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Abstract. OmpSs is a task-based programming model that aims to pro-
vide portability and flexibility for sequential codes while the performance
is achieved by the dynamic exploitation of the parallelism at task level.
OmpSs targets the programming of heterogeneous and multi-core archi-
tectures and offers asynchronous parallelism in the execution of the tasks.
The main extension of OmpSs, now incorporated in the recent OpenMP
4.0 standard, is the concept of data dependences between tasks.

Tasks in OmpSs are annotated with data directionality clauses that
specify the data used by it, and how it will be used (read, write or
read&write). This information is used during the execution by the un-
derlying OmpSs runtime to control the synchronization of the different
instances of tasks by creating a dependence graph that guarantees the
proper order of execution. This mechanism provides a simple way to ex-
press the order in which tasks must be executed, without the need of
adding explicit synchronization.

Additionally, OmpSs syntax offers the flexibility to express that given
tasks can be executed on heterogeneous target architectures (i.e., regu-
lar processors, GPUs, or FPGAs). The runtime is able to schedule and
run these tasks, taking care of the required data transfers and synchro-
nizations. OmpSs is a promising programming model for future exascale
systems, with the potential to exploit unprecedented amounts of par-
allelism while coping with memory latency, network latency and load
imbalance.

The paper covers the basics of OmpSs and some recent new devel-
opments to support a family of embedded DSLs (eDSLs) on top of the
compiler and runtime, including an prototype implementation of a Par-
tial Differential Equations DSL.

1 Introduction

During the last decades, the number of available transistors inside a chip has
continuously increased as predicted by the well known Moore’s law [12]. The

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 601–612, 2014.
c© Springer International Publishing Switzerland 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41779366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


602 A. Fernández et al.

extra transistors provided by each successive processor generation have been
traditionally used to increase the complexity of the processors and the size of
the cache memories. However, due to the memory and power walls, this trend
has halted and replaced by the multi-core and heterogeneous era.

Multi-core processors and heterogeneous architectures are still quite complex,
with several functional units in them, including floating point units and vector
units. Also, the ability to place other accelerators in the same chip or connected
through the PCI express bus resulted in heterogeneous computing nodes. Exam-
ples of these architectures are the Xeon Phi processor or general purpose pro-
cessors with GPU cards. While this trend has been observed for about a decade
now, the difficulty to program such architectures still represents a challenge.

Additionally, the interface to program a processor has increasingly been com-
plicated with specific instructions for vector units, specific languages for accel-
erators which include calls to APIs for data allocation and management (i.e.
CUDA or OpenCL), APIs for offloading computation, etc.

All this specific code requirements have made the life of programmers in-
creasingly more difficult, forcing them to mix application logic with specialized
instructions. Such code complexity is inversely proportional to code readability
and maintainability, thus resulting in an undesired trade-off between productiv-
ity and performance. Moreover, these programs are hardly portable: every time a
new architecture appears, a new version of the code is necessary. For example, a
large number of applications has recently been adapted to enable their execution
in nodes with GPUs.

Applications 

Power to the runtime 

PM: High-level, clean, abstract interface 

DSL1 DSL2 DSL3 

ISA / API 

Fig. 1. Software stack in the BSC vision
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In this situation, strategies to offer higher levels of abstraction to application
developers are necessary. The specifics of the different architectures and hard-
ware organization (architecture-dependent instructions, APIs, separate memory
spaces, etc.) should be hidden from the application developers, enabling them
to focus on the logic of the application rather than on the low-level performance
aspects.

Figure 1 illustrates this idea where a higher level interface in the form of a pro-
gramming model is offered to the applications. With this layer, a cleaner, more
abstract interface results in clean programs without hardware-specific details.
Such abstraction is possible thanks to an underlying compiler and/or runtime
infrastructure which is the responsible for dealing with the APIs and specific
features of the hardware.

In the case of the Barcelona Supercomputing Center (BSC), the programming
model considered is StarSs1, a task-based programming model with tasks’ data
dependencies taken into account at execution time, building a task dependence
graph which defines a partial execution order of the tasks. While the sequential
programming paradigm with information about the tasks and the directionality
of its parameters is the user interface2, applications are executed in parallel
thanks to the information about the potential parallelism that is derived from
the task graph. Another feature of the StarSs programming model is that it
enables the application to be unaware of the underlying computing platform. For
example, in StarSs instances tailored for distributed computing, the runtime will
be responsible for the corresponding data transfers required between computing
nodes, performing these activities in a way transparent to the application.

