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Abstract

Large-eddy simulations (LES) of the flow past a circular cylinder are used to inves-

tigate the flow topology and the vortex shedding process at Reynolds numbers Re =

2.5×105−8.5×105. This range encompasses both the critical and super-critical regimes. As

the flow enters the critical regime, major changes occur which affect the flow configuration.

Asymmetries in the flow are found in the critical regime, whereas the wake recovers its sym-

metry and stabilises in the super-critical regime. Wake characteristic lengths are measured

and compared between the different Reynolds numbers. It is shown that the super-critical

regime is characterised by a plateau in the drag coefficient at about CD ≈ 0.22, and a

quasi-stable wake which has a non-dimensional width of dw/D ≈ 0.4. The periodic nature

of the flow is analysed by means of measurements of the unsteady drag and lift coefficients.

Power spectra of the lift fluctuations are computed. Wake vortex shedding is found to occur

for both regimes investigated, although a jump in frequencies is observed when the flow

enters the super-critical regime. In this regime, non-dimensional vortex-shedding frequency

is almost constant and equal to St = fvsD/Uref ≈ 0.44. The analysis also shows a steep de-

crease in the fluctuating lift when entering the super-critical regime. The combined analysis

of both wake topology and vortex shedding complements the physical picture of a stable

and highly coherent flow in the super-critical regime.
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flow, wake topology

1. Introduction

It is well known that the wake topology in the flow past a circular cylinder remains

almost unchanged up to Reynolds number ∼ 105 (Williamson, 1996). Then, at Re ∼ 2×105

major changes take place entailing flow separation, turbulence transition in the detached

shear layers, reattachment of the flow and turbulent separation of the boundary layer on the

rearward of the cylinder. Furthermore, a dramatic decrease in the drag coefficient occurs

between Reynolds numbers 2×105 and 5×105. In this regime, a laminar separation bubble

(LSB) on one side of the cylinder is formed as a consequence of the detachment and further

reattachment of the boundary layer (Bearman, 1965; Schewe, 1983; Lehmkuhl et al., 2014).

This asymmetry in the flow causes asymmetric forces on the cylinder, the lift coefficient

being greater than zero. The formation of a second LSB on the other side of the cylinder

and the recovery of the symmetry of the flow marks the onset of the super-critical regime. By

entering the super-critical regime, the drag coefficient remains almost constant in the whole

range being about CD ≈ 0.2 (Delany and Sorensen, 1953; Achenbach, 1968; Shih et al.,

1993), whereas high values of the non-dimensional vortex shedding (Strouhal number St =

fvsD/Uref , where fvs is the vortex shedding frequency, Uref is the free-stream velocity and D

the cylinder diameter) have been reported (see for instance Achenbach and Heinecke, 1981;

Schewe, 1983).

Thorough observations and measurements of the wake behind cylinders have been made

mainly for the laminar and sub-critical regimes (e.g. Roshko, 1954; Bloor and Gerrard,

1966; Cantwell and Coles, 1983), but less work has been carried out in the critical and

super-critical regimes, where most of the studies have been focused on measuring loads

on the cylinder surface and vortex shedding (Delany and Sorensen, 1953; Achenbach, 1968;

Shih et al., 1993). Wieselsberger (1922) was one of the first researchers to point out the

narrowing of the wake beyond the critical regime and the shifting of the separation point

towards the rear of the cylinder. Spitzer (1965) performed experiments in the super-critical

regime and measured forces on the cylinder surface. He also carried out measurements of
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the stream-wise velocity and its fluctuations in the wake, giving an idea of the wake width

and its variations in this regime. Roshko (1961), although did not carry out direct measure-

ments of the wake, described the changes occurring, especially those relative to the wake

narrowing.

Regarding the vortex shedding, contrary to the sub-critical regime where consistent mea-

surements of this parameter have been carried out, there is little information in the range of

critical to super-critical Reynolds numbers, the values reported being quite scattered. The

pioneering work of Relf and Simmons (1924) accounts for vortex shedding measurements

in a large range of Reynolds numbers, including the critical and super-critical regimes up

to Re = 106. However, at these high Reynolds numbers their results were scattered and,

even though they measured an increase in the Strouhal number, they concluded that the

flow was aperiodic in this range. Later, Dryden and Heald (1926) also registered a rapid

increase in the frequency with the Reynolds number when the flow is in the critical zone.

Delany and Sorensen (1953) experimented on cylinders of different shapes. Although the

data of vortex shedding frequencies in the circular cylinder were not exhaustive and much

more scattered than for drag coefficient, they reported non- dimensional frequencies around

0.35 and 0.45 in the range of Re = 106 − 2× 106. Roshko (1961), in his experiments in the

high super-critical and trans-critical regimes, for Re < 3.5×106 did not observe any periodic

behaviour whatsoever. Comparing his results with those of Delany and Sorensen (1953), he

attributed the inconsistency in his measurements to the position of the probe used, which

was located at [x, y] ≡ [7.3D, 0.7D] off the wake centreline.

Jones (1968) carried out measurements in the range Re = 3.6 × 105 − 18 × 106 and

distinguished different regimes: a wide-band random regime in the high super-critical regime

at Re = 1.1 × 106 − 3.5 × 106 where no dominant frequency was detected, a narrow-band

random regime in the trans-critical zone at Re = 3.5 × 106 − 6 × 106 and a quasi-periodic

regime at larger Reynolds numbers with characteristic non-dimensional frequency of St =

0.3. Bearman (1969) studied the vortex shedding in the critical and super-critical regimes.

He found that as the fluid enters the critical zone the Strouhal number increases, being

0.32 in the asymmetric zone to rise up to 0.46 in the symmetric super-critical zone. These
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measurements were later confirmed by Achenbach and Heinecke (1981) who also detected

vortex shedding in the super-critical zone with a value a bit larger of St = 0.5, however.

