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Abstract.  The rapid maturing process of the Java technology is encouraging users the
development of portable applications using the Java language. As an important part of the
definition of the Java language, the use of threads is becoming commonplace when
programming this kind of applications. Understanding and tuning threaded applications
requires the use of effective tools for detecting possible performance bottlenecks. Most of the
available tools summarize the behavior of the application in a global way offering different
metrics that are sufficient to optimize the performance of the application in some cases.
However, they do not enable a detailed analysis of the behavior of the application; this
requires the use of tools that perform an exhaustive and time-aware tracing at a fine-grain
level. This paper presents the Java Instrumentation Suite (JIS), a set of tools designed to
instrument Java threaded applications using dynamic code interposition (avoiding the
instrumentation and recompilation of the source code and/or the Java Virtual Machine JVM).
Our initial implementation targets the JVM version 3.1.1 on top of the SGI Origin2000
parallel platform. The paper describes the design of JIS and highlights some of its main
functionalities specifically designed to understand the behavior of Java threaded applications
and the JVM itself, and to speed them up.

1. Introduction

One of the reasons that support the recent popularity and widespread diffusion of the Java
language is that it eases the implementation of parallel and distributed applications. Java offers
multithreading facilities through the built-in support for threads in the language definition. The
Java library supplies the Thread class definition, and the Java runtime provides support for thread,
mutual exclusion and synchronization primitives. This convenience and easy-of-use come at the
expenses of execution speed of Java programs compared to their equivalent counterparts written
in conventional languages such as C++. Recent improvements in all the components that integrate
the Java execution platform (bytecode compiler, just-in-time compiler and virtual machine) are
effectively reducing the performance gap between applications written in Java and applications
written in other languages that benefit from more mature compilation and execution technologies.
These improvements and the portability inherent in its definition are leading to an increasing
number of threaded applications that are being implemented in Java. However, tuning these
applications for performance is mostly responsibility of (experienced) programmers [Klem99].

The support for this multithreaded environment requires, for each platform, an efficient
mapping of Java threads to the underlying system threads. Thread support traverses many layers:
from the application, through various Java classes (e.g., Thread and ThreadGroup), then through
the platform-independent layer, the platform-specific layer, and finally to the operating system
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itself. While this layering provides a clean separation of responsibilities and allows many
platforms to "plug in" their support, it also contributes to extra overhead.

Although a number of tools have been developed to monitor and analyze the performance of
parallel applications [ZaSt95, Voss97, JiFL98, WuNa98, XuMN99, BePr99, Jins00], only few of
them target multithreaded Java programs. Different approaches are used to carry on the
instrumentation process. Paradyn [XuMN99] allows users to insert and remove instrumentation
probes during program execution by dynamically relocating the code and adding pre- and post-
instrumentation code. Jinsight [Jins00] works with traces generated by an instrumented Java
Virtual Machine (JVM). [BePr99] base their work on the instrumentation of the Java source code,
thus requiring the recompilation of the application. All of them report different metrics that
measure and breakdown, in some way, the application performance. However, none of them
enables a fine-grain analysis of the multithreaded execution and the scheduling issues involved in
the execution of the threads that come from the Java application. The Java Instrumentation Suite
(JIS) enables this detailed analysis of the application behavior by recording the state of each
thread along the execution of the application. The instrumentation is done using dynamic code
interposition at the JVM level (avoiding modifications in the source code and its recompilation).

Current implementations of the JVM allow Java threads to be scheduled by the virtual machine
itself (the so-called green threads model) or by the operating system (the so-called native threads
model). When using green threads, the operating system does not know anything about threads
that are handled by the virtual machine. From the point of view of the operating system, there is a
single process and a single thread; it is up to the virtual machine to handle all the details of the
threading API. In the native threads model, threads are scheduled by the operating system that is
hosting the virtual machine. JIS allows the analysis of threaded applications running on these two
execution models.

To our knowledge, it is the first tool that handles the Java thread scheduling representation of
an application. JIS is a part of Barcelona Java Suite (BJS) currently under development at
CEPBA. The main purpose of BJS is to serve as platform for doing research on scheduling
mechanisms and policies oriented towards the efficient execution of multithreaded Java
applications on parallel servers.

The remaining of this paper is as follows. Section 2 describes the basic components of JIS.
Some preliminary experiments using JIS are reported in Section 3. The paper is concluded in
Section 4 and outlines our future research activities in this topic.

