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Univesitat Politècnica de Catalunya
Jordi Girona, 1-3, 08034 Barcelona, Spain

{emartinez,cristinae}@cs.upc.edu

Lluı́s Màrquez
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Abstract

In this paper we apply distributional se-
mantic information to document-level ma-
chine translation. We train monolingual
and bilingual word vector models on large
corpora and we evaluate them first in a
cross-lingual lexical substitution task and
then on the final translation task. For trans-
lation, we incorporate the semantic infor-
mation in a statistical document-level de-
coder (Docent), by enforcing translation
choices that are semantically similar to
the context. As expected, the bilingual
word vector models are more appropriate
for the purpose of translation. The fi-
nal document-level translator incorporat-
ing the semantic model outperforms the
basic Docent (without semantics) and also
performs slightly over a standard sentence-
level SMT system in terms of ULC (the av-
erage of a set of standard automatic eval-
uation metrics for MT). Finally, we also
present some manual analysis of the trans-
lations of some concrete documents.

1 Introduction

Document-level information is usually lost during
the translation process when using Statistical Ma-
chine Translation (SMT) sentence-based systems
(Hardmeier, 2014; Webber, 2014). Cross-sentence
dependencies are totally ignored, as they trans-
late sentence by sentence without taking into ac-
count any document context when choosing the
best translation. Some simple phenomena like
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coreferent pronouns outside a sentence cannot be
properly translated in this way, which is already
important because the correct translation of pro-
nouns in a document confers a high level of coher-
ence to the final translation. Also, discourse con-
nectives are valuable because they mark the flow
of the discourse in a text. It is desirable to transfer
them to the output translation in order to maintain
the characteristics of the discourse. The evolution
of the topic through a text is also an important fea-
ture to preserve.

All these aspects can be used to improve the
translation quality by trying to assure coherence
throughout a document. Several recent works go
on that direction. Some of them present post-
processing approaches making changes into a first
translation according to document-level informa-
tion (Martı́nez-Garcia et al., 2014a; Xiao et al.,
2011). Others introduce the information within the
decoder, by, for instance, implementing a topic-
based cache approach (Gong et al., 2011; Xiong et
al., 2015). The decoding methodology itself can be
changed. This is the case of a document-oriented
decoder, Docent (Hardmeier et al., 2013), which
implements a search in the space of translations
of a whole document. This framework allows us
to consider features that apply at document level.
One of the main goals of this paper is to take ad-
vantage of this capability to include semantic in-
formation at decoding time.

We present here the usage of a semantic repre-
sentation based on word embeddings as a language
model within a document-oriented decoder. To do
this, we trained a word vector model (WVM) us-
ing neural networks. As a first approach, a mono-
lingual model is used in analogy with the standard
monolingual language models based on n-grams
of words instead of vectors. However, to better
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approach translation, bilingual models are built.
These models are avaluated in isolation outside
the decoder by means of a cross-lingual evaluation
task that resembles a translation environment. Fi-
nally, we use these models in a translation task and
we observe how the semantic information enclosed
in them help to improve translation quality.

The paper is organized as follows. A brief re-
vision of the related work is done in Section 2.
In Section 3, we describe our approach of using a
bilingual word vector model as a language model.
The model is compared to monolingual models
and evaluated. We show and discuss the results of
our experiments on the full translation task in Sec-
tion 5. Finally, we draw the conclusions and define
several lines of future work in Section 6.

