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ABSTRACT:

Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) have a great potential to support a wide variety of aerial remote
sensing applications. Most UAS work by acquiring data using on-board sensors for later post-processing. Some require the data
gathered to be downlinked to the ground in real-time. However, depending on the volume of data and the cost of the communications,
this later option is not sustainable in the long term. This paper develops the concept of virtualizing super-computation on-board UAS,
as a method to ease the operation by facilitating the downlink of high-level information products instead of raw data. Exploiting recent
developments in miniaturized multi-core devices is the way to speed-up on-board computation. This hardware shall satisfy size, power
and weight constraints. Several technologies are appearing with promising results for high performance computing on unmanned
platforms, such as the 36 cores of the TILE-Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV by Adapteva. The
strategy for virtualizing super-computation on-board includes the benchmarking for hardware selection, the software architecture and
the communications aware design. A parallelization strategy is given for the 36-core TILE-Gx36 for a UAS in a fire mission or in
similar target-detection applications. The results are obtained for payload image processing algorithms and determine in real-time the

data snapshot to gather and transfer to ground according to the needs of the mission, the processing time, and consumed watts.

1. INTRODUCTION

Unmanned aerial systems (UAS, also known as UAV, RPAS or
drones) have a great potential to support a wide variety of aerial
remote sensing applications. UAS may allow addressing new
remote sensing scenarios in which manned aircraft have never
been introduced due to accessibility and/or risk reasons. Very
low level UAS are today a reality in most developed countries
for visual line of sight tasks such as electric power tower mainte-
nance, precise agriculture or commercial publicity. Main advan-
tages in front of manned aviation are the fast deployment, high
precision data acquisition and low cost. In contrast UAS have
more limitations on payload weight, flight endurance and power
consumption.

Today most aerial works acquire data using on-board sensors for
later post-processing. In a manned aircraft the payload operators
can check the correct acquisition during flight. In a UAS the data
gathered has to be downlinked to the ground to do similar verifi-
cation. However, depending on the volume of data and the cost
of the communications, this later option is not sustainable in the
long term. This is not the case for the command and control link.
For safety reasons the command and control link is mandatory.
But the characteristics of this link are different than the payload
link: high frequency (usually 20 Hz for downlink telemetry and
5 Hz for upload commands) and low bandwidth. For the payload
transmission UAS usually employ radio-modems or WiFi for vi-
sual line of sight, and satellites for beyond visual line of sight.
Transmission rates of such channels is limited to 56-128 Kbps
for radio modems, 54 Mbps for typical WiFi and up to 150 Mbps
for last generation WiFi families. Given the payload capabili-
ties (fast acquisition rates, high precision sensors, hyper-spectral
data, etc.) it is easy to realize that real-time transmission is not
possible in most of the applications.

In this paper we focus in two UAS applications: hotspot and jel-
lyfish detection. In a hotspot detection application the UAS op-
erates in a survey pattern to cover the area of a forest looking for
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high temperatures. Although this application can be applied for
the detection of forest fires, it has more benefits in an immediate
post-fire situation. The UAS should obtain fast and useful infor-
mation about the location of most critical areas. In this sense, the
payload will need to have at least a thermal sensor, and the data
to retrieve for the firefighters is the location of these areas as soon
as possible. The execution of the on-board hotspot algorithm can
help to provide the fast reaction required. The minimum informa-
tion to download can be just the detected hotspots characteristics;
this is, their geographic coordinates, magnitude and temperature.
But it could help the end users to also obtain a visual image of the
area augmented with the hotspot position. Considering that only
a subset of the pictures are to be transmitted, the situation can be
technically feasible, as we will show in the results section.

The other application we address is the detection of jellyfish shoals
close to the shoreline. The application should respond very fast
since the jellyfish are in movement and any delay on processing
the data makes the information obsolete and useless. A payload
with a high resolution camera, algorithms for image segmentation
and pattern matching, and a fast data transfer containing only text
alerts is the solution we propose for this application.

For both applications we develop the concept of virtualizing super-
computation on-board the UAS. This is an automatic method to
facilitate the speed-up of the payload algorithm execution and
to ease the downlink of high-level information products. Rather
than transferring the bulky raw data, an on-board high level com-
putation capability will obtain information closer to the end-user.
It becomes clear that recent developments in miniaturized multi-
core devices could pave the way to on-board computation. This
hardware shall satisfy size, power and weight constraints. Achiev-
ing high performance processing also requires hardware able to
sustain high MIPS/MFLOPS per watt. Several technologies are
appearing with promising results for high performance comput-
ing on unmanned platforms, such as the 36 cores of the TILE-
Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV
by Adapteva.