Additionally, in order to offer an even higher level of abstraction, the construc-
tion of a high performance framework for a family of Domain-Specific Languages
(DSLs) on top of the programming model is currently being considered. DSLs
are a promising approach to hide the complexity of hardware systems and boost
programmers’ productivity. However, the huge cost and complexity of imple-
menting efficient and scalable DSLs, specially for complex platforms such as
HPC systems, is hindering their adoption for most domains. For this reason, the
strategy adopted at BSC has been to divide the complexity of building such a
programming interface by building a DSL development infrastructure on top of
one of the implementations of the StarSs programming model. Each instance of
this DSL family can focus on a different domain and can be of a different level
of complexity (different sizes of DSLs boxes in Figure 1 represent this hetero-
geneity).

This paper will review the current status of one of the StarSs implementations,
the OmpSs project, as well as present an overview of the recent developments to-
wards DSLs for HPC environments. The rest of the paper is structured as follows:

1 StarSs stands for Star superscalar, since most of the ideas behind this programming
model are inspired by the field of computer architecture and superscalar processors.

2 By directionality we mean, input when the parameter is read, or output when
the parameter is written. This information is used at runtime to derive the data-
dependences between tasks.
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First, Section 2 presents the StarSs programming model and its instance, OmpSs.
Then, Section 3 presents the OmpSs programmingmodel. Next, Section 4 presents
the DSL family developed on top of the OmpSs infrastructure and Section 5 con-
cludes the paper.

2 StarSs Overview

StarSs is a family of programming models recently developed at BSC. The main
characteristics of these programming models are: task–based programming with
indication of data directionality, flat single logical address space, and a dynamic
behaviour addressed by a runtime that takes care of functions such as generation
of a task-dependence graph, task scheduling driven by the partial order defined
by this graph, resource selection, automatic data transfers, etc.

Several prototype implementations of these programming models have been
developed to test main ideas in different computing platforms and to make
progress in research topics, the more relevant being: GRIDSs [3] for grid comput-
ing, CellSs [14] for the Cell processor, SMPSs [13] for shared memory systems,
and GPUSs [2] for heterogeneous nodes with GPUs.

BSC efforts currently focus in two implementations: OmpSs [7], for HPC (mul-
ticore and heterogeneous computing), and COMPSs [19] for distributed comput-
ing and cloud computing.

This paper focuses in the OmpSs implementation, which merges the OpenMP
standard [1] with the StarSs extensions. OmpSs has been used to promote the
StarSs ideas (tasking, dependences, support to heterogeneity) into the OpenMP
standard. Achievements of the BSC team in this aspect have been the inclusion of
the tasking model (version 3.0) and dependences in tasks (version 4.0). However,
OmpSs does not intend to be a reference implementation of OpenMP, but a long
term research project where new ideas can be evaluated.

Currently OmpSs features which do not have a match in the OpenMP stan-
dard include the support of non-contiguous/strided regions in their dependence
detection and data-management mechanisms. The OpenMP dependence mecha-
nism uses the initial address of a region to detect dependences between tasks and
therefore dependences between partially overlapping regions or strided regions
cannot be detected [6].

Support of heterogeneity in OpenMP 4.0 and in OmpSs is significantly dif-
ferent and complementary. While OmpSs extensions to support heterogeneous
environments are designed to simplify the synchronization and data transfers
required between host and accelerator codes, OpenMP tries to generate paral-
lel kernels from annotated sequential code that can efficiently run on accelera-
tors. While both OpenMP and OmpSs specifications include a target device

clause, this clause has a different semantics in OpenMP and OmpSs. In OmpSs,
the options of clause target device are, for example, cuda or opencl, while
in OpenMP the clause takes a numeric parameter, e.g., target device (3),
which represents a device. In OmpSs, the programmer needs to provide the code
of the kernel in CUDA or OpenCL, but this code can be part of a task, and
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therefore it will be independently scheduled and executed asynchronously on a
device [7], [9]. The support provided by OmpSs includes the ability to schedule
tasks in multiple GPUs independently of the code and automatic data transfers
(including awareness of the data locality to reduce the number of transfers). In
OpenMP, the compiler translates the C code to the language required by the
device (i.e. CUDA), but the code is bound to a given device specified statically
in the clause, and the programmer is responsible for finding the identifier of the
device. In terms of scheduling, the code embedded in a target device clause in
OpenMP is executed synchronously, and in case it is embedded in a task which
will enable the asynchronous execution, the programmer needs to guarantee the
exclusive access to the device at every moment since no support is provided by
the OpenMP scheduling.

Another support of scheduling in OmpSs is the possibility of providing more
than one implementation (version) of a given task through the implements

clause. The versions can target one or more devices. At runtime, the scheduler
will decide which version should be scheduled taking into account parameters
such as execution time or locality of the data. Even more, if slower devices are
idling, a few tasks can be scheduled there [15].