2 Related Work

In the last years, approaches to document-level
translation have started to emerge. The earliest
ones deal with pronominal anaphora within an
SMT system (Hardmeier and Federico, 2010; Na-
gard and Koehn, 2010). These authors develop
models that, with the help of coreference resolu-
tion methods, identify links among words in a text
and use them for a better translation of pronouns.
More recent approaches focus on topic cohesion.
(Gong et al., 2011) tackle the problem by mak-
ing available to the decoder the previous transla-
tions at decoding time using a cache system. In
this way, one can bias the system towards the lexi-
con already used. (Xiong et al., 2015) also present
a topic-based coherence improvement for an SMT
system by trying to preserve the continuity of sen-
tence topics in the translation. To do that, they ex-
tract a coherence chain from the source document
and, taking this coherence chain as a reference,
they predict the target coherence chain by adapt-
ing a maximum entropy classifier. Document-level
translation can also be seen as the post-process of
an already translated document. In (Xiao et al.,
2011; Martı́nez-Garcia et al., 2014a), they study
the translation consistency of a document and re-
translate source words that have been translated in
different ways within a same document. The aim is
to incorporate document contexts into an existing
SMT system following 3 steps. First, they iden-
tify the ambiguous words; then, they obtain a set
of consistent translations for each word according
to the distribution of the word over the target docu-
ment; and finally, generate the new translation tak-

ing into account the results of the first two steps.

These approaches report improvements in the fi-
nal translations but, in most of them. the improve-
ments can only be seen through a detailed manual
evaluation. When using automatic evaluation met-
rics like BLEU (Papineni et al., 2002), differences
are not significant.

A document-oriented SMT decoder is presented
in (Hardmeier et al., 2012; Hardmeier et al., 2013).
The decoder is built on top of an open-source
phrase-based SMT decoder, Moses (Koehn et al.,
2007). The authors present a stochastic local
search decoding method for phrase-based SMT
systems which allows decoding complete docu-
ments. Docent starts from an initial state (trans-
lation) given by Moses and this one is modified by
the application of a hill climbing strategy to find a
(local) maximum of the score function. The score
function and some defined change operations are
the ones encoding the document-level information.
One remarkable characteristic of this decoder, be-
sides the change of perspective in the implementa-
tion from sentence-level to document-level, is that
it allows the usage of a WVM as a Semantic Space
Language Model (SSLM). In this case, the decoder
uses the information of the word vector model to
evaluate the adequacy of a word inside a transla-
tion by calculating the distance among the current
word and its context.

In the last years, several distributed word repre-
sentation models have been introduced. Further-
more, distributed models have been successfully
applied to several different NLP tasks. These mod-
els are able to capture and combine the semantic
information of the text. An efficient implemen-
tation of the Context Bag of Words (CBOW) and
the Skipgram algorithms is presented in (Mikolov
et al., 2013a; Mikolov et al., 2013c; Mikolov et
al., 2013d). Within this implementation WVMs
are trained using a neural network. These models
proved to be robust and powerful to predict seman-
tic relations between words even across languages.
They are implemented inside the word2vec soft-
ware package. However, they are not able to han-
dle lexical ambiguity as they conflate word senses
of polysemous words into one common represen-
tation. This limitation is already discussed in
(Mikolov et al., 2013b) and in (Wolf et al., 2014),
in which bilingual extensions of the word2vec ar-
chitecture are also proposed. These bilingual ex-
tensions of the models consist of a combination
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of two monolingual models. They combine the
source vector model and the target vector model
by training a new neural network. This network is
able to learn the projection matrix that combines
the information of both languages. A new bilin-
gual approach is presented in (Martı́nez-Garcia et
al., 2014b). Also, the resulting models are evalu-
ated in a cross-lingual lexical substitution task as
well as measuring their accuracy when capturing
words semantic relationships.

Recently, Neural Machine Translation (NMT)
has appeared as a powerful alternative to other MT
techniques. Its success lies on the excellent results
that deep neural networks have achieved in natural
language tasks as well as in other areas. In short,
NMT systems are build over a trained neural net-
work that is able to output a translation given a
source text in the input (Sutskever et al., 2014b;
Sutskever et al., 2013; Bahdanau et al., 2014; Cho
et al., 2014). However, these systems report some
problems when translating unknown or rare words.
We are aware of only few works that try to address
this problem (Sutskever et al., 2014a; Jean et al.,
2014).

