phosphate and ammonium) to 

avoid the consequences of eutrophication processes. Natural and synthetic zeolites have been 

widely studied for ammonium removal due to its high cationic exchange property [1, 3, 4] and they 

have been postulated as promissory materials for its removal from waste waters [5-8]. Zeolites and 

their modified forms have been widely used as effective adsorbents for waste water treatment 

according to their mechanical and thermal properties, capability of cation-exchange and significant 

worldwide occurrence. Additionally, the safety, easy operation and maintenance, low treatment costs, 

high selectivity and the release of non-toxic exchangeable cations (K+, Na+, Ca2+ and Mg2+) make 

zeolites an attractive alternative [3, 9, 10]. Zeolite are hydrated crystalline aluminum-silicate materials 

with a framework structure where micro- and mesopores located by water and typically alkaline 

cations [11]. However, they have been rarely used for phosphate sorption due to the constant 

negative charge on their surface [12]. In order to improve the ion exchange capacity of natural 

zeolites for anionic species the incorporation or impregnation of iron and aluminum oxides, are the 

most widespread and excellent candidates for phosphate removal [13-18]. Zeolites exhibit different 

properties which depend on the geological location and they deserve a detailed characterization [19, 

20]. This study describes the modification of a Slovakian natural zeolite (clinoptilolite) with Al (III) to 

enhance the formation of hydrated aluminum oxide (HAIO) onto the zeolite structure. Utilization of 

hydrated aluminum oxide in treatment processes cause difficulties in separation due to their small 

sizes that could be overcome by its impregnation into zeolite porous particles. No previous studies 

have been found about the hydrated aluminum oxide modification of a natural clinoptilolite for the 



simultaneous removal of both nutrients. Therefore, the findings of the present work provide insight 

into the simultaneous phosphate and ammonium sorption potential of hydrated aluminium oxide 

supported on a clinoptilolite and its regeneration for re-use in sorption and desorption cycles as low 

cost materials for industrial and domestic waste water treatment applications. The objectives of this 

study are: (i) synthesize supported hydrated aluminum hydroxide zeolites, (ii) characterize the 

modified zeolite, (iii) study the influence of pH and ions concentration on zeolites removal capacity, 

(iv) determine the equilibrium and kinetic sorption parameters, (v) determine the sorption selectivity in 

front of common ions in waste waters effluents and, (vi) evaluate their performance (sorption and 

desorption) on column experiments.    

2. Materials and methods 

2.1. Impregnation of hydrated aluminum oxide onto a natural zeolite 

A natural zeolite (Z-N) obtained from Zeocem Company, Slovakian Republic was used. Samples 

were washed with deionized water and dried in an oven at 80 °C for 24 hours. Particles below 200 

µm mesh were used for batch experiments and particles between 800 – 1200 µm mesh were used 

for column experiments. Z-N was modified to the aluminum form by using an adaptation of the 

method reported by Jiménez-Cedillo [14]. Thirty grams of natural zeolite were treated with 250 mL of 

NaCl (0.1 M) two consecutive times under reflux conditions for 4 hours. Then, the zeolite in the 

sodium form (Z-Na) was washed with ~1500 mL of deionized water until no chloride was detected by 

the AgNO3 test. Thirty grams of sodium zeolite (Z-Na) were treated two consecutive times with 250 

mL of AlCl3 (0.1 M) under reflux for 4 hours. The aluminum zeolite (Z-Al) was washed using ~1500 

mL of deionized water until no chloride was detected by the AgNO3 test. Finally, it was dried in an 

oven at 80 °C for 24 hours. 

2.2. Physicochemical characterization of the zeolites 



Z-N, Z-Na and Z-Al were characterized by X-ray diffraction (XRD) using a powder X-ray 

Diffractometer (D8 Advance A25 Bruker). Samples morphology and chemical composition were 

analyzed by a Field Emission Scanning Electron Microscope (FSEM) (JEOL JSM-7001F) coupled to 

an Energy Dispersive Spectroscopy system (Oxford Instruments X-Max). Samples composition 

reported are the average of at least four analyses for each sample. Infrared absorption spectra were 

recorded with a Fourier Transform FTIR 4100 Jasco spectrometer in the range of 4000 – 550 cm-1 

range. The specific surface area of Z-N and Z-Al was determined by the nitrogen gas sorption 

method on an automatic sorption analyzer (Micrometrics). The essays were replicated four times for 

each sample and the average data are reported. The point of cero charge (PZC) of Z-N and Z-Al was 

determined by the pH drift method [21, 22].  An amount 0.1 g of zeolite was equilibrated in 25 mL of 

deionized water and 0.01 and 0.05 M NaCl solutions (pH from 2 to 11) for 24 hours at 200 rpm and 

21±1 °C. The final pH was measured in a Crison GLP21 potentiometer, and the PZC was determined 

as the pH at which the addition of the sample did not induce a shift in the pH (∆pH=pHf-pHi=0). The 

CIP method, common intersection point of potentiometric titration curves obtained at three ionic 

strengths was also used [23-25]. An amount of 0.1 g of zeolite was equilibrated with 25 mL of solution 

at three different ionic strengths (0.01, 0.05 and 0.1 M NaCl) during 24 h at 200 rpm and 21±1°C. 