The strategy for on-board super-computing is presented for the
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two applications described above, with different variants and us-
ing the execution times of 8 algorithms in the TILE-Gx36 archi-
tecture. The paper also includes proposals on hardware selection,
software architecture and communications aware design. The re-
sults are obtained using a service oriented software architecture
where the payload processing services determine in real-time the
data snapshot to gather according to the actual position of the
UAS. Processing time and consumed watts are the main param-
eters measured to present the benefits of the virtualizing super-
computation concept.

The structure of the paper is as follows: Section 2 presents four
processing boards and their performance in terms of execution
speed. Section 3 details our catalog of algorithms for the pay-
load, describing eight image processing functionalities and show-
ing their parallelization alternatives and performances. Section 4
explains the strategy for the on-board super-computation and how
to incorporate it into our service oriented software architecture for
UAS applications. The strategy uses the queuing theory to derive
the best level of parallelism for a given set of application require-
ments. Finally section 5 concludes the paper and highlights some
future work.

2. MULTICORES

The miniaturization of electronic devices is allowing the integra-
tion of multiple processing units in a single chip. Dual core, quad
core and even hex and oct core chips are appearing in the mar-
ket at very affordable prices. This increase of computer power
allows to speed-up execution of running programs and/or the si-
multaneous execution of different programs. But the price to be
paid for the computing power increase is an increase in power
consumption.

The market of microprocessors has switched from computer to
portable devices. According to (Barr and Massa, 2006) the mar-
ket sells over 6 billion new microprocessors each year. Less than
2 percent of these microprocessors are used in general-purpose
computers.The rest are for cell phone, tablets, smart watches, mu-
sic players, cars, TVs, etc. For most of these portable devices the
energy consumption becomes an important issue to consider and
has to be balanced with the execution speed.

Previous work proposed models to evaluate this balance. In (Choi
et al., 2013) a roof-line model of energy is proposed according to
Amdahl’s Law (Amdahl, 1967). The authors present a mathemat-
ical model to evaluate the speed-up and energy-balance points for
processor instructions and also for memory operations with the
aim to provide the best strategy for code allocation in terms of
speed and energy. The best strategy has to be adequate to the
hardware balance. Hardware balance depends on CPU and mem-
ory relative speeds and energy consumption, and on the size of
the memory.

A similar approach is provided in (Cho and Melhem, 2010). This
work derives simple formulas to describe the interplay between
application speed-up and energy consumption. The authors ap-
ply an optimization strategy to decide the allocation of serial and
parallel regions of an application. This optimization can be tuned
to either minimize the total energy consumption or to obtain the
best balance between time and energy.

Some microprocessor can work at different clock frequencies,
dissipating less energy at lower frequencies. They are known as
power-aware processors, and for them a different strategy is pre-
sented in (Ge and Cameron, 2007). Using an analytical model
for evaluating and predicting the performance and scalability of

parallel applications, the authors propose strategies for decreas-
ing the peak processor throughput. Results show that this strategy
can save up to 30% of the energy at the cost of small performance
losses.

Our approach will be similar to that presented in (Ge et al., 2009).
With the aim to find an energy-performance efficient resource al-
location for computing a given workload the paper first evaluates
the energy performance and the efficiency of parallelization to
decide about the best CPU selection.

2.1 Multicore processors boards description

In this research we will not work with frequency scalable proces-
sors. Our approach is to evaluate the speed and energy perfor-
mances of 4 multi core boards in order to select the best config-
uration for the design of a payload architecture responsible for
the UAS mission management and the on-board execution of the
required image processing algorithms.

For this evaluation, the following processors/boards have been
selected as on-board processing units in our UAS:

(¢) iT7500

(d) TILE-Gx36

Figure 1: Boards/processors used in the benchmarking

e EPIA N700-15 VIA C7-1.5 (Via C7): The VIA C7 is a sin-
gle core, x86 architecture processor with a clock frequency
of 1.5 GHz. Despite of being a general purpose processor,
the integrated technologies such as CoolStream and StepA-
head improve its power efficiency. The size of the board in
which is integrated makes this processor suitable for embed-
ded systems.