Furthermore, there are some works that try to
use vector models trained using recurrent neural
networks (RNN) to improve decoder outputs. For
instance, in (Sundermeyer et al., 2014) they build
two kinds of models at word level, one based on
word alignments and other one phrase-based. The
authors train RNNs to obtain their models and
they use them to rerank n-best lists after decod-
ing. They report improvements in BLEU and TER
scores in several language pairs, but they are not
worried about context issues of a document al-
though they do take into account both sides of the
translation: source and target. In (Devlin et al.,
2014) they also present joint models that augment
the NNLM with a source context window to intro-
duce a new decoding feature. They finally present
improvements in BLEU score for Arabic-English
language pair and show a new technique to intro-
duce this kind of models inside MT systems in
a computationally efficient way. These two last
works prove the power of applying NN models as
features inside MT systems.

3 Training monolingual and bilingual
semantic models

As we explained before, there are several works
that use monolingual WVM as language models,

or the composition of monoligual models to build
bilingual ones. This section shows a methodology
to build directly bilingual models.

3.1 Bilingual word vector models

For our experiments we use the two algorithms im-
plemented in the word2vec package, Skipgram and
CBOW.

The Skipgram model trains a NN to predict the
context of a given word. On the other hand, the
CBOW algorithm uses a NN to predict a word
given a set of its surrounding words, where the or-
der of the words in the history does not inuence the
projection.

In order to introduce semantic information in a
bilingual scenario, we use a parallel corpus and au-
tomatic word alignment to extract a new training
corpus of word pairs: (wi,T |wi,S). For instance, if
the words house and casa are aligned in a docu-
ment, we consider the new form casa|house.

This approach is different from (Wolf et al.,
2014) who build an independent model for each
language. With our method, we try to capture si-
multaneously the semantic information associated
to the source word and the information in the tar-
get side of the translation. In this way, we hope to
better capture the semantic information that is im-
plicitly given by translating a text. To better char-
acterize ambiguous words for MT, for instance, we
expect to be able to distinguish among the different
meanings that the word desk can have when trans-
lated in Spanish: desk|mesa vs. desk|mostrador vs.

desk|escritorio.

3.2 Settings

The training set for our models is built from par-
allel corpora in the English-Spanish language pair
available in Opus 1 (Tiedemann, 2012; Tiedemann,
2009). These corpora have been automatically
aligned and therefore contain the aligment infor-
mation necessary to build our bilingual models.
We chose the one-to-one alignments to avoid noise
and duplicities in the final data. Table 1 shows
the size of the specific data used: EuropalV7,
United Nations, Multilingual United Nations, and
Subtitles-2012. Monolingual models are also build
with these corpora and therefore are comparable in
size. With this corpus, the final training set has 584
million words for English and 759 for Spanish.

1http://opus.lingfil.uu.se/
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Corpus Documents Sentences English Tokens Spanish Tokens
Training Europarl-v7 – 1,965,734 49,093,806 51,575,748

UN – 61,123 5,970,000 6,580,000
Multi UN 73,047 9,275,905 554,860,000 621,020,000

Subtitles-2012 46,884 24,929,151 306,600,000 498,190,000
Development NC-2009 136 2,525 65,595 68,089
Test NC-2011 110 3,003 65,829 69,889

Table 1: Figures on the corpora used for training, development and test.

For training the models, we set to 600 the di-
mensionality of our vectors and we used a con-
text window of 5 during the training (2 words be-
fore and 2 words after). Previous work (Martı́nez-
Garcia et al., 2014b) and related experiments
showed the adequacy of these parameters.

4 Cross-Lingual Lexical Subsitution Task

We evaluate the generated models described in
Section 3 in a cross-lingual lexical substitution ex-
ercise. In order to do this, first, the content words
of the test set which are translated in more than one
different way by a baseline translation system are
identified (see Section 5 for the description of the
baseline system). We call these words ambiguous.
The task consists in choosing the adequate transla-
tion from the set of ambiguous words. In our case,
the correct choice is given by the reference trans-
lation of the test set.

To give an example, the word desk appears many
times in a newswire document about a massive
complaining for exaggerated rents. This word has
here the meaning of a service counter or table in
a public building, such as a hotel2. The correct
translation to that meaning in Spanish would be the
word mostrador or ventanilla. But, we can see that
in the output of a SMT system, besides the correct
translations, desk can appear translated as mesa or
even as escritorio in the same document. If the
reference translation contains mostrador, only this
word will be considered correct in the evaluation.