2. JIS basics

JIS makes use of two components previously developed at the CEPBA: DITools [SeNC00] and
Paraver [LGPC96]. DITools is a set of tools bringing an environment in which dynamically
linked executables can be extended at runtime with unforeseen functionality. Code interposition
is used in JIS to instrument the code of the JVM. References to specific functions of the
dynamically linked libraries used by the JVM are captured and probed. This instrumentation does
not require any special compiler support and makes unnecessary to rebuild neither the bytecode
of the application nor the executable of the JVM. The probes executed with the intercepted calls
generate a trace file with all the information that is required to analyze and visualize the execution
of the threaded application. Paraver serves as the visualization tool. It allows the user to navigate
through the trace and to do an extensive quantitative analysis. Figure 1 shows the interaction of
the above mentioned components in JIS.
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Figure 1. Placement of the instrumentation.

2.1. Trace contents

We use traces in order to analyze the behavior of threaded applications. These traces reflect the
activity of each Java thread in the application (through a set of predefined states that are
representative of the parallel execution) and collect the occurrence of some predefined events
along the whole application lifetime. Table 1 summarizes the different states that we consider for
a thread.

STATE DESCRIPTION

INIT Thread is being created and initialized

READY Thread is ready for running, but there is no processor available for it

RUN Thread is running

BLOCKED IN CONDVAR Thread is blocked waiting on a monitor

BLOCKED IN MUTEX Thread is blocked waiting to enter in a monitor

STOPPED Thread has finalized

Table 1. Thread states.

The trace can also contain events that provide additional information about the behavior of the
threaded application. The following events could be recorded in the trace:

§ Information relative to the monitor in which a thread is blocked (either in the queue of
threads waiting to enter into the monitor or in the queue of threads waiting in this monitor).
Some of these monitors are registered by the JVM, in which case the event reports the
name; otherwise, it reports a numerical identifier.
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§ Information relative to actions performed by a thread, like for instance processor yield,
entry (exit) to (from) code protected by a mutual exclusion, notify on a monitor (to awake
a previously blocked thread on that monitor for a wait), among others.

§ And in general, the invocation of any method in the Java Thread API, like for instance
sleep and interrupt.

2.2. Code interposition

Dynamic linking is a feature available in many modern operating systems. Program generation
tools (compilers and linkers) support dynamic linking via the generation of linkage tables.
Linkage tables are redirection tables that allow delaying symbol resolution to run time. At
program loading time, a system component fixes each pointer to the right location using some
predefined resolution policies. Usually, the format of the object file as well as these data
structures are defined by the system Application Binary Interface (ABI). The standardization of
the ABI makes possible to take generic approaches to dynamic interposition.

The monitoring methodology is based on the fact that the JVM invokes a set of run-time
services at key places in order to use threads or to synchronize them.  The required knowledge
about the execution environment can be expressed using a state transition graph, in which each
transition is triggered by a procedure call and/or a procedure return. Figure 2 presents the state
transition graph for application threads for both execution models (green and native threads)
considered in this work, in which nodes represent states, and edges correspond to procedure calls
(indicated by a + sing) or procedure returns (indicated by a - sign) causing a state transition. We
can also monitor internal threads of the JVM (like the finalizer, garbage collector, ...). In this
case, the invocation of other procedures (like InitializeFinalizerThread,
InitializeGCThread, ...) are used to trigger the transition to the INIT state instead of the
invocation of procedure java_lang_Thread_start.

This transition graph is then used to derive the interposition routines used to keep track of the
state in the performance monitoring backend. These routines are simple wrappers of functions
that change the thread state, emit an event and/or save thread information in the internal structures
of JIS. These wrappers can perform instrumentation actions before (_PRE) and/or after (_POST)
the call being interposed. The two following codes show simple examples of procedure wrappers:

void setCurrentThread_wrapper(sys_thread_t * th) {

  setCurrentThread_PRE ((long)th);

  setCurrentThread(th);

    }

int pthread_cond_wait_wrapper(pthread_cond_t *p, pthread_mutex_t *m) {

  pthread_cond_wait_PRE ((long)p,(long)m);

  ret = pthread_cond_wait(p,m);

  pthread_cond_wait_POST ((long)p,(long)m);

  return ret;

    }
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Figure 2.  State transition graph for (a) green threads and (b) native threads.