The OmpSs runtime is able to target heterogeneous devices not only of a single
node, but also of several nodes in a cluster [5]. In this case, the OmpSs scheduler
distributes the tasks to the different nodes. As in the case of the GPUs, the
required data transfers are performed transparently by the runtime. The run-
time keeps a directory with information of the locations of the data regions in
the cluster. This directory comes with a software cache policy implemented in
each memory space (both memory nodes and GPU memory spaces). Concerning
programming methodology, while there are no specific requirements for these
architectures, organizing the applications in nested tasks improves the perfor-
mance. With nested tasks, first level tasks are generated by the main program
and scheduled in nodes of the cluster. The node responsible for executing this
task will generate the children tasks which are naturally scheduled on the node,
including both CPU and GPU tasks.

With regard to the hybrid version of OmpSs with MPI, the strategy goes
beyond the traditional parallelization at the node level with OmpSs using MPI
for the communication between nodes: with MPI/OmpSs, MPI communications
are wrapped into OmpSs tasks which are then automatically included in the
task dependence graph. With this approach, overlapping of communication and
computation is naturally achieved, since computations that do not hold any
dependence with the communication tasks may be executed earlier or together
with the communication tasks. Additionally, this implementation presents better
sensibility to OS noise and jitter [20].

To further improve the behaviour of MPI/OmpSs applications, DLB is a dy-
namic library designed to speed up hybrid applications with nested parallelism
by improving the load balance each computational node [10]. In general, DLB
will redistribute the computational resources of the second level of parallelism
(OmpSs) to improve the load balance of the outer level of parallelism (MPI).
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This is achieved by dynamically and automatically lending threads between MPI
processes sharing the same node.

3 OmpSs Development Environment

OmpSs infrastructure is composed of two main components: Mercurium, the
compiler, and Nanos++, the runtime. Mercurium is a source to source compiler
that supports C99, C++ 2003 and Fortran 95 and also (an increasing) set of
features of C 2011, C++ 2011 and Fortran 2003/2008 and extensions of GNU
C/C++/Fortran (see Figure 2). The goal of Mercurium is to provide a sufficiently
powerful framework for high-level transformations and analyses in source code in
order to support research in parallel and high performance programming models.

In order to support heterogeneous computing, Mercurium supports multi-file
processing, that is, from a single source file Mercurium can generate several
source files which can be combined at the link step. Compiler phases can rein-
troduce new files into the compilation pipeline and new files may use a different
compilation pipeline.

Mercurium processes the OmpSs pragmas and inserts the corresponding calls
to the Nanos++ interface. Mercurium also parses CUDA and OpenCL and emits
this code unchanged.

After the compiler phase, the corresponding back-end compiler is invoked.
This can be configured to use different compilers (i.e., gcc or icc for C code).
For the case of CUDA, the NVIDIA compiler is later invoked. For OpenCL, the

C/C++/Fortran 

Fig. 2. Mercurium compiler structure
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code is processed at execution time by the selected OpenCL runtime. Finally,
all objects are linked and embedded into a single binary.

Nanos++ is the OmpSs runtime (see Figure 3). This piece of software is or-
ganized in components, each of them responsible for a given behaviour: thread
management, task management, dependence checking, cache management, etc.
Several of these components are configurable, such as the scheduling policy, the
throttle policy or the dependence checker. The runtime also has specific compo-
nents for the supported devices: SMP, GPU, Cluster, Tasksim (an architecture
simulator [16]), etc.

Fig. 3. Nanos++ runtime structure

The runtime can be compiled in different flavours: performance, debug, and
instrumentation. While the performance flavour would be the default version to
use, the debug version can be used for debugging purposes. The instrumented
version is used for several purposes: trace file generation, task graph generation,
and debug with Temanejo [18].

The trace file generation emits a time stamped event list ordered by time
with information about what happened at execution time. The format of this
trace file conforms to the Paraver format (in fact, the Extrae instrumentation
library, provided to generate Paraver trace files is called by Nanos++) [11].
Paraver is a very powerful performance visualization and analysis tool based
on traces that can be used to analyse any information that is expressed on its
input trace format. Its analysis power is based on two main pillars. First, its
trace format has no semantics; extending the tool to support new performance
data or new programming models requires no changes to the visualizer, just to
capture such data in a Paraver trace. The second pillar is that the metrics are
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not hard-wired in the tool but programmed. To compute them, the tool offers
a large set of time functions, a filter module, and a mechanism to combine two
time lines. This approach allows displaying a huge number of metrics with the
available data. To be able to analyse OmpSs programs, a set of configuration
files is provided with the OmpSs distribution that enable to visualize meaningful
views (i.e., view of tasks executed in each thread, communications between host
and GPU when running on a GPU node, etc), while each programmer/developer
can build up her own configuration files with specific purposes.