Once we have identified the words that we want
to translate with the vector models, we get their
context target words and their aligned source word
and look for vector associated to the sw|tw form
in our bilingual model. Then, we build a context
vector as the sum of the vectors of the surrounding
target words and use it to choose among the set
of translation options (all the options seen within

2Definition taken from Collins Concise English Dictionary.

Model Top 1 Top 5
mono CBOW 47.71% 65.44%
mono Skipgram 47.71% 59.19%
bi CBOW 62.39% 85.49%
bi Skipgram 62.39% 78.36%

Table 2: Evaluation of the word2vec vector mod-
els. Top 1 and Top 5 accuracies of the monolingual
(mono rows) in Spanish and the bilingual (bi rows)
English–Spanish models trained using CBOW or
Skipgram.

the document). We choose the best translation as
the one that has associated the vector which is the
closest to the context vector.

4.1 Results

This task is evaluated on the NewsCommentaries-
2011 test set. Table 2 shows the results of the eval-
uation of our bilingual (bi) model in comparison to
a monolingual (mono) model trained in Spanish.
The accuracies show the performance of our mod-
els on the ambiguous words. For this test set, we
find 8.12% of ambiguous words and, in average,
3.26 options per ambiguous word. We skip some
adverbials, common verbs, the prepositions and
conjunctions as ambiguous words to avoid noise in
the results. In average, the monolingual model has
a coverage of 90.97% and the bilingual 87.53% for
this test set. Regarding to the ambiguous words,
83.97% of them are known for the bilingual model
and a 87.37% for the monolingual.

The two word2vec algorithms have the same
performance for this task when they suggest only
the best option, an accuracy of 47.71% for the
monolingual model and 62.39% for the bilingual
one. So, bilingual models are encoding signifi-
cantly more semantic information than monolin-
gual models. It has to be said that here the most
frequent translation option achieves a 59.76% of
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accuracy. So, it is only with bilingual models that
we beat the frequentist approach.

Accuracies are significantly improved when
more options are taken into account. When look-
ing at the accuracy at Top 5, CBOW achieves
65.44% in the monolingual task and 85.49% in the
bilingual one, whereas the Skipgram models have
6 less points in the monolingual case and 13 in the
bilingual one. These results indicate that CBOW
bilingual models are capturing better the seman-
tics and that considering more than one option can
be important in the full translation task.

5 Vector Models for Document-level
Translation

We evaluate in this section the use of the word
vector models described in Section 3 as language
models within a document-level MT system.

5.1 Vector models as Semantic Space
Language Models in Docent

The Docent decoder allows us to use a dense word
vector model as a semantic language model. This
language model implementation tries to reward the
word choices that are closer to their context.
In a similar way to the evaluation task explained
in Section 3, these models calculate a score for
every word in a document translation candidate.
This score is calculated as the cosine similarity be-
tween the vector representation of the word and
the sum of the vectors of the previous 30 words.
This parameter makes possible that the context
crosses sentence boundaries. The score produced
by the semantic space language model is h(w|h) =
αpcos(w|h) if w is a known word, and h(w|h) = ε
if w is an unknown word, where α is the propor-
tion of content words in the training corpus and ε
is a small fixed probability, as described in (Hard-
meier, 2014).

The assumption is the same here as before, the
better the choice, the closer the context vector will
be to the vector representation of the evaluated
word. The final score for a document translation
candidate is an average of the scores of its words.

5.2 Experimental Settings

Our SMT baseline system is based on Moses. The
translation system has been trained with the Eu-
roparl corpus in its version 7 for the Spanish–
English language pair. We used the GIZA++
software (Och and Ney, 2003) to do the word

alignments. The language model is an interpola-
tion of several 5-gram language models obtained
using SRILM (Stolcke, 2002) with interpolated
Kneser-Ney discounting on the target side of the
Europarl corpus v7; United Nations; NewsCom-
mentary 2007, 2008, 2009 and 2010; AFP, APW
and Xinhua corpora as given by (Specia et al.,
2013)3 The optimization of the weights is done
with MERT (Och, 2003) against the BLEU mea-
sure on the NewsCommentary corpus of 2009. As
in the previous section, our experiments are carried
out over the NewsCommentary-2011 test set. We
chose the newswire documents as test set because
typically they are documents with high consistency
and coherence.