The interposition of other functions lead to the generation of an event in the trace and/or to an
update of the internal structures of the instrumentation system (e.g. pthread_mutex_unlock,
pthread_cond_signal, pthread_cond_broadcast, sched_yield). These functions do
not provoke a direct change in the state of any other thread.

2.3. Instrumentation library

For each action being traced, the tracing environment internally finds which Java thread made the
call and the time at which it was done. Timestamps associated to transitions and events are
obtained using platform-specific mechanisms (for instance the high-resolution memory-mapped
clock) offered by the system.

This data is written (optionally with additional parameters) to an internal buffer for each thread
(i.e. there is no need for synchronization locks or mutual exclusion inside the parallel tracing
library). The data structures used by the tracing environment are also arranged at initialization
time in order to prevent interference among threads (basically, to prevent false sharing). The user
can specify the amount of memory used for each thread buffer. When the buffer is full, the
runtime system automatically dumps it to disk.

The instrumentation library provides the following services:

§ initlib - Initialize the library internal data structures to start a parallel trace receiving as
parameters:  1) the maximum number of threads participating in the execution, 2) the
maximum amount of memory that the library has to reserve for each thread buffer, and 3)
the mechanism used to obtain timestamps.

§ changestate - Change the state of a thread.

§ pushstate - Store the current state of a thread in a private stack and change to a new one.

§ popstate - Change the state of a thread to the one obtained from the private stack.
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§ userevent - Emit an event (identifier and associated value) for a thread.

§ closelib - Stop the tracing; this call makes the library dump to disk all buffered data not
yet dumped and write resulting sorted trace to a file.

The library also offers combined services to change the state and emit an event:
changeandevent, pushandevent and popandevent. For example, this is the skeleton of the
function executed before the activation of pthread_cond_wait:

void pthread_cond_wait_PRE (long condvar_id, long mutex_id) {

  pth_id = pthread_self();

  /* find Paraver identifier of the thread (jth_id = 1 .. n) from pth_id */

  /* find identifier of monitor: monitor_id */

  pushandevent(jth_id, BLOCKED_IN_CONDVAR,
              EVENT_BLOCKED_IN_MONITOR, monitor_id);

  /* update internal structures */

      }

3. Application analysis with JIS

In this section, we highlight some conclusions drawn from our initial experimentation with JIS.
The main idea is to show the usefulness of the tool in both analyzing the behavior of a threaded
application, understanding the behavior of the JVM itself and analyze the impact of some
improvements done at any level of the Java execution environment. The current implementation
targets the SGI Origin 2000 architecture with MIPS R10000 processors at 250 MHz running the
JVM version 3.1.1 (Sun Java 1.1.6). Two programs have been used for the purposes of this paper:
DHPC_ThreadBench (one of the Java Grande benchmarks from [MaCH99]) and LUAppl (a LU
reduction kernel over a two-dimensional matrix of double-precision elements taken from
[OlAN00]).

JIS offers different views of the application. On one side, JIS allows a global view of the
application, which allow us to recognize, for example, the execution paradigm (master/slave,
work queuing, ...), the application concurrency and/or parallelism degree, ... On another side, JIS
allows a more detailed analysis (timing) of the behavior and to detect, among other things, load
unbalancing at the thread level or critical points that may create some possible bottlenecks.

3.1. DHPC_ThreadBench

This simple benchmark starts a number of threads that increment a counter and immediately
yield. Threads finish their execution when the master thread sets a shared variable (after a specific
period of time). The benchmark tests the cases of having 2, 4, 8 and 16 threads.
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Figure 3. (a) Thread Creation when running the DHPC_ThreadBench
with green threads. (b) Paraver What/Where Window.

Figure 3a shows one of the windows from Paraver displaying a fragment of the trace from an
instrumented run using green threads. Notice that the analysis of the application is done at the
thread level: each horizontal line in the window represents the activity of an individual thread,
internal to JVM (like CLOCK, IDLE, garbage collector GC, ...) or reflecting the user application
itself like (like MAIN, USERn, ...) along the time (horizontal axis, in microseconds). Different
colors are used to reflect the different states described in Table 1. Figure 3.a shows the point
where the MAIN thread is creating 8 additional threads. Notice that two of them (USER7 and
USER8) reuse internal thread structures from previous threads and the rest (USER13 – USER18)
are new; due to this reuse the JVM takes less time in the creation of the two first ones. We can
also observe that at this point, the four threads (USER9 – USER12) that were executing are still
queued in the ready queue (they have not finalized their execution because they have not detected
that the MAIN thread has updated a shared variable that signals their termination). Once the
MAIN thread finishes the creation of threads, it blocks waiting for the termination of the activated
parallelism. At this point, threads USER9 – USER12 execute, detect that the shared variable has



been set, and terminate. After that, a sequence in which each of the 8 threads (USER7 – USER8
and USER13 – USER18) awakes, does some computation and yields follows.

