
On the roles of the programmer, the compiler
and the runtime system when programming

accelerators in OpenMP

Guray Ozen, Eduard Ayguadé and Jesús Labarta

Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
Universitat Politècnica de Catalunya (UPC–BarcelonaTECH)

Abstract. OpenMP includes in its latest 4.0 specification the accelera-
tor model. In this paper we present a partial implementation of this spec-
ification in the OmpSs programming model developed at the Barcelona
Supercomputing Center with the aim of identifying which should be the
roles of the programmer, the compiler and the runtime system in or-
der to facilitate the asynchronous execution of tasks in architectures
with multiple accelerator devices and processors. The design of OmpSs
is highly biassed to delegate most of the decisions to the runtime sys-
tem, which based on the task graph built at runtime (depend clauses)
is able to schedule tasks in a data flow way to the available processors
and accelerator devices and orchestrate data transfers and reuse among
multiple address spaces. For this reason our implementation is partial,
just considering from 4.0 those directives that enable the compiler the
generation of the so called “kernels” to be executed on the target device.
Several extensions to the current specification are also presented, such
as the specification of tasks in “native” CUDA and OpenCL or how to
specify the device and data privatization in the target construct. Finally,
the paper also discusses some challenges found in code generation and a
preliminary performance evaluation with some kernel applications.

Keywords: OpenMP accelerator model, OmpSs, OpenCL, CUDA

1 Introduction

The use of accelerators has been gaining popularity in the last years due to their
higher peak performance and performance per Watt ratio when compared to ho-
mogeneous architectures based on multicores. However, the heterogeneity they
introduce (in terms of computing devices and address spaces) makes program-
ming a difficult task even for expert programmers.

Some alternatives have been proposed to address the programmability of
these accelerator–based systems. CUDA [1] and OpenCL [2] provide low-level
API’s that allow computation to be offloaded to accelerators. the management
of their memory hierarchy and the data transfers between address spaces. Other
alternatives, such as OpenACC [3], have appeared with the aim of providing a
higher–level directive–based approach to program accelerator devices. OpenMP

ruben pocull
Texto escrito a máquina
“The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-11454-5_16”

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina
Ozen, G., Ayguadé, E., & Labarta, J. (2014). On the Roles of the Programmer, the Compiler and the Runtime System When Programming Accelerators in OpenMP. In L. DeRose, B. de Supinski, S. Olivier, B. Chapman, & M. Müller (Eds.), Using and Improving OpenMP for Devices, Tasks, and More SE - 16 (Vol. 8766, pp. 215–229). Springer International Publishing.

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

2 G. Ozen, E. Ayguadé and J. Labarta

[4] also includes in its latest 4.0 specification the accelerator model with the same
objective. These solutions based on directives still rely on the programmer for
the specification of data regions, transfers between address spaces and for the
specification of the computation to be offloaded in the devices; these solutions
also put a lot of pressure on the compiler–side that has the responsibility of
generating efficient code based on the information provided by the programmer.

The OmpSs [5] proposal has been evolving during the last decade to lower the
programmability wall raised by multi–/many–cores, demonstrating a task–based
data flow approach in which offloading tasks to different number and kinds of
devices, as well as managing the coherence of data in multiple address spaces,
is delegated to the runtime system. Multiple implementations were investigated
for the IBM Cell (CellSs [6]), NVIDIA GPU (GPUSs [7]) and homogeneous
multicores (SMPSs [8]) before arriving to the current unified OmpSs specification
and implementation. Initially OmpSs relied on the use of CUDA and OpenCL to
specify the computational kernels. This paper presents the latest implementation
of OmpSs which includes partial support for the accelerator model in OpenMP
4.0 specification. We just adopted those functionalities that are necessary to
specify computational kernels in a more productive way. The paper analyzes the
roles of the programmer, the compiler and the runtime from this new OmpSs
perspective.