Regarding the document-level decoder, we use
Docent. The first step in the Docent translation
process is the output of our Moses baseline system.
We set the initial Docent weights to be the same as
the ones obtained with MERT for the Moses base-
line. Finally, the word vector models used in the
experiments of this section are the ones that we de-
scribe and evaluate in Section 3 using the CBOW
algorithm.

5.3 Results

Table 3 shows the automatic evaluation obtained
with the Asiya toolkit (González et al., 2012) for
several lexical metrics (BLEU, NIST, TER, ME-
TEOR and ROUGE), a syntactic metric based on
the overlap of PoS elements (SP-Op), and an av-
erage of a set of 21 lexical and syntactic met-
rics (ULC), including all the previous measures
and many more. The first row shows the results
for the Moses baseline system. The second row
shows the evaluation of the Docent baseline sys-
tem working with the baseline Moses output as
first step. This Docent system uses only the de-
fault features that are equivalent to the ones in the
Moses system but without lexical reordering. The
last two rows show the evaluation of our extensions
for the Docent decoder using both, monolingual
vector models as semantic space language models
(Docent + monoSSM) and the bilingual ones (Do-
cent + biSSM). The results show only slight differ-
ences among the systems. However, these differ-
ences reflect the impact of our word embeddings
in the translation process and are consistent across
metrics. The differences are statistically signifi-

3Resources are available in:
http://statmt.org/wmt13/qualityestimationtask.html

63



system BLEU NIST TER METEOR ROUGE SP-Op ULC
Moses 28.60 7.54 72.17 23.41 30.20 19.99 77.76

Docent 28.33 7.46 72.83 23.22 30.36 19.38 77.14
Docent + monoSSM 28.48 7.52 72.61 23.28 30.33 19.61 77.49
Docent + biSSM 28.58 7.66 72.56 23.31 30.38 19.78 77.89

Table 3: Automatic evaluation of the systems. See text for the system and metrics definition.

newswire Moses Docent Docent+monoSSM Docent+biSSM
news79 47.88 48.10 47.07 48.00
news88 24.18 24.60 24.18 23.26
news104 35.53 35.71 35.58 36.00
news107 19.52 19.57 19.58 19.66
news27 14.45 14.22 14.27 14.83
news68 38.91 38.39 38.58 39.73

Table 4: Evaluation of the different systems using BLEU metric on some individual newswire documents
extracted from the NewsCommentary-2011 test set.

cant at the 90% confidence level, but not at higher
level, between Moses and all Docent systems and,
also, between the Docent baseline and both ex-
tended Docent systems. We observed that by using
boostrap-resampling over BLEU and NIST met-
rics as described in (Koehn, 2004). We observe
that Docent systems have a positive trend in their
performance as long as we introduce models with
more information (from only monolingual to bilin-
gual).

Looking a little bit closer at each system, we ob-
serve that monolingual models do help Docent to
find better document translation candidates. They
are able to improve 0.15 point in BLEU, which
is a lexical metric that is usually not sensible to
document-level changes (Martı́nez-Garcia et al.,
2014a) and also they gain 0.41 points in the syn-
tactic metric. In a similar way, bilingual models
improve a little bit more the performance over the
monolingual models. In particular, they show an
improvement of 0.10 in BLEU with respect to the
monolingual models and 0.25 points with respect
to the Docent baseline system. We observe also a
similar behaviour for the rest of the metrics. For
instance, regarding to the syntactic metric based
on the overlap of PoS elements (SP-Op), bilin-
gual models are able to recover 0.50 points with
respect to the Docent baseline system and 0.15
points respect to the system with the monolingual
models. For the average metric, ULC, the best
system is Docent+biSSM, being 0.13 point over

Moses and 0.75 over Docent. However, in general,
there is first a slight decrease in translation qual-
ity when going from the sentence-based decoder
to the document-based one probably due to the fact
that Docent is not currently supporting lexicalized
reordering.