The tracing performed allows the user to interact with Paraver and ask for information related
with monitors over which specific actions are performed. For instance, Figure 3.b shows the
Paraver What/Where window with this information for one of the events.

Figure 4.a shows a Paraver window with the complete execution of the benchmark using native
threads. Figure 4.b shows the execution of the benchmark when transitioning from 4 to 8 threads.
Notice that, as it occurred with green threads, the creation of new threads (USER8 – USER11)
takes more time (around 10 ms) than the creation of threads (USER4 – USER7) that reuse already
created internal thread structures (around 1.5 ms).

(a)

(b)

Figure 4. Thread Creation when running the DHPC_ThreadBench with native threads.



3.2. LUAppl

Figure 5 shows a Paraver window in which the behavior of the LUAppl application using native
threads is shown. Notice that the MAIN thread acts as a master thread that creates four slave
threads (USER4 – USER7) along the application lifetime. At this specific point of the trace, each
one of the slave threads is executing a subset of the total number of iterations for one of the loops
that compose the LU reduction. The analysis at this level reveals a possible inefficiency in the
threaded execution of this part of the application: the system is unable to exploit the parallelism
that exists among the four chunks generated for each loop.

Figure 5. Visualization of the LUAppl running with native threads.

This observation was used to conduct further investigation in the implementation of the JVM.
The conclusion from this investigation was to detect that the JVM does not inform the underlying
threads implementation about the desired concurrency level of the application. By default, the
threads library adjusts the level of concurrency itself as the application run. In the previous
execution, only two kernel threads where used to execute Java threads USER4 – USER7. In order
to give the library a hint about the concurrency level of the application, we automatically
introduce an invocation to the pthread_setconcurrency(level) service of the threads
library. Argument level is used to compute the ideal number of kernel threads for scheduling
the available Java threads. Figure 6 shows the execution trace after setting level to the
maximum concurrency degree of the application. Notice that the performance of the application
noticeably improves after setting this value.

The invocation of this function is done with no modifications in the original source code;
instead it is automatically performed as part of the code executed when the instrumentation
library is dynamically loaded. This is an example that shows the use of the dynamic interposition
mechanism to add (or replace) functionalities to (from) an existing implementation of the JVM.

Another observation from this example is the high overhead introduced by the thread creations
that occur at every iteration of the outer loop of the LUAppl benchmark. In [OlAN00] the authors
show code transformations to reduce this overhead by using thread descriptors.



Figure 6. LUAppl running with native threads after setting the concurrency level.

3.3. Instrumentation overhead

The instrumentation process of JIS introduces some overhead during the execution of the
application. Once the application is finished, the instrumentation library joins the per-thread
buffers into a single trace (ordered in time) suitable for visualized with Paraver. This adds an
extra overhead to the whole execution time of the job that does not have any impact in the trace.
For the LUAppl benchmark, the overhead introduced when using green threads was less than 5%
in the total execution time. The overhead when using native threads was larger (around 20%) but,
from our point of view, still acceptable.

4. Conclusions and future work

In this paper we have presented the design of JIS (Java Instrumentation Suite), a set of tools
designed to analyze the behavior of threaded applications running on the JVM. It uses a tracing
mechanism, based on dynamic code interposition that is applied at the JVM level. It does not
require access to the source code of the threaded application and does not require any
modification in the JVM.

JIS allows a detailed time-analysis of the application and visualizes the thread scheduling
activity done by the JVM. We have shown the usefulness of the JIS environment with a couple of
simple benchmarks.

This instrumentation is in fact a first step in the design of a platform for doing research on
scheduling mechanisms and policies oriented towards optimizing the execution of multithreaded
Java applications on parallel servers. For instance, in this paper we have shown the performance
improvement when the application informs the supporting thread layer about its concurrency
level.
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