They attributed the differences to the blockage ratio of the wind tunnel which was smaller

in the experiments of Bearman (1969). The measurements of Schewe (1983) demonstrated

that the asymmetries in the flow in the critical regime reported in previous works (e.g

Bearman, 1969) were of a fundamental nature. He did also register vortex shedding in the

whole super-critical zone with a non-dimensional vortex shedding frequency of St = 0.48,

close to those measured by Bearman (1969) and Achenbach and Heinecke (1981). Other

experimental results reported in the literature attempted to measure vortex shedding at these

Reynolds numbers (Van Nunen, 1974; Shih et al., 1993) but did not succeed in capturing

the fundamental frequency in the super-critical regime. It is not clear why there is that

large scattering in the detection and measuring of the wake vortex shedding, but different

authors have reported that substantial changes might appear by the influence of axial or

geometrical perturbations, thus altering the way the wake develops (Fung, 1960; Schmidt,

1965; Achenbach and Heinecke, 1981).

With the rapid development of numerical techniques in the last two decades, the use of

computational fluid dynamics at high Reynolds numbers is becoming feasible and a comple-

ment to experimental studies. In that sense, large eddy simulations (LES) of the flow are

an interesting tool to cope with the complex fluid behaviour at critical Reynolds numbers

and beyond. Breuer (2000) analysed the capabilities of LES for solving the flow past a

cylinder at the near-critical Reynolds number of Re = 1.4 × 105 with rather good results.

Karabelas (2010) did also solve the same Reynolds number but for both the stationary and

rotating cylinders, with good agreement with the experimental results for the non-rotating

one. Other researchers (Catalano et al., 2003; Moussaed et al., 2014) have also shown the

possibilities of LES to capture the drop in the drag in the super-critical regime. In a previous

work (Lehmkuhl et al., 2014), by means of LES computations, the flow in the critical regime

was studied and fundamental traits of the flow in this regime; e.g. measurements of the size

of the laminar separation bubble, drag and lift coefficients, amongst others; were reported.

In the present work, a further insight into the characteristics of the flow in both the
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critical and super-critical regimes is presented by analysing the wake topology and the

variation of different critical parameters such as the vortex formation length, recirculation

length, wake width, amongst others. Furthermore, vortex shedding and fluctuating forces

are studied, giving a more complete picture of the variations the flow experiences when

goes from the critical to the super-critical regime. Results obtained are compared (when

available) to experimental results.

2. Mathematical and numerical model

The spatially filtered incompressible Navier-Stokes equations can be written as,

∂ui

∂xi
= 0 (1)

∂ui

∂t
+

∂uiuj

∂xj

− ν
∂2ui

∂xj∂xj

+ ρ−1 ∂p

∂xi

= −
∂Tij

∂xj

(2)

where xi and t are the spatial position in the i direction and the time, respectively. ui and

p stand for the filtered velocity and pressure. ν is the kinematic viscosity and ρ the density

of the fluid. In equation 2, Tij is the subgrid scale (SGS) stress tensor which has to be

modelled. Its deviatoric part is given by,

Tij −
1

3
Tkkδij = −2νsgsSij (3)

where S ij is the large-scale rate-of-strain tensor, S ij =
1

2
(gij + gji) being gij = ∂ui/∂xj .

δij is the Kronecker delta. The formulation is closed by formulating an appropriate expres-

sion for the subgrid-scale viscosity, νsgs. In this work, the wall-adapting local-eddy viscosity

model (WALE) (Nicoud and Ducros, 1999) is used. The WALE model evaluates the eddy

viscosity as,

νsgs = (Cw∆)2
(Vij : Vij)

3

2

(Sij : Sij)
5

2 + (Vij : Vij)
5

4

(4)
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where, Vij is the deviatoric part of the square of the velocity gradient tensor Vij =

1

2

(

g2ij + g2ji
)

− 1

3
δijg

2
kk, with g2ij = gikgkj, and Cw is the model constant. Here a value of

Cw = 0.325 is used.

The governing equations are discretised on a collocated unstructured grid arrangement

by means of second-order spectrum-consistent schemes (Verstappen and Veldman, 2003).

Such schemes are conservative, i.e. they preserve the symmetry properties of the continuous

differential operators, and ensure both stability and conservation of the kinetic-energy bal-

ance even at high Reynolds numbers and with coarse grids. For the temporal discretisation

of the momentum equation a two-step linear explicit scheme on a fractional-step method

is used for the convective and diffusive terms (Trias and Lehmkuhl, 2011), while for the

pressure gradient term an implicit first-order scheme is implemented. The Poisson system

derived from the incompressibility constraint is solved by means of a FFT-based direct solver

(Borrell et al., 2011). For more details about the numerical method, the user is referred to

Rodŕıguez et al. (2011); Jofre et al. (2014); Trias et al. (2014).

2.1. Definition of the case and boundary conditions

The flow past a circular cylinder at critical and super-critical Reynolds numbers in the

range of Re = UrefD/ν = 2.5×105−8.5×105 is considered. The Reynolds number is defined

in terms of the free-stream velocity Uref and the cylinder diameter D. For all the cases, the

circular cylinder is placed at (x, y, z) ≡ (0, 0, 0), the dimensions of the computational domain

being of x ≡ [−16D, 16D]; y ≡ [−10D, 10D] for the stream- and cross-stream directions,

whereas for the span-wise direction z ≡ [0, 0.5πD] is considered for Reynolds number up

to Re = 6.5 × 105 and z ≡ [0, D] for the higher Reynolds numbers (see table 1). Being

Ly the size of the computational domain in the cross-stream direction, the blockage ratio is

D/Ly = 5%. In Table A.4 in the AppendixA, a compilation of the measurement conditions

for most of the experimental data used for comparison in this work is given. As can be

seen, the blockage ratio used in the present computations is well within the values reported

in the literature. It should be borne in mind that blockage ratio may affect the results as

this magnitude increases. West and Apelt (1981) showed that blockages lower than 6% has
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Table 1: Computational meshes NCVt total number of CVs; NCV plane number of CVs in the

plane; Nplanes number of planes in the span-wise direction; Lz is the size of the span-wise

direction.