After the equilibration the suspension was basified to pH 11 using 0.1 M NaOH. The suspension was 

titrated until pH ≈ 3, with 0.01 M HCl using an automatic titrator (Mettler Toledo). The net surface 

charge is correlated with PZC from the titration data for the adsorbed amounts of [H+] and [OH-] ions. 

Therefore, titration curves of different ionic strength would intersect at pH = pHPZC. The surface 

charge was calculated from the Eq. 1 [26].  

  � � �� � �� � �	
� � ��	
�  (1) 

where: b (mol/g) is the net hydroxide ions consumed, Cb and Ca (mol/L) are the base and acid 

concentrations, respectively and [H+] and [OH−] denote the protons and hydroxide concentration 



calculated from the measured solution pH for a given mass of zeolite (g) and a given volume of 

volume of solution (L). All measurements were performed in triplicate and the average value was 

reported. 

2.3. Equilibrium and kinetic batch sorption studies  

Batch equilibrium sorption experiments were carried out using standard batch methodology described 

elsewhere [8]. Given volumes (25 mL) of phosphate (P) and ammonium (N) aqueous solutions were 

shaken overnight with weighed amounts of dry samples (particle size < 200 µm) in polyethylene 

tubes using a continuous rotary mixer. Three different types of experiments were conducted: 

i) Sorption capacity as function of phosphate and ammonium concentration: 0.25 g of Z-N and Z-Al 

samples were added to solutions in the concentration range: 1 - 2000 mg-P/L and 10 – 5000 mg-N/L, 

without pH adjustment. 

ii) Sorption capacity as function of equilibrium pH: 0.1 g of Z-Al sample was equilibrated in solutions 

containing 25 mg-P/L and 25 mg-N/L. The pH was adjusted from 2 to 11 (using 0.1 M HCl/NaOH).  

iii) Sorption capacity as function of phosphate and ammonium concentration in the presence of 

individual and mixtures of common competing ions present on waste water effluents: 0.1 g of Z-Al 

sample is added to 25 mg-P/L, 25 mg-N/L and individual competing ion (25 mg/L) solutions without 

pH adjustment. Also, the interference ions concentrations were fixed taking as reference the average 

annual composition of the stream from a tertiary treatment including a reverse osmosis step at the El 

Prat waste water treatment plant (Barcelona – Spain). The anions solution composition was: chloride 

(625 mg/L), bicarbonate (325 mg/L), sulfate (200 mg/L) and nitrate (30 mg/L) (prepared from the 

corresponding sodium salts). The cations solution composition was: sodium (260 mg/L), calcium (160 

mg/L), magnesium (50 mg/L) and potassium (40 mg/L) (prepared from corresponding chloride 

salts).Then, 0.25 g of Z-Al sample was equilibrated in solutions ranging 1 - 2000 mg-P/L and 10 – 

5000 mg-N/L and the mixture of competing ions.  



iv) Batch kinetic sorption experiments were performed by addition of 0.1 g of Z-Al in solution 

containing 20 mg-N/L and 10 mg-P/L. Tubes were withdrawn sequentially at given times. All tests 

were performed by triplicate at 200 rpm and room temperature (21±1 °C) and the average data are 

reported. Before to be analyzed samples were centrifuged for 10 min and filtered using cellulose 

nitrate membrane filters (45 µm). The total concentrations of phosphate and ammonium ions in the 

initial and remaining aqueous solution were determined. 

2.4. Phosphate speciation in loaded Z-Al samples by fractionation assays. 

The phosphorus speciation was performed based on an adaptation of the sequential extraction 

protocol [27] with three extraction steps. Z-Al samples (0.25 g) were equilibrated in 25 mL of solution 

containing 25 mg-P/L at 200 rpm for 24 h. Loaded samples were filtered, washed with deionized 

water and dried. The fraction of loosely bound phosphorus was extracted in two consecutive 

extractions by 0.25 g of loaded Z-Al sample in 20 mL of 1 M NH4Cl at pH 7. Then, the phosphorous 

bound to iron and aluminum components was determined by means of two consecutive extractions in 

20 mL of 0.1 M NaOH followed by extraction in 1 M NaCl. In the third step, the potential content of 

phosphorus immobilized in the form of calcium and magnesium was extracted in two consecutive 

times in 20 mL of 0.5 M HCl. Finally, residual content is determined by the mass balance between the 

phosphorus adsorbed and the extracted fractions. Tests were performed in triplicate at 21±1 °C and 

the average values are reported.   