e Pandaboard with OMAP 4430 integrated CPU (Panda): The

Pandaboard is a low-power development board based on OMAP

4430 system on a chip. OMAP system is built around Cortex-
A9 ARM architecture microprocessor that runs up to 1.2
GHz clock frequency. In addition to the ARM microproces-
sor, OMAP 4430 integrates a 3D graphics accelerator and a
programmable DPS for video encoding/decoding. ARM is
a RISC architecture that, in contrast with x86 processors, re-
quire significantly fewer transistors, and thus, reduces costs,
heat and power used. Pandaboard integrates all the systems
required in a computer such as RAM memory, hard drive,
and wireless communications, fact that makes it more power
efficient but less hardware flexible.
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e INTEL T7500 on GENE-9655 motherboard (iT7500): The
iT7500 is a general purpose dual core x86 64-bits micropro-
cessor at 2.2 GHz target to notebook computers. iT7500
uses advanced technologies such as C-States and Speed-
Step to enhance power efficiency and allows systems to ad-
dress more than 4 GB of both virtual and physical memory.
iT7500 has been tested mounted in GENE-9665 embedded
motherboard which offers high hardware configuration ca-
pabilities to adapt systems to mission requirements.

e TilenCore-Gx board with TILE-Gx36 (TILE-Gx36): The
TilenCore-Gx board integrates a TILE-Gx36 CPU which is
a 36 cores processor of 64-bits, at 1.2 GHz. The TILE-
Gx36 is a RISC architecture optimized for networking and
multimedia applications. The multi-core design includes a
communication network mesh architecture able to scale to
hundreds of cores on a single chip. It is a general purpose
CPU oriented to good power efficiency. Principal uses of
TILE-Gx36 are networking equipment, including intelligent
routers and firewalls, and cloud computing applications such
as web indexing, data-mining and multimedia applications
as for example broadcast video servers.

2.2 Benchmarking results

We have applied three test benchmarks to all the above boards.
All of them are synthetic loops aimed at the benchmarking of par-
allel boards. The first two are classic well-known codes: Whet-
stone (Curnow and Wichmann, 1976) and Dhrystone (Weicker,
1984). Whetstone was adapted from its former version in Algol
60 and Fortran by the Technical Support Unit of the Central Com-
puter and Telecommunications Agency (TSU/CCTA). Whetstone
aims to measure the performance of scientific applications and
thus is composed by a number of loops with floating points op-
erations (add, mult, sin, log, etc.) In contrast Dhrystone, created
as a replica of Whetstone for non-numerical applications, con-
tains a number of loops with arithmetic operations, conditionals,
pointer references and so on. Both invent a shelf measuring unit,
MWIPS and DMIPS, which provides the number of millions of
instructions per second for each type of benchmark.

The third benchmark is a mix of both that we have constructed
with a simple structure. We execute 500 tasks, each containing
5 operations (2 floating point and 3 integer operations) that exe-
cute in a ten millions of iterations loop. We provide the results
in MIPS (million of instructions per second) by dividing the fix
number of instructions (25,000 million) by the seconds needed to
execute them. The loop kernel has no data dependency and thus
is fully parallelizable.

As Figure 2 shows, the maximum instructions per second in all
three benchmarks in a sequential execution (1 thread) is obtained
by the iT7500 processor, the processor with the highest clock fre-
quency. On the other side the TILE-Gx36 is the processor with
less throughput, but similar to the VIA C7 and Panda. In contrast,
TILE-Gx36 is the one able to obtain more speed-up when exe-
cuted over 8 threads, which is reasonable since the other boards
have only one or two cores while TILE-Gx36 has thirty six. Note
that MWIPS in Whetstone are shown in logarithm scale. Note
also that some examples with § threads (Via C7 and iT7500 for
Dhrystone) execute poorless compared with sequential.

We have used the ad-hoc loops to measure the power consump-
tion of each board. Figure 3 shows the execution times (3a), the
power consumption (3b) and the efficiency (3c) for 1 to 36 threads
executions. Figure 3a extends what we could observe in previous
MIPS plots, basically the effect of the number of processors of
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Figure 2: Benchmarking results in MIPS

each board: Via C7 with one processor executes always with the
same time except for 2 anomalies at 32 and 33 threads, Panda
and iT7500 notice some speed-up only with 2 threads, and TILE-
Gx36 time execution is a inverse exponential plot that crosses the
rest of the plots at 8, 18 and 36 threads. This means that although
TILE-Gx36 is not a fast processor, when scaling with 8 threads it
is comparable to Via C7, with 18 threads to a Panda and with all
36 threads to iT7500.