Re NCVt [×106] NCV plane Nplanes Lz

2.5× 105 38.4 299683 128 0.5π D

3.8× 105 48.6 379950 128 0.5π D

5.3× 105 64.1 500516 128 0.5π D

6.5× 105 83.2 650432 128 0.5π D

7.2× 105 89.4 698949 128 D

8.5× 105 105.1 820803 128 D

negligible effects on pressure distribution and drag. For larger blockages, the general effect,

at least in the sub-critical range, is to increase the force coefficients as well as the span-wise

correlation (Blackburn, 1994). In general, blockage may affect separation due to changes

on the surface pressure gradients, thus triggering the critical transition at lower Reynolds

numbers. Nonetheless, as pointed out by Blackburn and Melbourne (1996), these effects

would be of less importance in the super-critical regime as the wake width is smaller.

In the present computations the boundary conditions consist of uniform velocity (u, v, w) =

(1, 0, 0) at the inflow, symmetry conditions at the top and bottom boundaries of the domain,

while at the outlet a pressure-based condition is used. At the cylinder surface, no-slip con-

ditions are prescribed. As for the span-wise direction, periodic boundary conditions are

imposed.

2.2. Numerical domain. Mesh resolution studies.

Different unstructured grids from 38 million up to ∼ 105 million control volumes are

used for solving the different cases depending on the Reynolds number (see table 1). It was

shown in Lehmkuhl et al. (2014) that in order to capture the complexities of the physical
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Figure 1: Mesh resolution near the wall for Re = 5.3× 105 and Re = 7.2× 105.

phenomenon in the zone close to the cylinder; i.e. delayed separation, transition to tur-

bulence upon separation, reattachment, and further turbulent separation, amongst others;

the boundary layer should be well-resolved. To that end, control volumes are clustered

towards the cylinder wall and, a prism layer is constructed around the cylinder so as the

non-dimensional wall distance is kept y+ < 2. Being uτ =
√

τw/ρ the friction velocity and

n the wall-normal distance, the non-dimensional wall-normal distance along the cylinder

circumference is evaluated as y+ = uτn/ν. The non-dimensional wall-normal distance for

Re = 5.3× 105 and for Re = 7.2× 105 is plotted in figure 1.

Regarding the span-wise size of the domain, for Reynolds numbers Re ≤ 6.5×105 a length

of Lz = 0.5πD was enough to capture the largest scales of the flow (see Lehmkuhl et al.

(2014) for more details). Notice that this value is lower than those used in experimental

set-ups (see AppendixA). However in experiments, contrary to numerical computations,

the combination of cylinder end conditions and aspect ratio Lz/D are of importance since

structures formed close to the wall may interact with the vortex shedding and trigger the

wake three-dimensionality (this issue will be addressed in more detail in section 3.2). This

is especially true for the flow at critical and super-critical regimes. Thus a relative large
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Figure 2: Location of the numerical probes: P1 ≡ (0.6D, 0.33D) and P2 ≡ (1.3D, 0).

aspect ratio is necessary so as to keep the measurement zone at the cylinder mid-span

unaffected by the end plates and tunnel walls. In fact, in some experimental studies this

issue has been addressed; for instance in the work of Bearman (1969) the variation of the base

pressure along the cylinder span is measured in order to study the influence of the end-wall

boundary layers on the measurements. However, as in the present computations periodic

boundary conditions in the span-wise direction are set, one just must focus on guaranteeing

that the actual span-wise size is enough so as to contain all the relevant structures of the

flow. Thus based on the results of two-point correlations at different positions in the near

wake, the domain was considered large enough (Lehmkuhl et al., 2014). This was also in

agreement with previous experimental observations. Humphreys (1960), by means of indirect

measurements using silk threads, estimated a correlation length between 1.4D and 1.7D for

Reynolds numbers between 105 and 3.5 × 105. In the range of Re = 3.8 × 105 - 7.5 × 105,

Schmidt (1965) found correlation lengths for drag and lift forces of less than 1D. This is also

in agreement with correlation coefficients measured by Spitzer (1965) which were found to

be lower than 1D for Re > 5.3× 105 and about 1D for Re < 5.3× 105.

In the light of these results, for the super-critical Reynolds numbers of Re = 7.2 × 105

and Re = 8.5×105 the span-wise size is set to Lz = D (see table 1). Nonetheless, two-point
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Figure 3: Two-point correlations of the stream-wise, cross-stream and span-wise velocity

fluctuations in the near wake (a,b) at Re = 7.2 × 105 at (x/D, y/D) ≡ (0.6, 0.33) and

(x/D, y/D) ≡ (1.3, 0), respectively; (c,d) at Re = 8.5× 105 at (x/D, y/D) ≡ (0.6, 0.33) and

(x/D, y/D) ≡ (1.3, 0), respectively
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correlations at different locations of the near wake are here evaluated in order to check if this

size is large enough to accommodate all structures. The locations where these correlations

are evaluated are shown in figure 2. These locations are: P1 ≡ (0.6D, 0.33D) in the turbulent

separated shear layer and P2 ≡ (1.3D, 0) in the wake centreline. One-dimensional two-point

correlations of the fluctuating variable φ′ = φ− < φ >,

ℜφφ(x, y, δz) =
〈φ′(x, y, z, t) φ′(x, y, z + δz, t)〉

〈φ′2〉
(5)

are plotted in figure 3. In the above equation, 〈·〉 denotes averaging over time. In

the detached turbulent boundary layer (see figure 3a,c), correlation coefficients drop to

zero much faster than in the wake centreline, where larger structures are observed (figure

3b,d). Nonetheless, correlation values for all three velocity fluctuations fall-off to zero for

separations lower than half of the domain. Thus, a span-wise length of 1D seems to be

acceptable for these Reynolds numbers.

3. Results

3.1. Wake topology

Once the flow enters the critical regime, a laminar separation bubble (LSB) is formed on

one side of the cylinder surface as a consequence of the combined effects of flow separation,

turbulence transition in the separated shear-layer and further reattachment of the flow (see

Lehmkuhl et al. (2014) at Re = 2.5×105). However, as transition to turbulence is asymmet-

ric, the flow on the other side of the cylinder remains unaffected as in the sub-critical regime.