2.5. Phosphate and ammonium batch desorption studies 

Samples of Z-Al (0.5 g < 200 µm) were saturated in 25 mL of solution containing 25 mg-P /L and 25 

mg-N/L at 200 rpm for 24 h. Z-Al samples were separated by filtration and rinsed several times with 

deionized water for the desorption trials. The desorption studies were performed by adding 0.5 g of 

the saturated zeolite into 25 mL of elution solution at 200 rpm for 24 h. Solutions of NaOH (1 M), 

NaHCO3 (0.1 M), Na2CO3 (0.1 M) and NaHCO3/Na2CO3 (0.1 M) were evaluated. Tests were 



performed in two sorption – desorption cycles by triplicate at 21±1 °C and average values are 

reported. 

2.6. Phosphate and ammonium sorption and desorption column studies  

Samples of Z-Al (<800 µm particles) were packed in a glass column (15mm inner diameter and 

100mm length). Initially, the column was equilibrated with ~20 BV of deionized water. The feed 

composition was established taking as reference the expected values of effluents streams after 

secondary treatment from the El Prat waste water treatment plant (Barcelona – Spain). The feed 

solution composition was: phosphate (12.5 mg/L), ammonium (25 mg/L), chloride (312.5 mg/L), 

bicarbonate (162.5 mg/L), sulfate (10 mg/L), nitrate (15 mg/L), sodium (130 mg/L), calcium (80 mg/L), 

magnesium (25 mg/L) and potassium (20 mg/L). The solution with and without competing ions was 

supplied in countercurrent through the column at EBHRT of 4 minutes. After saturation the Z-Al was 

regenerated with 1 M NaOH solution at EBHRT of 13 minutes. 

2.7. Analytical methods  

Phosphate (P) and ammonium (N) concentration were determined based on the Standard Methods 

[28]. P-PO43- was determined by the vanadomolybdophosphoric acid colorimetric method (4500-P C) 

in a Shimadzu UVmini-1240 UVvis spectrophotometer. N-NH4+ was determined by the ammonia-

selective electrode method (4500-NH3 D). A Hach 51927-00 ammonia gas sensing gas combination 

electrode was used for this purpose. Ions were determined using a Thermo Scientific Ionic 

Chromatograph (Dionex ICS-1100 and ICS-1000). On the completion of the batch experiments, 

samples of the loaded zeolites were examined by field scanning electron microscope (FSEM-EDX) 

and mineral phases were identified by X-Ray Diffractometry (XRD). 

3. Results and discussion  

3.1. Materials characterization of hydrated aluminum oxide zeolites 



XRD patterns of Z-N, Z-Na and the modified hydrated aluminum oxide zeolite (Z-Al) are shown in 

supporting information Figure S1. Clinoptilolite was found to be the major component of Z-N, but also 

small amounts of other crystalline phases as quartz and albite were detected. In this study Z-Na is 

considered as an intermediary step of the zeolite modification process, due to the easily sodium 

removal in ion exchange applications [29]. The presence of crystalline aluminum phases (e.g. 

hydrated aluminum oxide) was not identified in Z-Al samples as it was described by Jimenez-Cedillo 

about the formation of amorphous oxide species on a modified zeolite surface [14, 15, 30]. For Z-Al 

only differences on the reflexions intensity but not on their positions were observed. This fact is 

attributed to the occupation of aluminum ions in the cation exchange sites of the zeolitic structure 

after the AlCl3 treatment. However, some characteristic reflexions (2θ at 9.9°, 11.2°, 17.3°, 22.5° and 

32.0°) for clinoptilolite were not affected through modification of Z-Na and Z-Al.  The specific surface 

area of Z-N is slightly reduced from 19.8±0.3 m2/g to 17.8±0.1 m2/g of Z-Al as consequence of the 

impregnation of hydrated aluminum oxide and the interaction between compensating cations (e.g. 

Al(III)) and water molecues which are coordinated in the zeolite framework [31].  

The FSEM – EDX analyses revealed the presence of O, Na, Mg, Al, Si, K, Ca and Fe as the main 

elements on the zeolites composition (Table 1). In Z-Na, the sodium content increase from 0.4 % to 

1.5 % and a decrease of potassium and calcium content was observed due to the exchange with 

sodium ions. As well as, in Z-Al the aluminum content increased from 5.3 % to 6.3 % with a reduction 

of sodium and magnesium content was observed from 1.5 % to 0.9 % and 0.4 % to 0.2 % as 

consequence of the ion exchange occur between these cationic species and aluminum.  

Element Z-N Z-Na Z-Al 
O 57.8 ± 2.6 60.3 ± 1.4 58.1 ± 1.5 

Na 0.3 ± 0.0 1.5 ± 0.1 0.9 ± 0.3 

Mg 0.4 ± 0.1 0.4 ± 0.0 0.2 ± 0.2 



Al 5.3 ± 0.2 5.3 ± 0.0 6.3 ± 0.4 

Si 29. 7 ± 1.7 29.1 ± 1.5 30.3 ± 0.5 

K 2.9 ± 0.5 1.8 ± 0.2 2.2 ± 0.3 

Ca 1.9 ± 0.3 1.1 ± 0.1 1.3 ± 0.5 

Ti 0.2 ± 0.2 < loq* < loq* 

Fe 1.6 ± 0.4 0.5 ± 0.0 1.1 ± 0.3 

*loq: limit of quantification 

Table 1. Chemical composition (wt. %) of the zeolitic materials: Natural zeolite (Z-N), sodium zeolite 

form (Z-Na) and hybrid hydrated aluminum oxide zeolite (Z-Al). 