2 “Pure” accelerator-specific programming

“Pure” accelerator-specific programming initially put all responsibility in the
programmer, who should take case of transforming computational intensive pieces
of code into kernels to be executed on the accelerator devices and write the host
code to orchestrate data allocations, data transfers and kernel invocations with
the appropriate allocation of GPU resources. Nvidia CUDA [1] and OpenCL [2]
are the two APIs commonly used today.

In favor of programmability, the latest releases of the Nvidia CUDA archi-
tecture improved programming productivity by moving some of the burden to
the CUDA runtime, including Unified Virtual Addressing (CUDA 4) to provide
a single virtual memory address space for all memory in the system (enabling
pointers to be accessed from GPU) no matter where in the system they reside)
and Unified Memory (CUDA 6) to automatically migrate data at the level of in-
dividual pages between host and devices, freeing programmers from the need of
allocating and copying device memory. Although these additions may be seen as
a need for beginners, they make it possible to share complex data structures and
eliminate the need to handle ”deep copies” in the presence of pointed data inside
structured data. Carefully tuned CUDA codes may still use streams and asyn-
chronous transfers to efficiently overlap computation with data movement when
the CUDA runtime is unable to do it appropriately due to lack of lookahead.

On the roles of the programmer, the compiler and the runtime system 3

3 Directive-based approaches in OpenMP and OpenACC

With the aim of providing a smooth and portable path to program accelerator-
based architectures, OpenACC [3] and OpenMP 4.0 [4] provide a directive-
centric programming interface. Directives allow the programmer to specify code
regions to be offloaded to accelerators, how to map loops inside those regions
onto the resources available in the device architecture, the data mapping in
their memory and data copying between address spaces. This directive–based
approach imposes a high responsibility on the compiler that needs to be able
to generate optimized device–specific kernels (considering architectural aspects
such as the memory hierarchy or the amount of resources available) as well as
taking care of accelerator startup and shutdown, code offloading and implement-
ing data allocations/transfers between the host and accelerator1.

The directive–based approach frees the programmer from the need to write
accelerator-specific code for the target device (e.g. CUDA or OpenCL kernels).
We think this is important in terms of programming productivity, but we also
believe that the directive–based approach should allow a migration path for
existing CUDA applications by reusing device–specific OpenCL or CUDA kernels
already optimized by experienced programmers.

In the following subsections we briefly summarize OpenMP 4.0 and Ope-
nACC constructs with the aim of splitting responsibilities between the compiler
and the runtime system, with the overall objective of lowering the programma-
bility wall.

3.1 Offloading, kernel configuration and loop execution

OpenMP 4.0 offers the target directive to start parallel execution on the accel-
erator device. Similarly, OpenACC offers the parallel directive with the same
purpose. In OpenACC these regions can be declared asynchronous removing the
implicit barrier at the end of the accelerator parallel region, allowing the host
to continue with the code following the region.

Inside these accelerator regions in the OpenMP 4.0, the programmer can
specify teams, representing a hierarchy of resources in the accelerator: a league
of num teams teams, each with thread limit threads. The execution in the teams
region initially starts in the master thread of each team. Later, the distribute and
parallel for directives can be used to specify the mapping of iterations in different
loops to the resources available on the accelerator. On the other hand, OpenACC
offers kernels, i.e. regions that the compiler should translate into a sequence of
kernels for execution on the accelerator device. Typically, each loop nest will
be a distinct kernel. OpenACC also includes the loop directive to describe what
type of parallelism to use to execute a loop and declare loop-private variables and
arrays and reduction operations. Inside kernels and loops resources are organized
in gangs, workers and vectors (indicated with the num gangs, num workers and

1 If the accelerator can access the host memory directly, the implementation may avoid
this data allocation/movement and simply use the host memory.

4 G. Ozen, E. Ayguadé and J. Labarta

vector length clauses, respectively), similar to the teams, threads and SIMD in
OpenMP 4.0.