As a result, the forces acting on the cylinder surface are also asymmetric and the magni-

tude of the steady lift coefficient is greater than zero. With the increase in the Reynolds

number a second bubble starts to form, yet the flow is asymmetric (Re = 3.8× 105). Flow

symmetry is reached when the second bubble stabilises at the end of the critical regime

(Re ≈ 5.3 × 105 − 6.5 × 105) and the drop in the drag is completed. The complete forma-

tion of this second bubble and the symmetry recovery marks the onset of the super-critical

regime.
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In figure 4, the drag coefficient at both critical and super-critical Reynolds numbers is

plotted together with available experimental measurements from the literature. The agree-

ment is rather good; the present computations are capable of capturing the steep drop in

the drag at critical Reynolds numbers and the plateau behaviour observed at super-critical

Reynolds numbers, once the drag has dropped to its minimum value. Yet, we would like to

draw attention to the somewhat large scattering present in the experimental data, especially

at critical Reynolds numbers. These differences may be due to several causes such as com-

pressibility, surface roughness, cylinder end conditions, inlet turbulence intensity, blockage

ratio, amongst others.

The influence of the blockage ratio has been addressed in section 2.1. As it has been

commented, ratios larger than 6% (West and Apelt, 1981) might affect the force coefficients.

Furthermore, the critical transition might be forced to occur at lower Reynolds numbers.

On the other hand, turbulence intensity also induces critical transition at lower Reynolds

numbers (Blackburn and Melbourne, 1996). However, the published experimental data (see

details summarised in AppendixA) used in this work were mainly obtained on low turbulence

intensity conditions, probably with the exception of the experiments of Fage (1930). Despite

the fact that in Fage’s experiments turbulence level was not reported, one may assume they

were performed at a higher stream turbulence level since the critical Reynolds number is

too low (see figure 4).

An issue of major importance is the compressibility effects that might be encountered

even at low Mach numbers, well below the critical value depending on the boundary layer

condition, and which occurs near Ma = 0.4 (Achenbach and Heinecke, 1981; Polhamus,

1984). Compressibility, due to the increase in the value of the minimum pressure point

which affects separation, shifts the critical transition range towards higher Reynolds num-

bers. This results in an increased drag at all Reynolds numbers. According to Polhamus

(1984), these effects begin to be measurable at Ma = 0.18− 0.2, which is also in agreement

with measurements of Zan (2008) in the super-critical region. Even though most of the

experiments summarised in table A.4 are in the low-Mach region, in some of them Ma > 0.2

conditions are attained, especially for the larger Reynolds numbers e.g. Delany and Sorensen
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(1953); Jones (1968); Shih et al. (1993).

Regarding the cylinder surface conditions, all the experimental results used for compari-

son in this work were on smooth highly polished cylinders, as can be seen in the AppendixA.

According to Szechenyi (1975), below the super-critical regime, smooth cylinders behaves as

they have a very small non-dimensional surface roughness equivalent to ks/D ∼ 3.5 × 10−5

(ks is the total height of the surface roughness). In any case, roughness promotes an earlier

transition to a turbulent boundary layer, thus the critical regime occurs at smaller Reynolds

numbers, whereas minimum drag coefficient increases. However, as the Reynolds number

increases and the boundary layer becomes thinner, the value at which a surface may be

considered smooth decreases. For instance, Polhamus (1984) pointed out that values of

ks/D ∼ 10−5, as those of Roshko (1961), can produce a measurable increase in the drag in

the super-critical regime.

Apart from the aforementioned effects, discrepancies may also arise due to end flow

leakages (Delany and Sorensen, 1953) and latex end seals (Vaz et al., 2007), the use of a

three-dimensional cylinder model (Schmidt, 1965; Spitzer, 1965), problems with measure-

ment instruments such as pressure transducers working at a small fraction of their full scale

(Shih et al., 1993) and tunnel vibrations at some Reynolds numbers (Schewe, 1983), amongst

others.

The local pressure distribution along the cylinder circumference at different Reynolds

numbers is given in figure 5. In the figure, angular positions are measured in clock-wise

direction. At Re = 2.5 × 105 the pressure distribution is asymmetric (figure 5a). Notice

that on the top side of the cylinder (angle=0 − 180◦), the agreement with the pressure

distribution measured by Cantwell and Coles (1983) at Re = 1.4 × 105 is rather good,

especially the magnitude and position of the pressure minimum. This is because on this side

of the cylinder the flow resembles that of the sub-critical regime. On the other side of the

cylinder (angle=180 − 360◦), the flow behaviour is different and a large depression can be

observed, with a displacement in the position of the pressure minimum towards the cylinder

rear. With the increase in the Reynolds number, changes in the pressure distribution occur

on both sides of the cylinder and symmetry is gradually recovered (e.g. Re = 5.3 × 105 in
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Figure 5: Local pressure distribution at different Reynolds numbers. Comparison with the

literature. (a) At critical Reynolds numbers Re = 2.5 × 105 and Re = 5.3 × 105; (b) At

super-critical Reynolds numbers of Re = 6.5×105 and Re = 8.5×105. ∗. Results by Spitzer

(1965) at Re = 7.5× 105. *Flachsbart at Re = 6.7× 105 taken from Roshko (1961). Notice

that for Re = 6.5 × 105 the approximate location of the laminar separation of the LSB (S)

and transition to turbulence (T) are also indicated.
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Table 2: Flow parameters. Drag coefficient CD; fluctuating drag CD,rms; lift coefficient CL;

fluctuating lift CL,rms; cylinder base pressure −Cp,base.