FSEM images showed the networks of crystal clusters for the Z-N (supporting information Figure 

S2a) with homogeneous crystal size distribution. It is observed for clinoptilolite the characteristically 

plate-like morphology crystals and large cavities and entries to the channels inside the zeolite 

framework in accordance to previous reports [32].  The existence of lamellar crystals and small 

particles covering the surface is observed in Z-Na and Z-Al (supporting information Figure S2b,c) 

confirms the surface modification achieved in the clinoptilolite after the sodium and aluminum 

treatments.  

The acid - base characterization provides a pHPZC of 4.5±0.2 for Z-Al (Figure 1) by both methods 

employed in comparison with Z-N with a value of 5.2±0.2. The decrease of the pHPZC suggests that 

Z-Al become more acid as an effect of formation of hydrated aluminum oxide onto the zeolite after 

the modification with Al (III) salt. The determined pHPZC is in agreement with reported values for 

natural zeolite (clinoptilolite) supporting mono Fe(II) (Z-Fe(II)), Al (Z-Al) and bimetallic Fe-Al (Z-Fe/Al)) 

with pHPZC values of 4.2, 4.6 and 5.2, respectively [13]. It is also in aggrement with pHPZC for α-

Al(OH)3(s) (pHPZC 5.0) but far from the values reported for α-Al2O3(s) (pHPZC=9.1) and for γ-AlOOH(s) 

(pHPZC=8.2) [33]. 



Figure 1. a) Plot of pHfinal− pHinitial vs initial pH of Z

Potentiometric titration curve for Z – Al, at 0.01, 0.05 and 0.1 M NaCl.

The FTIR spectra for Z-N, Z-Na and Z

between 798 cm-1 and 547 cm-1 are assigned to deformation vibration of OH, Al

groups. The band at ~1100 cm-1 is attributed to the stretching vibration of Si

~1630 cm-1 represents the deformation vibration of water. The peaks in the range from 3700 cm
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3100 cm-1 have been associated to the hydroxyl groups of the zeolitic structure [11, 34]. The small 

differences in the spectra for Z-N (Figure S3a) and Z-Na (Figure S3b) are consistent with the ion 

exchange reactions between cations of the same valence [35]. Contrary, after the modification with a 

trivalent cation (Al (III)) important changes in the zeolite structure are observed on the Z-Al spectra 

(Figure S3c), with new peaks at 1396 cm-1, 1455 cm-1 and 1541 cm-1 associated with the presence of 

the surface hydroxide groups (≅AlOH) [36-38]. The shift of the band at ~3396 cm-1 in the Z-N spectra 

and the new band at 3616 cm-1 on Z-Al spectra are attributed to hydroxyl groups associated with 

tetrahedral framework aluminum and octahedral non-framework aluminum oxide species [39, 40]. It 

results in the formation of cationic OH groups and bridging OH groups which are situated in the 

channels of zeolite as well as at the outer surface of particles [41]. All these changes confirm the 

formation of aluminum hydroxyl groups which promote the acidity increase of natural clinoptilolite as it 

was identified on surface layers of Z-Al in SEM analysis. 

3.2. Phosphate and ammonium isotherms  

The equilibrium uptake for phosphate and ammonium (qe) was calculated by Eq. 2. 

  �� � ��� � ��� � �
�   (2)  

where Co (mg/L) and Ce (mg/L) represents the initial and equilibrium concentration, respectively; v (L) 

is the aqueous solution volume and w (g) is the mass of zeolite. The phosphate and ammonium 

equilibrium sorption was evaluated according to Langmuir and Freundlich isotherms by Eq. 3 and Eq. 

4, respectively.  

  
��
�� �

�
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where qm (mg/g) is the maximum sorption capacity and KL (L/mg) is the Langmuir sorption equilibrium 

constant. KF ((mg/g)/(mg/L)1/n) is the Freundlich equilibrium sorption constant.  



The phosphate and ammonium sorption data are well described by the Langmuir isotherm (R2≥ 0.99) 

while Freundlich isotherm (R2≤ 0.97) (Table 2 and Figure 2) provides a good description only at the 

lower concentration ranges. Therefore, monolayer and homogenous sorption or/and ion exchange at 

specific and equal affinity sites available on the zeolites surface is supposed to occur. A favorable 

sorption is revealed by the values of KL (0.02 and 0.011 for phosphate and ammonium, respectively) 

[42]. For Z-N the maximum sorption capacities for ammonium and phosphate were found to be 33 

mg-N/g and 0.6 mg-P/g, respectively; while Z-Al phosphate capacity was enhanced tenfold 7.0 mg-

P/g. A small decrease of sorption capacity for ammonium (30 mg-N/g) was reported in Z-Al and 

consequently the increase of bonding sites for phosphate ions represents a slightly reduction for 

ammonium ones.  