During such executions we have measured the power consump-
tion using a programmable uninterrupted power supply (UPS)
used in automobile industry. This system is used as part of the
on board electronics to switch from batteries into an on-board al-
ternator. The results, given in Watts, show that the price to pay
for iT7500 being the fastest processor is a higher consumption
compared to the rest of boards. The Panda board is the one with
the lowest consumption, with a very small difference when exe-
cuting with one or two cores. In the middle we found the Via C7
and TILE-Gx36, the second with a linear increment of 0.3 Watt
per core.

To fuse both data, time and power, we defined the efficiency as
the millions of instructions per second that each board can exe-
cute with 1 Watt. Figure 3c shows these results. We can observe
that best efficiency is given for Panda. Only TILE-Gx36 has a
positive behavior with the increase of parallelism, although the
final efficiency stays always below the second most efficient pro-
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cessor, the iT7500.
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Figure 3: Benchmarking scalability

As a conclusion of the benchmarking done we decided first to
select the iT7500 board for executing real-time flight-related pro-
grams, at the cost of more consumption. Then for the non real-
time programs, basically those related to payload processing, we
decided to board the TILE-Gx36 given its better scalability.

3. ALGORITHMS CATALOGUE

For the evaluation, we have selected a set of data processing al-
gorithms that may be of interest in a fire mission or in similar
target-detection missions. All programs have been developed us-
ing C++ and OpenCV (Bradski, 2000), an open source computer
vision framework released under a BSD License.

3.1 Algorithms description

Our catalogue of image processing tools accounts for a total of
eight algorithms that can be classified into four application ar-
eas: detection (hotspots and jellyfish), georeferencing (georef
and geotiff), panoramas (fusion, mosaic, and stitch) and selec-
tion (quality).

e Hotspots is a simple segmentation algorithm to detect hot

spots in thermal images (Salami et al., 2009). Pixels over a
given threshold temperature are grouped into hotspots. For
each hotspot, the algorithm annotates information about its
center of mass, bounding box, number of pixels, and tem-
perature. The result is a text file with the information of the
detected hotspots. Bounding boxes are also marked as green
rectangles on the output image.

Jellyfish is a more complex segmentation algorithm to de-
tect large jellyfish shoals on coastlines using aerial high res-
olution images (Barrado et al., 2014). For each image, an
initial phase is used to intensify the pixel differences. This
is done by running first a decorrelation stretch for adjust-
ing pixel intensity values; and second, a contrast stretch-
ing transformation. Then, color segmentation is applied in
order to find the regions of interest of the captured image.
Grouping is done by applying first an opening morpholog-
ical process and afterwards by using connected component
labeling. The program computes the different properties of
the groups, such as the area, number of pixels and bounding
box. Bounding boxes are also marked on the output image.

Georef determines the geographic coordinates of a given
pixel using direct georeferencing as described in (Salami et
al., 2013). The input data is the position and attitude of the
aerial platform at the acquisition time, the external and in-
ternal parameters of the camera, and the terrain elevation.
Note that this algorithm performs floating point computa-
tion, rather than image processing tasks.

Geotiff writes the georeferenced TIFF image. The algo-
rithm first compensates the camera lens distortion, and then
rectifies the image using the geolocation of the four cor-
ners to compute the homography. Finally, a TIFF file with
georeferencing information is written using the geotiff li-
brary (GeoTIFF WWW Homepage, n.d.). The input data
are the image, the position and attitude of the aerial plat-
form at the shot time, the external and internal parameters
of the camera, and the terrain elevation.

Fusion creates a new image overlapping thermal informa-
tion over the visual image. Both, thermal and visual images
are first rectified and properly scaled. Georeferencing infor-
mation is then used to compute the position of the thermal
image over the visual one. Weighted addition is performed
in the overlapping area. Finally, the resulting georeferenced
TIFF image is written. Input data include the images, the
position and attitude of the aerial platform, the external and
internal parameters of both cameras, and the terrain eleva-
tion.

Mosaic composes a panorama using georeferencing. The
images are added to the resulting mosaic one by one. Each
new image is rectified and scaled. Georeferencing informa-
tion is then used to compute the position of the image in the
mosaic. A weighted addition is performed in the overlap-
ping area. Finally, the resulting georeferenced TIFF image
is written. As in previous algorithms, input data include the
position and attitude of the aerial platform for each shot, the
external and internal parameters of the camera, and the ter-
rain elevation.