Re CD CD,rms CL CL,rms −Cp,base

2.5× 105 0.833 0.095 -0.903 0.486 0.99

3.8× 105 0.481 0.061 0.245 0.217 0.48

5.3× 105 0.296 0.011 0.0614 0.0705 0.305

6.5× 105 0.232 0.0081 0.027 0.0755 0.23

7.2× 105 0.213 0.0094 0.016 0.0752 0.224

8.5× 105 0.218 0.0092 0.007 0.070 0.207

figure 5a). These changes can be summarised as a decrease in the magnitude of the minimum

pressure, an increase of base pressure and the formation of a laminar separation bubble on

the cylinder rear, identified as a small plateau in the pressure distribution at angles about

φ ∼ 100◦ − 110◦. In figure 5b, as the pressure distribution is symmetric at super-critical

Reynolds numbers, only one side of the cylinder is represented. Notice that the approximate

location of the boundary layer laminar separation (S) and transition to turbulence (T) for

Re = 6.5× 105 are marked in the figure. For the other Reynolds numbers depicted similar

positions can be identified, but for the sake of clarity they were not marked in the figure.

The angular size of the LSB decreases slightly as the Reynolds number increases being at

the super-critical Re = 8.5 × 105 about 8◦, whereas at the end of the critical regime at

Re = 5.3× 105 it spans about 15◦.

The average magnitude and fluctuations of drag and lift coefficients and the base pressure

are given in table 2. The high value of the lift coefficient observed at Re = 2.5 × 105 is a

signature of the asymmetric forces acting on the cylinder. The fluctuating lift, which is

about an order of magnitude larger than the fluctuating drag, also presents a large value at

this Reynolds number, but decreases up to a value about CL,rms ∼ 0.07 to remain almost

constant along the super-critical regime. We will return to this point in detail in the next
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Figure 6: Different wake configurations observed in the critical and super-critical regimes.

section.

According to the changes in the symmetry of the flow observed (see also Lehmkuhl et al.,

2014), three modes can be foreseen (figure 6): i) a one-bubble asymmetric mode, with flow

separation delayed on one side of the cylinder while the other remains sub-critical; ii) a

two-bubble asymmetric mode, with a small second bubble starting to be formed and; iii) a

two-bubble symmetric mode, with two symmetric bubbles on each side of the cylinder which

is a characteristic trait of the super-critical regime. As it will be shown hereafter, the flow

in the third mode is stable and little changes are observed in the wake characteristics.

In figure 7, the mean streamlines in the near wake region are depicted for all Reynolds

numbers. A two-eddy configuration pattern is observed at all Reynolds numbers, though

differences in size, shape and length can readily be identified. The position of (laminar or

turbulent) flow separation φs and the vortex centroids are marked for each case in the figure.

At Re = 2.5× 105 (figure 7a), recirculation vortices are of different size and streamlines are

bent towards the opposite side where the LSB is formed, i.e. the side with the lower pressure
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Figure 7: Flow average streamlines. (a) at Re = 2.5 × 105; (b) at Re = 3.8 × 105; (c) at

Re = 5.3× 105; (d) at Re = 6.5× 105; (e) at Re = 7.2× 105); (f) at Re = 8.5× 105.
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gradient. This is a consequence of the difference in magnitude of the forces acting on both

sides of the cylinder. In this case, streamlines are bent towards the upper part of the wake

(see also figure 5a). The top eddy is similar to those seen in the sub-critical flow with

laminar separation close to the cylinder apex φs ∼ 90◦. On the other hand, the bottom

eddy is smaller, its centroid (defined as in Cantwell and Coles (1983)) is located closer to

the wake centreline than the opposite one (the position of the centroid of the eddies is given

in table 3) and turbulent flow separation is shifted towards the cylinder rear (φs ∼ 218◦).

The non-dimensional length of the recirculation zone Lr can also be observed from the

figure. This is the distance to the position where the recirculation closes, i.e. the distance

from the cylinder rear end to the saddle point formed by the time averaged streamline

topology. For a symmetric wake, this location is in the plane [x, y = 0]. However, as for

Re = 2.5×105 the wake is asymmetric, the saddle point does not sit in this plane but slightly

off at [x, y] ≡ [1.082, 0.111]. In table 3, the non-dimensional length of the recirculation

together with other characteristic length scales such as the non-dimensional vortex formation

length, Lf (defined as in Bloor and Gerrard (1966), i.e. the distance between the cylinder

centroid and the location where the root-mean square stream-wise velocity peaks), and the

non-dimensional distance from the cylinder centre to the position where the stream-wise

velocity at the wake centreline reaches a minimum value, Lu,min, are also given. Notice that

in the table all these parameters are given for the cylinder mid-plane [x, y = 0], thus the

length of the recirculation for Re = 2.5 × 105 was determined from the position where the

mean stream-wise velocity is zero. This distance is Lr = 0.559. However, if the distance

from the cylinder rear to the location of the saddle is considered, the actual size of the

recirculation zone is 0.588. This value is close to those reported at the end of the sub-

critical regime at Re = 1.4 × 105, although some scatter in the measurement of this wake

length scale can be found in the literature (e.g. Lr = 0.6 in Cantwell and Coles (1983),

Lr = 0.73 in Braza et al. (2006), Lr ≈ 0.42 in Breuer (2000)).

In a lower degree, asymmetries in the flow are also present at Re = 3.8 × 105 with the

wake bent down, i.e., towards the side with the lower pressure gradient (smaller bubble).

This Reynolds number corresponds to an intermediate state where two LSB are formed, but
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Table 3: Critical parameters of the near wake. Lr, non-dimensional length of the recir-

culation zone; Lf , non-dimensional vortex formation length; Lu,min, umin non-dimensional

location and magnitude of the minimum stream-wise velocity u/Uref in the wake centreline,

respectively; xc and yc, non-dimensional stream-wise and cross-stream coordinates of the

location of the mean wake vortex centre.

vortex centre

Re Lr Lf Lu,min umin xc yc

2.5× 105 0.559 1.105 0.757 -0.194 0.711/0.707 0.308/-0.168

3.8× 105 0.641 1.107 0.778 -0.205 0.73/0.728 0.199/-0.2

5.3× 105 0.727 1.183 0.885 -0.253 0.831/0.825 0.153/-0.154

6.5× 105 0.596 1.044 0.86 -0.262 0.807/0.822 0.132/-0.129

7.2× 105 0.569 1.062 0.854 -0.254 0.813/0.807 0.125/-0.128

8.5× 105 0.597 1.091 0.871 -0.23 0.819/0.820 0.135/-0.134

they are different in size (two-bubble asymmetric mode). However, turbulent detachment

on both sides occurs towards the rearward. The centroid of the eddies is quasi symmetric

(see table 3) though they differ in size, the top one being smaller than its counterpart on

the bottom side. This is due to the differences in the position of the separation point, which

is not symmetric. Nonetheless, the saddle point is displaced only −0.0015 off the wake

centreline being indistinguishable from the point Lr in figure 7b.