Figure 1 shows the use of the above mentioned directives and clauses in
OpenMP 4.0. Lines 7 and 11 in the code on the left specify the mapping of
iterations of the i and j loops among 16 teams and 512 threads inside each
team, respectively as declared in lines 5–6. Similarly, line 6 in the code on the
right informs the compiler to map iterations of the i loop to both teams and
threads inside each team; lines 8 and 13 also map iterations of the j loop to
threads, probably using the multidimensional organization available in current
accelerator devices.

1#define n 128
2#define m 10240
3
4#pragma omp target device (0)
5#pragma omp teams
6 num teams (16) thread limit (512)
7#pragma omp distribute
8 for (i = 0 ; i < n ; i++)
9 {

10
11 #pragma omp para l le l for
12 for (j = 0 ; j < m ; j++)
13 // l o o p b o d y
14
15 }

1#define nX 4
2#define nelem 12000
3
4#pragma omp target device (0)
5#pragma omp teams thread limit (64)
6#pragma omp distribute para l le l for
7 for (i =0; i < nelem ; i++) {
8 #pragma omp para l le l for private (k)
9 for (j =0; j < nX∗nX; j++)

10 for (k=0; k < nX; k++)
11 // l o o p b o d y
12 #pragma omp para l le l for
13 for (j =0; j < nX∗nX; j++)
14 // l o o p b o d y
15 }

Fig. 1. Two simple examples using OpenMP 4.0 directives for offloading.

Figure 2 shows another OpenMP 4.0 code where the programmer defines the
thread hierarchy (line 9) and maps to it the execution of the loop in line 10.
The target region is inside a task, so in this case the execution in the device is
asynchronous to the execution of the master thread in the processor.

1 for (begin=0 ; begin < n ; begin+=s t r i d e)
2 {
3 int end = begin + s t r i d e − 1 ;
4 int dev id = (begin / s t r i d e) % omp get num devices () ;
5
6 #pragma omp task
7 #pragma omp target device (dev id) \
8 map(to : y [begin : end] , x [begin : end]) map(from : z [begin : end])
9 #pragma omp teams num teams (16) thread limit (32)

10 #pragma omp distribute para l le l for
11 for (i = 0 ; i < s t r i d e ; ++i)
12 z [i] = a ∗ x [i] + y [i] ;
13 }

Fig. 2. Code in OpenMP 4.0 asynchronously offloading to multiple accelerator devices.

The target directive in OpenMP 4.0 includes the device clause, which offloads
the execution of the region kernel to a given physical device (indicated by the
integer value in the clause). This direct mapping makes it difficult to write
applications that dynamically offload work to accelerators in order to achieve
load balancing or adapt to device variability, since it forces the programmer to
embed in the application logic code to manage resources.

For example the code in Figure 2 shows how the programmer could stati-
cally map consecutive target regions to the accelerators available in the target
architecture (line 4 to compute the device identifier and device clause in line 7),

On the roles of the programmer, the compiler and the runtime system 5

allowing in this case to use two devices. Observe that the iteration range for the
for loop at Line 11 goes from 0 to stride, so the program is not ”sequentially
equivalent” since it should iterate from begin to end. This is how OpenMP 4.0
forces the specification of the work to be offloaded; we assume that this has to
be done in this way in order to ease code generation by the compiler although at
the expenses of reducing code portability and reusability, in addition to potential
programming errors.

3.2 Data motion

Data copying clauses may appear on the target construct in OpenMP 4.0 and
parallel and kernels constructs in OpenACC. With these clauses the programmer
specifies the data motion needed to bring in and out the data for the execution
of the region in the accelerator.

For the data items (including array regions) that appear in an OpenMP
4.0 map clause, corresponding new data items are created in the device data
environment associated with the construct. Each data item has an associated
map type which specifies the data copying on entry and exit (to, from or tofrom)
or just allocation (alloc). OpenACC offers similar clauses (copyin, copyout, copy
and create). With all this information, the compiler schedules the associated
data allocations and transfers accordingly.