 
Langmuir Freundlich 

qm KL R2 
KF 

1/n R2 
(mg/g) (L/mg) ((mg/g)/(mg/L)1/n) 

Z-N 
Phosphate 0.6 0.01 0.99 0.02 0.47 0.97 

Ammonium 33 0.006 0.99 1.84 0.36 0.94 

Z-Al 
Phosphate 7.0 0.02 0.99 0.85 0.32 0.85 

Ammonium 30 0.011 0.99 2.64 0.32 0.92 

Table 2. Isotherm parameters for phosphate and ammonium sorption on natural zeolite (Z-N) and 

hybrid hydrated aluminum oxide zeolite (Z-Al).  



 

 

Figure 2. Experimental and theoretical equilibrium isotherms for a) phosphate and b) ammonium 

removal by hybrid hydrated aluminum oxide zeolite (Z-Al) at 21±1°C. Sorption experiments were 

carried at constant equilibrium pH 4.2±0.2 

Sorption of ions with acid base properties (e.g. phosphate and ammonium) on adsorbent surface 

sites occurs by specific and/or nonspecific interactions. The specific type of sorption takes place by 

ligand exchange reactions while nonspecific sorption involves columbic forces generally depends on 

the aqueous pH and the pHPZC of the adsorbent. The pH dependence on the phosphate removal of Z-

Al (Figure 3) shows the lowest phosphate removal at pH below than 2; and the highest with a plateau 

between pH 3 and 6 to decreases then from pH 6 to 11.  
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Figure 3. Effect of pH on the phosphate and ammonium removal by the hybrid hydrated aluminum 

oxide zeolite (Z-Al). 

The sorption mechanism of phosphate oxyanions (H2PO4- - HPO42- – PO43-) is associated with the 

formation of complexes with the hydroxyl surface groups of the hydrated aluminum oxide layer 

impregnated on the zeolite structure (specific adsorption) [17, 43-45] or by means of columbic forces 

depending of the pHpzc (non-specific adsorption) [13, 23, 45].  

Then, taking into account that pHpzc of the aluminum hydrated oxide in Z- Al was found to be 4.5±0.2, 

below the pHPZC, the Z-Al surface is positively-charged, which becomes an opportunity for anions 

sorption as is depicted in Eq. 5. However, the reduction of pH below 2.3 (pKa1) favours the 

conversion of H2PO4- to H3PO4 and therefore the anion exchange mechanism is not favoured as 

phoshate is a non-charged form. Instead, above the pHPZC the adsorbent surface is negatively-

charged (Eq. 7) and anions sorption is not favourable.  
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At pH ≥ pHPZC the Al-OH groups are involved in the formation of inner sphere species by means of 

monodentate and bidentate complexation (Eq. 6) [17, 46, 47]. Then, an increase of pH above 11 is 

traduced in the gradual conversion of the HPO42- onto PO43- and consequently, a reduction of the 

phosphate removal. The reduction is associated to both, the high charge of the ion (-3) and the fact 

that the hydrated hydroxide surface in negatively charged (≅AlO-).  

The ammonium sorption by Z-Al (Figure 3) increases progressively from pH 2 until 9. Below the 

pHPZC the existence of positive charges on the Z-Al surface is the responsible for a reduction of the 

ammonium removal. On other hand, above the pHPZC the increase of ammonium (NH4+) sorption is 

attributed to the electrostatic interaction with the deprotonated surface groups (≅AlO-). The decrease 

of ammonium sorption at pH 10 is associated with the decrease of the NH4+ concentration as it is 

converted to the NH3. So, the ion exchange reaction on a sodium zeolite is described as a chemical 

process involving valence forces through the sharing or exchange of electrons between zeolite sites 

with negative charge and ammonium cations as described by Eq. 8 [5, 48]: 

  Z-Na+ +NH4+↔ Na+ +Z-NH4+      (8) 



Analysis of the aqueous phase (data not reported) confirm the release of Na+ and in minor degree of 

K+, Mg2+, Ca2+. SEM data revealed the reduction of these cations in the ammonium loaded Z-Al.  

3.3. Effect of competing ions on ammonium and phosphate sorption  

Sorption capacity of Z-Al for both phosphate and ammonium in the presence of common anions and 

cations in treated waste water is shown in Figure 4. The ammonium sorption capacity was 

maintained as the variations were below 5 %. A similar effect was confirmed for phosphate uptake in 

the presence of nitrate, sulfate and chloride as reported for other zeolitic materials [1, 48]. These 

species are mainly supposed to form outer-sphere complexes and they do not represent any 

competition for the same binding sites [2, 49]. The presence of HCO3- was found to promote the 

reduction of 32 % on the phosphate uptake as reported for a modified zeolite [50]. The combined 

effect of anions revealed the decrease of phosphate and ammonium removal of 29 % and 9 %, 

respectively. 