As the Reynolds number increases and the flow enters the super-critical regime, the wake

stabilises into a flow configuration consisting in a two-symmetric eddy pattern with the eddy

centroid located closer to the wake centreline (see table 3). The turbulent separation of the

flow occurs at φs ≈ 148◦ on both sides of the cylinder with almost no variations regardless

of the Reynolds number.

By putting these parameters all together, in the super-critical regime the picture of a

quite stable mean wake with minor differences in the average parameters can be visualised.
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Figure 8: Contours of time-averaged non-dimensional span-wise vorticity (a) at Re = 2.5×

105; (b) at Re = 3.8×105; (c) at Re = 5.3×105; (d) at Re = 6.5×105; (e) at Re = 7.2×105;

(f) at Re = 8.5 × 105. In (a,b) ωzD/Uref = ±(2.8 − 7) and in (c-f) ωzD/Uref = ±(4 − 7),

with ∆ωzD/Uref = 0.6.
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Figure 9: Variation of the local wake width at different Reynolds numbers.

In a certain way, the behaviour of the flow in this regime is somewhat similar to the sub-

critical one, but the transition to turbulence causes the delayed turbulent separation of

the flow on the cylinder, giving rise to a more reduced recirculation region confined in the

rearward of the cylinder.

The separated shear-layers are also affected by the changes in the flow and the transition

to turbulence. As the flow enters the critical regime, the pressure gradient increase accel-

erates the flow and the shear-layers bend towards the wake centreline. This effect is more

pronounced at the end of the critical regime, onset of the super-critical one, where both

shear-layers come closer towards the wake centreline, where they interact with each other.

This is illustrated in figure 8, where the shear-layers have been identified by means of the

mean non-dimensional span-wise vorticity. Notice that vorticity is high in the shear-layers

and as the shear-layers become thicker and diffuse vorticity decreases.

Another way to quantify the changes in the wake topology, especially in the critical region

where the largest ones are occurring, is by measuring the wake width. The wake width is

estimated, as suggested by Norberg (1986), from the positions of the maximum stream-wise

velocity fluctuations at different stream-wise locations. The results for different Reynolds
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numbers are depicted in figure 9. The wake asymmetry at Re = 2.5× 105 is clearly seen in

the figure, with the top limit of the wake occurring at a larger vertical distance (measured

from the wake centreline) than the bottom edge. As commented before, the top side of

the cylinder behaves as in the sub-critical regime, thus a wider wake should be expected.

However, on the bottom side, the flow is critical and with the acceleration of the flow the

wake narrows. As a result, the wake width is about dw/D ≈ 0.87, which is smaller than

that of the sub-critical wake (dw/D > 1).

At Re = 3.8 × 105, the wake is also asymmetric but, as commented before, in the

present results it is bent downward, with the bottom edge of the wake located at a larger

distance from the wake centreline than the top one. As a consequence, the wake width is

narrower than at Re = 2.5 × 105 being about dw/D ≈ 0.675. As the Reynolds number

increases the wake width decreases and the symmetry in the flow is gradually recovered.

When the flow enters in super-critical regime, this quantity remains almost unaffected as

can be seen from the figure. Notice also that in the super-critical regime the wake width is

approximately dw/D ≈ 0.4. This value is not only lower than that of the sub-critical regime

(dw/D > 1) but also almost half the value reported by Roshko (1961) for the trans-critical

regime (dw/D ≈ 0.81).

3.2. Vortex shedding

Unsteady lift and drag loads indicative of the fluctuating forces acting on the cylinder.

Measurements of these forces in the critical and super-critical regimes are scarce (Fung, 1960;

Schmidt, 1965). As unsteady lift is related to the vortex shedding, it has a periodic nature in

the sub-critical regime. However, there is large controversy regarding whether vortex shed-

ding occurs in the critical and super-critical regimes, and sometimes unsteady lift has been

reported to lose coherence in these regimes (e.g. Fung, 1960; Schmidt, 1965). In section 3.1,

it has been commented on the different causes of the large scattering observed in the drag

coefficient measurements. However, cylinder aspect ratio and end conditions have also an

important effect in the vortex shedding or the lack thereof. Achenbach and Heinecke (1981)

observed that for small cylinder aspect ratios the flow behind the cylinder became three-

23



dimensional and vortex shedding coherence was lost. These effects were observed for a cylin-

der of aspect ratio Lz/D = 3.38, whereas for a model of aspect ratio Lz/D = 6.75 a coher-

ent vortex shedding was measured. This was also commented by Blackburn and Melbourne

(1996), who attributed the absence of a coherent peak in the spectra in their measurements

to a relative small cylinder aspect ratio of Lz/D = 4.5. Furthermore, Bearman (1969) re-

ported that in the critical and the super-critical regimes the flow is very sensitive to small

changes in the experimental conditions; small disturbances on well polished surfaces, such

as dust particles, affected the flow and triggered its three-dimensionality along the span,

which in turn caused the regular vortex shedding ceasing.

Another possible cause of loss of coherence in the wake may be attributed to the use

of a three-dimensional model in the experiments, as in Schmidt (1965) and Spitzer (1965).