Stitch composes a panorama using the stitching algorithm
in OpenCYV, which is based on the method proposed by M.
Brown and D. Lowe (Brown and Lowe, 2007). It uses in-
variant local features to find matches between all of the im-
ages. Note that the objective is not to compose the panorama
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of the entire overflown area, but the stitching of small patches
of visual or thermal images, such as the images where a
hotspot is visible.

e Quality measures the quality of an image based on blur and
entropy metrics. A blurred image is one whose edges and
shapes are not clearly defined. The blur metric computes a
sharpness grade based on the number of edge pixels detected
by the Canny function. The image is first blurred to reduce
the amount of noise present in the image, eliminating many
spurious edges. The entropy of the image is used to detect
over or underexposure. If the average image brightness is
too high or too low, it becomes a homogeneous image (low
entropy). The normalized HSV histogram is used to obtain
the probability density function of the colors in the image.

3.2 Parallelization

Different approaches exist for transforming a sequential program
to run in a highly parallel mode. The basic requirements for an
algorithm to run in parallel are the Bernstein’s conditions (Bern-
stein, 1966), the first and most critical of these conditions is that 2
programs cannot run in parallel, if the input variables of one pro-
gram depend on the output variables of the other program. When
considering a complex algorithm, like the stitching method, there
exists a critical path of tasks that need to be finished for the al-
gorithm to continue. The fraction of the code that cannot be
parallelized will limit the potential speed-up of the paralleliza-
tion (Amdahl, 1967).

Another important aspect to consider when applying paralleliza-
tion is granularity. Granularity refers to the size of the parti-
tioned tasks. Fine granularity means the algorithm is separated
into small tasks, while coarse granularity represents the oppo-
site. There is a design trade-off when deciding this factor: coarse
granularity increases work imbalance, since individual tasks take
longer to compute it can happen that some cores are kept waiting.
Fine granularity solves this problem by reducing the time of in-
dividual tasks, but introduces an overhead in creating threads and
communicating between them.

In this initial evaluation we have not spent additional efforts to
exploit the parallelism of the applications. We have only taken
advantage of the possibilities that OpenCV offered us. OpenCV
implements different parallelization frameworks. We choose In-
tel TBB (Reinders, 2007), since it was recommended by the hard-
ware manufacturer. TBB is a framework that implements dy-
namic parallelization, this means that the work is balanced dur-
ing execution time instead of being fixed in the code. This re-
duces work imbalance, since idle cores can steal tasks from other
threads. For the chosen architecture, this is beneficial, since man-
ually balancing the load between 36 cores is complicated. How-
ever, the overhead introduced by TBB grows with the number of
cores (Contreras and Martonosi, 2008).

For the analysis of the performance, it is important to consider
how the OpenCV libraries implement TBB. When a program
calls an OpenCV function, TBB is not immediately used, the
function will run in a sequential manner. At some point, if the
function needs to perform a CPU intensive computation, the func-
tion cv: :parallel_for is called, which then initializes TBB to
start distributing the workload. As discussed before, this intro-
duces a limitation in the performance increase of the paralleliza-
tion.

As a case of use, we analyze the code of the stitching algorithm
to see which portions actually use the TBB framework. Table 1

identifies the different processing kernels and shows the time nec-
essary to compute each step on a single thread, averaged over 100
samples. Last column specifies which parts of the algorithm re-
ally made use of TBB parallelization. The test was made with
sets of 4 images on an Intel cpu.

Code section Time (s) Time (%) | TBB
Finding features 11.304323 58.78% Yes
Pairwise Matching 3.757168 19.53% Yes
Estimating Rotations 0.000088 0.00% No
Warping Images 0.031560 0.16% No
Exposure Compensation | 0.048385 0.25% No
Finding Seams 0.255811 1.33% No
Compositing 3.831968 19.92% Yes

Table 1: Coverage of the different stitching algorithm sections

We can see that not all the steps in the pipeline use TBB, but
the most significant do. Finding features, Pairwise Matching and
Compositing account for a 98.25% of the total computing time in
this example. However, the TBB only comes active in the CPU
intensive parts of this steps and a portion of this steps still execute
concurrently. In ideal conditions, according to Ahmdal’s Law,
the maximum possible increase in performance in this situation
is about 57X.