The evaluation of the effect of cations towards ammonium uptake by Z-Al revealed an important 

decrease for K+ (17 %) > Ca2+ (15 %) > Na+ (12 %) > Mg2+ (6 %) as was previously reported with 

natural zeolites [48]. Contrary, no significant differences were measured in phosphate sorption with 

differences below 5 % (e.g. Mg2+ (6 %) > Na+ (3 %) > K+ (3 %) and Ca2+ (1 %)). The combined effect 

of cations leads the reduction of phosphate and ammonium uptake of 3 % and 33 %, respectively.  



 

 

Figure 4. Individually effect of a) anions and b) cations for phosphate (P) and ammonium (N) removal 

onto the hybrid hydrated aluminum oxide zeolite (Z-Al). 

The phosphate and ammonium equilibrium sorption by Z-Al in the presence of the anions and cations 

mixtures (Table 3) are better described by the Langmuir isotherm (R2≥ 0.99) than by the Freundlich 

isotherm (R2≤ 0.84). The maximum phosphate uptake capacity without competing ions (7.0 mg-P/g) 

was slightly reduced by the presence of ions mixtures to 6.3 mg-P/g, in the presence of anions to 6.4 

mg-P/g and in the presence of cations to 6.7 mg-P/g. Similarly, the ammonium uptake capacity (30 

mg-N/g) slightly decreased to 26 mg-N/g when all competing ions were present, to 27 mg-N/g in 
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presence of cations and to 28 mg-N/g in presence of anions. Phosphate and ammonium sorption 

data for Z-Al in the presence of competing ions at different concentrations are shown in Figure 5. 

 Langmuir Freundlich 
 qm KL R2 

KF 
1/n R2 

 (mg/g) (L/mg) ((mg/g)/(mg/L)1/n) 
Phosphate (single) 7.0 0.02 0.99 0.85 0.32 0.85 

P (Anions mixture) 6.4 0.01 0.98 0.52 0.36 0.93 

P (Cations mixture) 6.7 0.02 0.99 0.78 0.32 0.84 

P (Ions mixture) 6.3 0.02 0.99 0.59 0.36 0.86 

Ammonium (single) 30 0.011 0.99 2.64 0.32 0.92 

N (Anions mixture) 28 0.008 0.99 1.62 0.39 0.91 

N (Cations mixture) 27 0.009 0.99 1.25 0.42 0.92 

N (Ions mixture) 26 0.007 0.99 0.93 0.47 0.87 

Table 3. Isotherm parameters for phosphate and ammonium sorption by hybrid hydrated aluminum 

oxide zeolite Z-Al in the presence of competing ions. 
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Figure 5. Equilibrium capacity for a) phosphate and b) ammonium in presence of competing ions with 

the hybrid hydrated aluminum oxide zeolite (Z-Al). 

3.4. Phosphate and ammonium sorption kinetics 

Kinetic data of both phosphate and ammonium removal by Z-Al are similar to those typically shown 

by polymeric ion exchangers as it is shown in Figure 6. More than 150 minutes were needed to reach 

the equilibrium, however; ammonium shows faster sorption rate than phosphate. This observation is 

attributable to the fact that the exchange of Na+ by NH4+ ions is a faster process than the 

complexation of phosphate ions with the surfaces groups (≅AlOH).  
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Figure 6. Evolution of phosphate and ammonium sorption uptake versus time for Z-Al in batch 

experiments at 21 ±1 ºC. 

The kinetic data of phosphate and ammonium sorption onto modified zeolite were fitted to the 

pseudo-first order and pseudo-second order kinetic model by Eq. 9 and Eq. 10. 

ln��� � �-� � ln���� � a�t  (9) 

c
�d �

�
e@��@ �

	c
��    (10) 

where k1 (h-1) and k2 (g.mg-1.h-1) are the kinetics constants. The pseudo-second order model 

provided a good description for phosphate and ammonium sorption. However, the intraparticle 

diffusion model developed by Weber and Morris [51] also was used for describing sorption processes 

on the zeolite. The mathematical dependence of uptake qt of adsorbates on t1/2 is obtained if the 

sorption process is considered to be influenced by diffusion in the spherical adsorbent and by 

convective diffusion in the adsorbate solution. This dependence is described by the Eq. 11: 

�- � a- 	9� 5f � )    (11)  

where kt (mg.g-1.h-1/2) is the intraparticle diffusion rate constant and A (mg/g) is a constant providing 

an indication of the thickness of the boundary layer, i.e. the higher the value of A, the greater the 

boundary layer effect. If the sorption uptake qt is plotted versus t1/2 gives a straight line, this means 

that the sorption process is only controlled by intraparticle diffusion. However, two or more steps 

influence the sorption process if the data exhibit multi-linear plots. 

The intra-particle diffusion model fitted well the experimental data as can be seen in Figure 7 

indicating that the whole sorption process is divided into two linear regions. Hence, the ammonium 



and phosphate sorption process might be described by film diffusion followed by particle diffusion 

process [52]. 

 

 

Figure 7. Intra-particle diffusion plots for a) phosphate and b) ammonium removal by hybrid hydrated 

aluminum oxide zeolite (Z-Al). 