Another alternative when running with the instrumentation library is to gen-
erate an image of the task dependency graph, which can be later visualized with
a PDF viewer. This option is very useful for a quick check by the application
programmer about the actual task graph generated.

Both these views will only work if the application is not faulty. In case of
a faulty application, the environment provided by the Ayudame and Temanejo
libraries can be used [4]. Ayudame is a library which is used to receive informa-
tion (events) from the Nanos++ runtime system and to exert control over it by
issuing requests to it. Temanejo is the graphical front end. It enables to display
the task dependency graph of OmpSs applications, and to allow simple inter-
action with the Nanos++ runtime system in order to control some aspects of
the parallel execution of a given application. For example, it enables to execute
tasks one at a time or group of tasks, define breakpoints, connect to the GNU
debugger to perform a more detailed debug, etc.

4 DSLs on Top of OmpSs

Domain Specific Languages (DSLs) boost programmer productivity by offer-
ing experts high level abstractions focused on their domain. With this type of
languages, mapping and solving a domain problem becomes extremely easy. Ad-
ditionally, due to the clarity of the code, applications are easily maintained and
extended.

However, developing a DSL is expensive and complex, and therefore it would
be only justified when a large community is behind. With this idea in mind,
the strategy of the BSC Computer Science department has been to develop a
framework that can be shared by several DSLs.

This framework is composed of a HPC compiler framework and a runtime sys-
tem. The compiler framework is based on LightweightModular Staging (LMS) [17]
(see Figure 4), a Scala library for embedding DSL compilers together with DSL
applications, thus reusing the Scala features to define new languages. LMS is a
technique for embedding DSLs as libraries into Scala as a host language, while
enabling domain specific optimizations and code generation.

As an intermediate language between the actual DSL and the OmpSs com-
piler, the Data Flow Language (DFL) [8] has been defined. DFL provides a
data-flow model based on four concepts: buffers, tasks, kernels and high-level
operations. Buffers abstract the concept of data, while tasks and kernels repre-
sent computations written in C++ and OpenCL on a multi-core or accelerator,
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Fig. 4. LMS library design idea

respectively. With these features DFL provides a powerful abstraction to imple-
ment HPC DSLs that run on machines composed of CPUs and accelerators.

With the collaboration of the BSC CASE department, Saiph, a DSL for solv-
ing Convection-Diffusion-Reaction (CDR) equations has been defined. In this
DSL, the programmer first specifies a physical geometry and a set of boundary
conditions on that geometry. Then, the initial state of the system is specified by
means of functions. Afterwards, the equation to simulate is specified, and the
DSL generates DFL and OpenCL code to automatically run the simulation on
a multi-GPU architecture.

In addition, some data post process can be specified in order to visualize
the output or convert it to a scientific format for analysis tools. An example
application of the DSL for CDR equations is shown in Listing 5.

1 // Defining preprocess

2 val pre = PreProcess(waveSource1, waveSource2, waveSource3)

3

4 // Defining equation

5 val wavePropagation = c*c * lapla(pressure) - dt2(pressure)

6

7 // Defining postprocess

8 val post = PostProcess(snapshoot each 10 steps)(VTK)

9

10 solve(pre)(post) equation wavePropagation to "wave"

Fig. 5. Sample DSL code for a CDR equation

From this input code, the environment generates (see Figure 6) a set of
OpenCL kernels that solve the equations and a DFL application that calls the
kernels. The DFL application is finally translated to an OmpSs application.
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Fig. 6. DSL framework structure

A prototype implementation of this entire framework has been implemented at
BSC.

5 Conclusions

This paper has reviewed the current state of the OmpSs programming model,
including new developments in the design and implementation of a family of
DSLs. While OmpSs offers a reasonable programming interface to average to
advanced programmers, more specialized languages will increase the productivity
of computational scientists in general. The goal is to achieve high programming
productivity with efficient execution in an HPC system.
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15. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Self-adaptive ompss tasks in
heterogeneous environments. In: 27th IEEE International Symposium on Paral-
lel and Distributed Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24,
pp. 138–149 (2013)

16. Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramı́rez, A., Valero, M.: Trace-driven
simulation of multithreaded applications. In: IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS, Austin, TX, USA, April
10-12, pp. 87–96 (2011)

17. Rompf, T., Odersky, M.: Lightweight modular staging: A pragmatic approach to
runtime code generation and compiled DSLs. In: Proceedings of the Ninth In-
ternational Conference on Generative Programming and Component Engineering,
GPCE 2010, pp. 127–136. ACM, New York (2010)



612 A. Fernández et al.

18. Subotic, V., Brinkmann, S., Marjanovic, V., Badia, R.M., Gracia, J., Niethammer,
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