3.3 Performance evaluation

This section presents preliminary results on the use of TILE-
Gx36 for parallelizing the data processing algorithms. Table 2
shows the execution time of the algorithms when only one core
of TILE-Gx36 is used. Each algorithm was run over one hundred
images, with resolutions of 320x240 pixels for thermal images,
5 MP for high resolution images, and 16 MP for very high resolu-
tion ones. Sets of eight images were used to compose panoramas
in Mosaic and Stitch. For each algorithm, the average execu-
tion time per image and standard deviation in seconds is given.
Note that, for Mosaic and Stitch, the total time to compose the
panorama is eight times the value given in the table.

Input image Execution time
Algorithm resolution Average | Std. dev.
Hotspots 0.08 MP 0.026 s 0.002 s
Jellyfish 16 MP | 116.761 s 1.655 s
Georef 5 MP 0.002 s 0.000 s
Geotiff 5MP 7.035s 980 s
Fusion 5 MP, 0.08 MP 11.771 s 1.725 s
Mosaic 8x5 MP 8.966 s 2473 s
Stitch 8x5SMP | 105.777s | 106.123 s
Quality 5 MP 2.104 s 0.009 s

Table 2: Input data sets resolution and sequential execution time
per image in TILE-Gx36

The graphical representation in Figure 4 highlights the great dif-
ference in execution times (note that the time axis is in logarith-
mic scale). Hotspots and Georef are the only ones that exhibit low
enough execution times to be used in real-time at the selected ac-
quisition frequency. The total execution time of Quality could be
reduced by analyzing only a limited zone in the image. Jellyfish
and Stitch are the most time consuming benchmarks, but they are
the most complex too. Mosaic is about twelve times faster than
Stitch. The quality of Mosaic composition is lower (see Figure 5),
but may be sufficient for many applications. The main drawback
of the Stitch algorithm, apart from the time cost, is its high vari-
ability (from 12 seconds to 300 seconds for different data input
sets).
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Figure 4: Algorithms sequential execution time in TILE-Gx36
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Figure 5: Stitch and mosaic compositions

Figure 6 shows the performance speed-up when the number of
threads is increased to 2, 4, and 8 with respect to the sequen-
tial execution with one thread. The maximum improvement is
achieved by Geotiff algorithm, with a speed-up of 2.3X for the
8-threads execution, followed by Fusion and Mosaic, with speed-
ups of 1.9X and 1.7X respectively. All three algorithms use the
OpenCV warpPerspective function, which is parallelized with the
TBB library. No improvement is observed for Jellyfish, despite
working on very high resolution images. This is because it does
not make use of TBB optimized functions. Additional hand effort
is required if we want to exploit parallel execution. The Stitch al-
gorithm exhibits a highly variable execution time, with individual
8-threads runs with speed-ups ranging from 0.91X to 4.51X. Fur-
thermore, a significant drop in performance when executing with
4 threads can be observed.
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Figure 6: Algorithm performance speed-up in TILE-Gx36

Another approach is presented in Figure 7. This plot shows the
performance speed-up when the number of threads is increased
to 2, 4, and 8, but the parallelization approach is now at the appli-
cation level. We obtain almost perfect speed-ups when we assign
a different image to each core, in the figure shown for the Jel-
lyfish detection algorithm. The same will happen for different

applications running in separate cores.

o
2
3 4 — 1 image
I m— 2 images
0 4 images

2 - 8 images

0

1 2 4 8
Threads

Figure 7: Speed-up in the TILE-Gx36 for application-level par-
allelism

From the above results, it can be concluded that coarser grain
parallelism, such as application level, is better exploited in this
parallel board than the fine grain parallelism, such as OpenCV
TBB multi-threading. The Fusion algorithm, for example, takes
about 12 seconds to process one image in one core; but if a new
request for Fusion arrives before the previous one is over, it can
be started in a different core. Assuming that the 36 cores of TILE-
Gx36 were fully dedicated to Fusion, this means that one request
can be attended every 0.33 seconds. For the Jellyfish algorithm,
sequential execution time is one order of magnitude higher, but
still with application level parallelization over 36 cores, we are
able to process one new image every 3.33 seconds.

4. VIRTUALIZATION

This section presents the virtualizing super-computing approach.
As an example, the strategy for on-board super-computing is de-
scribed for the hotspots and jellyfish missions.

4.1 Software Architecture

The software architecture of our UAS follows the distributed ar-
chitecture paradigm. Each functionality is isolated in a software
agent or service which executes independently over a communi-
cation bus or middleware. Figure 8 shows a generalist view of
the approach. The most important services are the Mission Man-
ager, the Flight Plan Manager and the Payload Processing. The
Mission Manager is responsible for the interaction between the
flight route and the payload. The Flight Plan Manager feeds the
UAS autopilot with the sequence of waypoints required to flight
the area of interest with the adequate parameters of speed, alti-
tude and surveillance pattern. The Payload processing manages
the on-board cameras and drives the image storage.