The contribution of each rate controlling step in the phosphate and ammonium sorption onto Z-Al can 

be further analyzed through the homogenous particle diffusion model (HPDM) and film diffusion 

model (HPDF) by calculating the film diffusion (Df) and particle diffusion (Dp) [53]. In this model the 

species originally in the solution phase must diffuse across the liquid film surrounding the adsorbent 

particle, transfer across the solution/ particle interface, diffuse into the bulk of the adsorbent particle 
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and possibly interact with a moiety on the surface of the adsorbent [54]. Sorption on spherical 

particles under particle diffusion control is described by Eq. 12:  

 � ln g1 � i�d��j
5k � 5	l@mn

+@ 9  (12) 

If liquid film diffusion controls the rate of sorption is described by Eq. 13:  

 � ln g1 � i�d��j
5 9k � mo�p

q	+	�r 9  (13) 

where qt  and qe are solute uptake on the adsorbent phase at time t and when equilibrium is attained 

(mg/g) respectively and Cs and Cz (mg/kg) are the concentrations of solute in solution and in the 

zeolite, respectively; r is the average radius of zeolite particles (1x10-4 m), t is the contact time (min or 

s); and h is the thickness of film around the zeolite particle (1x10-5 m for poorly stirred solution) [55]. 

Kinetic experimental data were fitted to equations 12 and 13 and Dp and Df values for ammonia and 

phosphate sorption onto Z-Al as well as the linear regression analysis are summarized in Table 4. 

The Dp values for both ions were considerably lower than those of Df, indicating that particle diffusion 

was the rate-limiting step for both ions and their sorption was mainly occurred at the surface of zeolite 

with monolayer molecular adsorption. Similar results were reported for natural zeolites [52, 55, 56] at 

low initial ammonium concentrations. 

Model Kinetic parameters Phosphate Ammonium 

Pseudo-first order 

qe (mg·g-1) 

k1 (h-1) 

R2 

1.4 

0.2 

0.93 

2. 6 

0.3 

0.91 

Pseudo-second order 

qe (mg·g-1) 

k2 (g·mg-1·h-1) 

R2 

1.3 

0.6 

0.99 

3.1 

0.1 

1.00 

Intraparticle diffusion 
kt1   (mg·g-1·h-1/2) 

R2 

0.6 

0.99 

1.9 

0.99 



kt2   (mg·g-1·h-1/2) 

R2 

0.4 

0.97 

0.8 

0.97 

HPDF 

Film diffusion 

Df  (m2·s-1) 

R2 

4.9x10-10 

0.93 

9.9x10-10 

0.91 

HPDM 

Particle diffusion 

Df  (m2·s-1) 

R2 

8.8x10-13 

0.98 

1.5x10-12 

0.97 

Table 4. Kinetic parameters for phosphate and ammonium removal by hybrid hydrated aluminum 

oxide zeolite (Z-Al). 

FSEM analyses of loaded phosphate and ammonium Z-Al revealed that the surface is almost 

covered by several lamellar particles (supporting information Figure S2d) and EDAX analysis of the 

loaded adsorbent revealed the presence of phosphorous. Nitrogen was not detected as the content is 

below the limit of quantification. The size of the cavities in the unload material decreased with the 

sorption process. Then the surface turned to be a compact crystalline framework. The FTIR analysis 

performed after the phosphate and ammonium sorption (Figure 8) showed changes in bands at 3616 

cm-1, 1015 cm-1 and the appearance of a new band at 1436 cm-1. These variations are associated 

with the participation of hydroxyl groups of Al(OH) by means complexation with phosphate and 

ammonium when sorption has taken place over zeolite surface [57-60]. This fact may explain the 

phosphate and ammonium ions competition for the same binding sites. It explains the increase of the 

phosphate removal leading the slight reduction of the ammonium sorption capacity as it occurred in 

natural as well as modified zeolite.  



 

Figure 8. FTIR of the zeolitic materials a) unloaded hybrid hydrated aluminum oxide zeolite (Z-Al) and 

b) P and N loaded Z-Al. 

3.5. Phosphate speciation in loaded Z-Al samples 

Phosphate speciation results are collected in Table 5. For Z-Al the content of residual phosphorus (R-

P) was found to be 9±3 %. The loosely bound phosphorus fraction (LB-P) was found to be 4±1 % as 

reported for a synthetic zeolite [6]. The major phosphorus fraction retained by Z-Al was associated to 

Al and Fe hydroxides (Fe+Al)-P which represent the 53±1 %. Thus, it revealed the Al-OH groups of 

the hydrated aluminum oxides in the modified zeolite Z-Al to be the main responsible for the 

phosphate removal. Finally, the 35±3 % of phosphorus immobilized was related to calcium and 

magnesium (Ca+Mg)-P fraction. Then, phosphate removal is also performed by means of chemical 



precipitation with these cationic species; although these mineral phases were not identified by XRD 

analysis. 

 

Table 5. Fractionation of phosphate immobilized on the hybrid hydrated aluminum oxide zeolite (Z-Al) 

associated to the different chemical forms: LB-P; (Fe+Al)-P; (Ca+Mg)-P; R-P. 