They both used a cantilevered cylinder of aspect ratio Lz/D = 8 and, in Spitzer (1965)

measurements were not made at the cylinder mid-span but at z/D = 4.86 − 5.87. It

has been shown both experimentally (see for instance Park and Lee, 2000) and numerically

(Afgan et al., 2007) that depending on the aspect ratio of the cylinder, the flow in the near

wake is rather non-uniform and that wake three-dimensionality and vortex shedding are

affected by the downwash flow from the free-end of the cylinder. The latter is relevant as

it was reported (for Re = 20× 103) that as Lz/D decreases vortex shedding frequency also

decreases and spectrum bandwidth increases; vortex shedding disappears for Lz/D ≤ 6. This

may be the reason why the non-dimensional vortex shedding frequency detected by Spitzer

(1965) at the beginning of the critical regime was of St = 0.12, lower than the values for

a two-dimensional cylinder in the subcritical regime St ≈ 0.2 (see for instance Williamson,

1996), and for higher Reynolds numbers the flow seemed incoherent. The relative low aspect

ratio of his model, together with the complexity of the flow in the critical regime and the fact

that he did not measure at the cylinder mid-span might have contributed to the observation

of a rather incoherent flow at the end of the critical regime and in the super-critical zone.

In Lehmkuhl et al. (2014), a regular von-Kármán vortex street was observed at every

Reynolds numbers in the critical regime, with the exception of Re = 3.8 × 105 (corre-

sponding with the two-bubble asymmetric mode according to figure 6) where the flow loses
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Figure 10: Instantaneous variation of the ( ) lift and ( ) drag coefficients (a) at

Re = 2.5 × 105; (b) at Re = 3.8× 105; (c) at Re = 5.3× 105; (d) at Re = 6.5 × 105; (e) at

Re = 7.2× 105); (f) at Re = 8.5× 105.

some coherence due to the asymmetries in the shear-layers and, instead of one peak in the

frequency spectrum, two smaller were found. Moreover, non-dimensional vortex shedding

frequency was found to change from St = 0.235 at the bottom part of the critical regime to

rise up until St ∼ 0.44 at the end of this regime (Re = 6.5× 105).

In figure 10, the unsteady signals of the lift and drag coefficients at all Reynolds numbers

studied are plotted. As can be seen, at Re = 2.5×105 (see figure 10a), the average magnitude

of the steady lift is greater than zero (corresponding with the values given in Table 2) due to

the asymmetry of the flow commented before. Nonetheless, the instantaneous lift exhibits a
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periodic behaviour with a large magnitude in the amplitude of its fluctuations CL,rms ≈ 0.49.

This value, which is quite close to those measured in the sub-critical regime (see also figure

11), is also correlated to the wider wake width measured.

The changes in the critical regime; i.e. the increase in the base pressure, the steep drop

in the drag, amongst others; come also with an increase in the vortex shedding frequency

and a decrease in the vortex strength. Notice the change in scale between figures 10a and

10c-f. This is reflected in the average magnitude of lift fluctuations shown in figure 11. In

the figure, the experimental measurements by Fung (1960) and Schmidt (1965) together

with those summarised by Norberg (2003) for the sub-critical regime are also plotted as

reference. In general, the agreement is fair, the rapid decrease in the fluctuating lift is

well captured. Current results follow the trend predicted by the correlation proposed by

Norberg (2003) in the critical regime. In the super-critical regime, the fluctuating lift is
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almost constant regardless of the Reynolds number. The present results fall between the

measurements by Fung (1960) and Schmidt (1965). In this regard, it should be commented

that Schmidt (1965) pointed out that these experimental differences might be due to facts

such as the model surface condition or end effects. Fung (1960) also reported the sensible

nature of lift fluctuations which could be altered by any small geometrical change or even

axial perturbations. Another issue to be here considered is the fact that both Fung (1960)

and Schmidt (1965) reported that the unsteady lift loads did not show any periodic behaviour

whatsoever. In the current simulations, the periodicity of the lift fluctuations can readily be

seen from the plots of figure 10, with the exception of Re = 3.8× 105, where the coherence

in the signal is not that clear. This issue has been explained in Lehmkuhl et al. (2014), and

it is due to the randomness in the interaction between both shear-layers, as they both bend

towards the wake centreline but with different angles.

Figure 12 shows the power spectra of the lift fluctuations for all Reynolds numbers

studied. By means of the analysis of the spectra, the coherence (or lack thereof) of lift

fluctuations can be extracted. Out of Re = 3.8 × 105, all spectra show a distinguishable

peak at the vortex shedding frequency. At Re = 3.8 × 105, two peaks in the spectrum

are observed (see figure 12b) at St1 = 0.238 and St2 = 0.358, which agree with the values

obtained by means of the power spectra of velocity fluctuations at different stations in the

near wake (Lehmkuhl et al., 2014). This spectrum shows that the flow is in transition and

the coherence is almost lost. Vortex strength is lower than at Re = 2.5 × 105, denoted by

the smaller peaks obtained. There are also fluctuations of low-frequency and high intensity

which is another indication of this transition in the flow.

At Re = 5.3× 105, the symmetry in the flow is almost recovered and is reflected by the

high coherence of the signal in the spectrum. However, non-dimensional vortex shedding

frequency (St = 0.368) is lower than that at super-critical Reynolds numbers due to a wider

separation between both shear-layers caused by the lower base pressure and lower pressure

gradient (see also figure 8c vs. figures 8d-f).

In the super-critical regime, a steady plateau is reached, with vortex shedding about

St ≈ 0.44 at all Reynolds numbers. These observations are in good agreement with Schewe
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Figure 12: Power spectra of the lift fluctuations at Reynolds numbers: (a) at Re = 2.5×105;

(b) at Re = 3.8 × 105; (c) at Re = 5.3 × 105; (d) at Re = 6.5 × 105; (e) at Re = 7.2 × 105

and (f) at Re = 8.5× 105.
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(1983). Contrary to other experimental results (e.g. Schmidt, 1965; Jones, 1968; Shih et al.,

1993) he did measure a periodic flow at super-critical Reynolds numbers. He also commented

that the super-critical regime was characterised by a very stable flow with low fluctuations

and a narrow band power spectrum of lift fluctuations. However, the value of lift fluctuations

reported in his work was of 0.02, which is lower than the values obtained in the present

computations.