To manage the virtualizing super-computing we have defined a
new software agent connected with the Payload processing. Us-
ing a configuration file with the algorithm benchmarking data,
the service dispatches the images to the most efficient compu-
tation system. Availability of the hardware, power consumption
and real-time requirements are also considered before dispatch-
ing an image processing algorithm. For the results presented
in this paper we have configured the TILE-Gx36 as the virtual
super-computing board, while the iT7500 board is in charge of
executing the rest of software services of the UAS.
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Figure 8: Virtualizing super-computing architecture

4.2 Super-computing strategy

Section 3 showed that not all algorithms scale properly. While
three of the algorithms have some scalability properties (Geo-
tiff, Fusion, and Mosaic), other ones exhibit a sequential behav-
ior (like Jellyfish). Having a number of 36 cores of TILE-Gx36
available and with a low penalty in power for each additional core
in use, the question is which is the best parallelization strategy.
We base our choice on the results given by an M/M/C model of
queuing (Gautam, 2012).

We have a system of queues on which images act as incoming
clients who need a service. The services are provided by the ex-
ecution of the algorithms in the processing cores. The queuing
theory allows us to obtain information about the level of service
of such system. Output values of interest are the average time
in the system (W), average waiting time (W), average clients
in the system (L), average customers in queue (L), and server
utilization (p).

Let’s focus on Fusion, although the following arguments apply
to any of them. Suppose the frequency of arrival of the images
is a Markov entry process with arrival rate (\) equal to 1 image
per second. The service rate (u) is also a Markov process defined
by the execution time of the algorithm, that is the inverse of the
number of seconds of the execution. The scheduling policy is
first-in first-out. Finally the number of cores is set to 32. We
applied the following M/M/C queuing models:

e Sequential: arrival rate A = 1 Hz,servicerate p = 1/11.8s =
0,085 Hz, C' = 32 servers (cores).

e Parallel 2T: arrival rate A = 1 Hz, servicerate p = 1/8.1s =
0.123 Hz, C' = 32/2 = 16 servers of 2 cores.

e Parallel 4T: arrival rate A = 1 Hz, servicerate u = 1/6.6s =
0.152 Hz, C' = 32/4 = 8 servers of 4 cores.

e Parallel 8T: arrival rate A = 1 Hz, servicerate u = 1/6.2s =
0.161 Hz, C' = 32/8 = 4 servers of 8 cores.

Table 3 shows the obtained values for the four models. First con-
clusion is that the parallel version with § threads is not an option,
as the queues will tend to infinity. In general, this happens when
A is greater or equal than C' times p. Second, the best option
in terms of execution time is clearly the parallel with 2 threads,
with an average time in the system of 8.11 seconds. Power con-
sumption increase compared to the sequential model is minimal.
Furthermore, the average number of customers in queue (0.01)
indicates that small sized buffering structures are required. The
parallel with 4 threads is worse in terms of both time and power.
Based on the results, the virtualizing agent would dispatch the 2
threads release.

Model L L, w Wy P
Sequential | 11.80 | 0.00 | 11.80 | 0.00 | 0.369
Parallel 2T | 8.11 0.01 8.11 0.01 | 0.506
Parallel 4T | 9.02 | 2.42 | 9.02 | 242 | 0.825
Parallel 8T 00 00 00 o) 00

Table 3: Parallelization strategies of Fusion with 32 cores
4.3 The hotspots mission

As a case of use, we describe the parallelization strategy for the
hotspots mission. The UAV scans an area taking thermal and vi-
sual images. Low-quality visual images are discarded. Thermal
images are processed on-board in real-time. If a hotspot is de-
tected, a notification including the geographical position and a
estimation of the magnitude of the hot spot is sent to the ground
segment. If the corresponding visual image is available, the fu-
sion of the thermal and visual images is also sent. Four of the
evaluated algorithms are involved in the process: Hotspots, Geo-
ref, Quality, and Fusion. From now, we will suppose that georef-
erencing is integrated into Hotspots.

Assuming a realistic frequency of one pair of photos every sec-
ond, Hotspots execution time (28 ms including georeferencing)
is low enough to run in one dedicated core maintaining the input
rate. Quality, however, needs at least three cores to be able to
process visual images as they arrive, as it takes 2.1 seconds per
image. There are still 32 cores available for Fusion. According to
Table 3, the 2 threads parallel execution appears as the candidate
of choice for Fusion.