3.6. Phosphate and ammonium desorption 

Desorption efficiency of phosphate and ammonium from loaded zeolites using NaOH, NaHCO3, 

Na2CO3, and mixtures of NaHCO3/Na2CO3 in the first sorption – desorption cycle are summarized in 

Table 6: 

Elution solution 
Desorption (%)  

Phosphate  Ammonium 
1 M NaOH 20±3 83±4 

0.1 M NaHCO3 24±3 50±4 

0.1 M Na2CO3 79±3 92±4 

0.1 M NaHCO3/0.1 M Na2CO3 64±3 76±4 

Table 6. Desorption efficiency of phosphate and ammonium from loaded Z-Al in batch experiments at 

21±ºC. 

Ammonium is much better desorbed than phosphate with high recoveries from 50 up to 92 % for 

most of the elution solutions used while phosphate recovery varied from 20 up to 79 % in the first 

sorption – desorption cycle. The strong phosphate complexation with the hydrated aluminum oxide 

seems to be the responsible for this irreversible sorption. However, in the second sorption cycle it 

was found a strong reduction of phosphate capacity (≈96 %) in contrast to the slight variation in 

qe 
(mg/g) 

LB-P (Fe+Al)-P (Ca+Mg)-P R-P 

(mg/g) % (mg/g) % (mg/g) % (mg/g) % 

2.04 0.1 4±1 1.0 53±1 0.7 35±3 0.2 9±3 



ammonium removal of all four regenerated Z-Al samples. Concentrated alkaline solutions promote 

the dissolution of the hydrated oxide aluminum [61] as well as the partial dissolution of the zeolite 

structure as it has been postulated [38]. Although, the regeneration using NaOH solutions have been 

proposed effective for oxyanions from zeolites [61] scarce data could be found in literature as 

typically these materials were not developed for regeneration purposes. According to these results, 

and taking into account that ammonium and phosphate are not efficiently desorbed it is necessary to 

evaluate the possibility of direct used of the loaded zeolites for soils quality improvement. 

3.7. Simultaneous removal of ammonium and phosphate in column tests 

The breakthrough curves of the simultaneous phosphate and ammonium sorption by Z-Al in absence 

and presence of competing ions are shown in Figure 9. The breakthrough point (C/C0= 0.05) for 

phosphate and ammonium sorption was found at 15 BV instead in the presence of competing ions 

was 7 BV. The phosphate maximum sorption capacity reached at column saturation (C/C0= 0.95) 

was 5 mg-P/g at 194 BV, contrary in the presence of competing ions it decreased to 3 mg-P/g at 137 

BV. Similarly behavior was found for ammonium sorption capacity with 28 mg-N/g at 430 BV in 

absence of competing ions and 16 mg-N/g at 211 BV in presence of interferences. 
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Figure 9. Breakthrough curves of a) phosphate and b) ammonium sorption by the hybrid hydrated 

aluminum oxide zeolite (Z-Al) with and without competing ions at EBHRT of 4 minutes. 

The simultaneous phosphate and ammonium desorption from Z-Al was performed using 1 M NaOH 

solution after column operation in absence of competing ions. The profiles of ammonium and 

phosphate desorption are shown in Figure 10. The highest phosphate concentration was found to be 

378 mg-P/L. Almost, the 90 % of the eluted phosphate was recovered within 4 BV. On the other hand 

the highest ammonium concentration was 3538 mg-N/L. The 95 % of the eluted ammonium was 

found at 3.5 BV. Under, these conditions enrichment factors of 50 and 120 for phosphate and 

ammonium respectively were achieved.  

 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 50 100 150 200 250 300 350 400

C
/C

0

Bed Volume

N N-Ions

b

0

20

40

60

80

100

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10

E
lu

te
d 

ph
os

ph
at

e 
(%

)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

Bed volume a



 

Figure 10. Column desorption profiles of a) phosphate and b) ammonium onto the hybrid hydrated 

aluminum oxide zeolite (Z-Al) using 1 M NaOH at EBHRT of 13 minutes. 

4. Conclusions 

The modification of a natural zeolite to produce a hybrid material containing hydrated aluminum oxide 

for phosphate recovery is not affecting its ammonium exchange capacity. Removal of phosphate is 

based on electrostatic interaction and the formation of inner sphere complexes with ≅Al-OH groups, 

while ammonium removal occurs by means of ion exchange and complexation with the OH groups of 

the zeolite. Both phosphate and ammonium sorption by Z-Al were well described by the Langmuir 

isotherm. Sorption capacity of both ions was slightly reduced when competing ions were present. 

Regeneration of the loaded zeolite using alkaline solutions containing sodium (NaOH, NaHCO3 and 

Na2CO3) provided higher recoveries ratios for ammonium than for phosphate. Concentration factors 

about 50 and 120 for phosphate and ammonium, respectively using NaOH as elution solution were 

achieved. A reduction of phosphate sorption capacity was observed in reuse (sorption-desorption 

cycle) experiments, indicating that their applications for sorption – desorption operation can be limited 

and suggesting the direct valorization of the loaded zeolites as soil amendment.  
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