The non-dimensional vortex shedding frequency obtained is summarised in figure 13 and

compared to those experimental results where vortex shedding was successfully measured.

The agreement is rather good though some scatter between them is observed, mainly due

to the critical nature of the flow in this range which makes more difficult the repeatability

of the results.

Roshko (1954) proposed a universal relation for the wake non-dimensional vortex shed-

ding based on the wake width dw, and he concluded that this universal Strouhal number is

St∗ = 0.164 regardless of the bluff body shape.
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According to Roshko (1954),

St

St∗
=

D

dw
(1− Cpb)

1/2 (6)

Roshko (1961) used this scaling in the trans-critical regime and verified its validity,

though for the super-critical regime he was unable to corroborate it. He speculated whether

inaccurate measurements or the lack of coherence of the flow might be the cause why this

expression would not be suitable.

Using Roshko correlation, the ratio of the non-dimensional vortex shedding frequency

measured in the present numerical experiments to the non-dimensional vortex shedding

obtained (Stcorr) with equation 6 is evaluated. Results are plotted in figure 14. For the

particular case of Re = 3.8 × 105, in which two frequencies were identified, the frequency

plotted is taken as the mean value. In spite of some scatter, one can observe that this

ratio is rather close to the unity for all Reynolds numbers. These observations extend

Roshko’s (1961) conclusions regarding the similarity of the vortex shedding phenomenon

in the trans-critical regime with that of the sub-critical regime, to both critical and super-

critical zones showing the continuity in the vortex shedding nature in the whole range of

Reynolds numbers. It is worth noting that in equation 6 the actual value of the wake width

was used, rather than obtain it from theoretical considerations as Roshko did.

Last but not the least, we would draw the attention to the onset of the instabilities in the

shear-layer. It was shown in Lehmkuhl et al. (2014) that in the critical regime, as long as

the attached boundary layers have not undergone turbulent, instabilities of the shear-layer

upon separation can be correlated to the vortex shedding frequency, following the correlation

proposed by Prasad and Williamson (1996). The same reasoning would be here applied for

the super-critical regime. Figure 15 depicts the ratio of the shear-layer instabilities to the

vortex shedding frequency fKH/fvs for all Reynolds numbers. It can be seen that fKH/fvs

follows the same trend in the super-critical regime as in the critical one. Thus, it would be

reasonable to suggest that this correlation might be valid for the whole super-critical regime,

where there is a laminar separation bubble followed by turbulent separation, up until fully
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Roshko’s (1954) correlation (equation 6).

turbulent separation of the boundary layer takes place in the trans-critical regime.

4. Conclusions

The wake characteristics and the vortex shedding process in the flow past a circular

cylinder have been studied by means of large-eddy simulations for the range of Reynolds

numbers 2.5 × 105 ≤ Re ≤ 8.5 × 105, encompassing the critical and super-critical regimes.

In this range, three configurations are observed: i) one-bubble asymmetric mode, with flow

separation delayed on one side of the cylinder while the other remains sub-critical; ii) two-

bubble asymmetric mode, with a small second bubble starting to be formed and; iii) two-

bubble symmetric mode, with two symmetric bubbles on each side of the cylinder, which is a

characteristic trait of the super-critical regime. In the first two modes (occurring at critical

Reynolds numbers), the flow is asymmetric and the wake is bent towards the side with lower

pressure gradient. The average flow exhibits a two-eddy pattern, but vortices formed are

of different sizes and shapes. In the third mode (at super-critical Reynolds numbers), the

average wake is symmetric and the eddies formed are confined to the cylinder rearward, as
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flow separation occurs at φs ≈ 148◦. In this mode, little changes in the wake configuration

are observed.

Lift fluctuations are found to decrease from a value of CL,rms ≈ 0.49 at the initial part

of the critical regime (at Re = 2.5 × 105), close to those reported at the end of the sub-

critical regime (Norberg, 2003), to CL,rms ≈ 0.07 for the super-critical Reynolds numbers

(two-bubble symmetric flow). This drop in the fluctuating lift, also associated to the wake

narrowing, has been found to be in rather good agreement with experimental measurements.

In spite of the major changes occurring at these Reynolds numbers, evidence of the

wake vortex shedding has been obtained for all cases examined by means of the analysis

of the energy spectra of the lift fluctuations. The exception might be at Re = 3.8 × 105

(two-bubble asymmetric mode) where coherence is considerably reduced due to the random-

like interaction of the bent shear-layers. However, coherence is rapidly recovered with the

symmetric formation of the second bubble. This has been observed as a narrow band peak

in the spectra, which moves towards higher frequencies as the Reynolds number increases
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in the critical regime, to then remain almost constant about St ≈ 0.44 throughout the

super-critical regime. Furthermore, using the wake width measured as the vertical distance

between maximum stream-wise fluctuations, wake vortex shedding is found to follow the

universal scaling with the wake width proposed by Roshko (1954).

Following the observations made in Lehmkuhl et al. (2014), the shear-layer instability

mechanism seems to remain unaltered in the super-critical regime, as transition to turbulence

occurs upon separation. The ratio of the fundamental frequency of the shear-layer to the

wake vortex shedding shows the same dependency with the Reynolds number as proposed

by Prasad and Williamson (1996). It would then be reasonable to suggest that this might

remain valid for the whole super-critical regime as long as the attached boundary layer is

still laminar.
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AppendixA. Experimental details for measurements from the literature

A compilation of the measurement conditions for most of the experimental data presented

in this paper is given in table A.4. In the table, together with the range of Reynolds

numbers at which the experiments were carried out, the spanwise size of the model Lz/D,

the blockage ratio D/Ly, the roughness of the model ks/D, the inlet turbulence level Tu,

defined as Tu = urms/Uref , and the Mach number of the wind tunnel Ma are also given.

In most of these experiments the exact value of the surface roughness was not reported.

Instead, references to highly polished or smooth surfaces were reported, as seen in the table.

Notice that the experiments of Schmidt (1965) and Spitzer (1965) were performed with a
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