4.4 The jellyfish mission

The jellyfish mission focuses on the detection of jellyfish shoals
close to the shoreline. The primarily objective is to be able to
daily inform the coast guards and the citizens about the proxim-
ity of jellyfish shoals. It also allows to obtain relevant statistics
about the jellyfish proliferation and their movements. Unlike the
hotspots mission, there is a unique algorithm considerably slower
(117 seconds), and with none intrinsic parallelism. The question
here is whether there is a feasible input rate (A) at which the sys-
tem is not saturated. As stated previously, the queues will tend
to infinity when A is greater or equal than C' times p. Thus, the
upper limit for A is

A< C x pu=36x117"" = 0.308 images/s

Applying the queuing theory for arrival rates under the computed
value, the results on Table 4 are obtained. Obviously, as the ar-
rival rate is close to the limit, it produces too high values for the
queue occupancy and service time. However, arrival rates of one
image every 4 or 5 seconds leads to an appropriate behavior of
the service.

) L L, W W, )
030 | 67.46 | 32.36 | 224.87 | 107.87 | 0.975
025 [ 29.96 | 071 | 119.84 | 2.84 | 0.813
020 | 2342 | 0.02 | 117.10 | 0.10 | 0.650

Table 4: Jellyfish M/M/C model with 36 cores for different image
frequencies

We believe this is an acceptable rate for this particular mission.
Note that the mission has no special constraint on image overlap-
ping. Furthermore, flight speed and altitude, together with photo
shot frequency can be dynamically adjusted by the mission man-
ager depending on the results of the detection.

This contribution has been peer-reviewed.

doi:10.5194/isprsarchives-XL-7-W3-1291-2015

1297



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 2015
36th International Symposium on Remote Sensing of Environment, 11-15 May 2015, Berlin, Germany

5. CONCLUSIONS

In this paper we have evaluated four processing boards used sep-
arately in some of our UAS experiments. The size and weight
characteristics of any electronics to board, but also the power con-
sumption and computing performance are crucial characteristics
to consider. With the obtained performance figures we decided to
design a payload bay in which our distributed software architec-
ture can execute. The faster processor iT7500 was devoted to the
mission and flight management services, while the TILE-Gx36
multi-core was specifically dedicated to execute the payload al-
gorithms.

Eight image processing algorithms were tested as payload algo-
rithms for target detection, selection, georeferencing and creation
of panoramas. All eight algorithms use the OpenCV libraries
compiled for parallel execution. Results showed that, in general,
the obtained parallelism was very limited. Five out of eight al-
gorithm showed almost no speed-up. The other three algorithms
(geotiff, fusion and mosaic) obtained some performance when de-
voting 2, 4 or 8§ cores, but only in one case we obtain an speed-up
greater than 2. This results do not mean that better parallelization
is not possible, they just demonstrate that the task to speed-up
an application is not an easy task. Parallelization requires a deep
knowledge of the code and of the hardware architecture in which
it will run. Moreover, it requires development time. Only if the
algorithm will execute many times, over the same hardware, the
parallelization time is worthwhile.

The parallelization strategy we present in this paper is suitable
for dynamic missions, with alternative algorithms being selected
at flight time. Using queue theory we develop a super-computing
strategy where fine- and coarse-grain parallelism can coexist in
benefit of the final user-oriented necessities. At the price of larger
individual latencies, we obtain a system able to attend an incom-
ing set of arrival images without collapsing the application. Key
parameters are arrival frequency, processing times and number of
resources. Understanding the processing time and the maximum
number of available resources, a simple arithmetic operation can
derive the best option for parallelization. The virtualizing super-
computing service is the new agent of the UAS software architec-
ture devoted to this task.

In future work we will introduce more alternatives for hardware
selection. New boards shall be evaluated such as the 64-core
Epiphany-1V, or the small, low cost and low power Raspberry
Pi. New payload bay designs, with several co-processor boards
on-board, shall result from this evaluation. Also, the virtualiz-
ing super-computing service must be developed to increase the
focus on power consumption as metrics for the selection of the
best strategy for the payload processing. This will also include
real-time restrictions, which could be also incorporated into the
service. In parallel to this, efforts to improve the fine-grain paral-
lelism will progress, together with the incorporation into our cat-
alog new payload processing algorithms required in future UAS
applications.
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