In summary, we conclude from these results
that the semantic information captured by our vec-
tor models help the document-level translation de-
coder. We also observe that bilingual models cap-
ture valuable information from the aligned data
that came from the first step translation. This be-
haviour is coherent with the previous evaluation of
the models showed in Section 3.

Table 4 shows the BLEU scores for some partic-
ular documents with some interesting cases. These
results reflect the behaviour of our systems. We
found some documents where the Docent systems
cannot improve the Moses translation. For in-
stance, the phrase “House of Bones” appears in
a document about a famous building. Its correct
translation is “Casa de los Huesos”. However,
Moses translates it as “Cámara de huesos” and
Docent systems only suggest a new incorrect op-
tion “Asamblea de huesos”. On the other hand,
we find many examples where word vector mod-
els are helping. For instance, in the example of
desk that we mentioned in Section 3, it is trans-
lated as mostrador, mesa and escritorio by Moses.
Using the Docent baseline, it appears translated as
escritorio and mesa. That shows how Docent is
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controling the coherence level of the translation.
Using the Docent extended with the monolingual
model, it appears as escritorio, mesa and taquilla.
The word vector language model helps the system
to change one translation option for a more cor-
rect one. Finally, using the bilingual vector model,
we observe the word translated as mostrador, mesa
and taquilla, obtaining here 2 good translation in-
stead of only one. This shows how the bilingual
information helps to obtain better translations. We
observe how monolingual vector models improve
the Docent base translation and, at the same time,
how the bilingual information helps to improve the
translation and even obtain better results than the
ones with the Moses baseline.

6 Conclusions

We have presented an evaluation of word vector
models trained with neural networks. We test them
in a document-level machine translation environ-
ment. First, we build monolingual and bilingual
models using the word2vec package implementa-
tions for the CBOW and the Skipgram algorithms.
We test the models to see their capability to select
a good translation option for a word that appears
translated in more than one sense in a first trans-
lation of a document. The results of these evalua-
tions show that the CBOW models perform better
than the Skipgram one in our test set, achieving
at most 85.49% and 78.36% respectively for the
bilingual model for the accuracy at Top 5. Also,
the bilingual model achieves better results than the
monolingual one, with a 65.44% of accuracy for
the best monolingual model trained with CBOW
against the 85.49% for the bilingual model under
the same conditions. These results indicate that
WSM can be useful for translation tasks and it is
left as future work a wider evaluation of the mod-
els considering the variation of all the parameters
(context training window, vectors dimensionality,
size and quality of the training data, etc.) We also
want to use other techniques, like the semisuper-
vised approach described in (Madhyastha et al.,
2014), to build new bilingual models in order to
compare them with the ones that are presented
here.

As a second step of the process, we evaluated
our word vector models inside a machine transla-
tion system. In particular, we chose the Docent de-
coder since it works at document-level and allows
a fast integration of WVMs as semantic space lan-

guage models. This option allows us to asses the
vector models quality in a specific translation envi-
ronment. The carried out experiments showed that
WVMs models can help the decoder to improve
the final translation. Although we only observe a
slight improvement in the results in terms of auto-
matic evaluation metrics, the improvement is con-
sistent among metrics and is larger as we introduce
more semantic information into the system. That
is, we get the best results when using the models
with bilingual information.

Summing up, the evaluation has shown the util-
ity of word vector models for translation-related
tasks. However, the results also indicate that these
systems can be improved. We left as future work
the effect that bilingual WVMs obtained with other
methods can have in the final translation. Also, we
find it interesting to apply these models to a par-
ticular document-level phenomenon such as am-
biguous words. Developing a specific feature for
Docent that scores the adequacy of a translation
option for every ambiguous word in a document
using word vector models can improve the perfor-
mance of such models for translation tasks.
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