The example in Figure 2 shows the use of the map clause in Line 8. It is
important to notice that map(to: ...) forces the movement of data when the
target region is found; similarly for map(from: ...) which copies from device to
host when the target region finishes.

Both OpenMP 4.0 and OpenACC offer the possibility of defining data envi-
ronments in the accelerator for the extent of the region: target data and data,
respectively. Inside these regions, multiple kernel offloading actions may occur
without data copying between them, unless explicitly specified. An executable
directive (target update in OpenMP 4.0 and update in OpenACC) is offered to
the programmer to update, inside the scope of a data region, the data from the
host to the device or vice-versa. The use of multiple accelerators within a target
data region is not clear since at most one device clause can appear in the target
data directive. The Jacobi code in Figure 6 shows the use of data regions and
update in an OpenACC example.

3.3 Memory hierarchy in the accelerator device

Private, firstprivate and reduction clauses in distribute and parallel for direc-
tives give the compiler hints about the use of the memory hierarchy inside the
accelerator. Again, OpenMP 4.0 and OpenACC rely on the programmer and the
compiler for the management of the memory hierarchy, having a direct impact
in the quality of the kernel codes to be executed on the accelerator device.

6 G. Ozen, E. Ayguadé and J. Labarta

4 Accelerator support in OmpSs

The accelerator support in the OmpSs programming model [5] leverages the
tasking model with data directionality annotations already available in the model
(that influenced the new depend clause in OpenMP 4.0). These annotations are
used by the OmpSs runtime system to dynamically compute task dependences
and build a dependence task graph. This graph is used to dynamically schedule
tasks in a data–flow way conscious of the resources available at any time.

The OmpSs programming model offers target directive with the following
syntax:
#pragma omp target [clauses]

task construct | function definition | function header

where clauses specify:

– copy in, copy out and copy inout - shared data that needs to be available
in the device before the construct can be executed or available after the
construct is executed.

– copydeps - copy semantics for the directionality clauses in the associated
task construct.

– device - kind of devices that can execute the construct (smp, cuda, opencl
or acc).

– implements - an alternative implementation of the function whose name
specified in the clause for a specific kind of device.

In order to make hybrid with native CUDA and/or OpenCL kernels, the directive
includes two additional clauses:

– ndrange - specification of the dimensionality, iteration space and blocking
size to replicate the execution of the CUDA or OpenCL kernel.

– shmem - arguments (and their size) to be mapped into team shared–memory.

The copy in, copy out and copy inout clauses, together with the lookahead
provided by the availability of the task graph, are used by the runtime system
to schedule data copying actions between address spaces (movements between
host and accelerator or between two accelerator devices if needed). Copydeps is
a simple shorthand to reuse the directionality annotations in the task directive.

Figure 3 shows a simple example based on SAXPY. In this example, the task
computing saxpy is written as a CUDA kernel and offloaded to a device with
CUDA architecture; task check results is defined to be executed in the host.
Observe that the output of CUDA task instances are inputs of the host task
instances. The dependences computed at runtime will honor these dependences
and the runtime system will take care of doing the data copying operations
based on the information contained in the task graph (dynamically generated
at runtime). The ndrange clause is used to replicate the execution of the CUDA
kernel in the device block/thread hierarchy (one dimension with na*na iterations
in total to distribute among teams of na iterations in this example).

On the roles of the programmer, the compiler and the runtime system 7

1#pragma omp target device (cuda) ndrange (1 , na∗na , na) copy deps
2#pragma omp task in (a [0 : s t r i d e] , b [0 : s t r i d e]) out (c [0 : s t r i d e])
3 g l o b a l void saxpy (double ∗ a , double ∗ b , double ∗ c , int s t r i d e) {
4 // CUDA k e r n e l c o d e
5 }
6#pragma omp target device (smp) copy deps implements (saxpy)
7#pragma omp task in (a [0 : s t r i d e] , b [0 : s t r i d e]) out (c [0 : s t r i d e])
8 void saxpy smp (double ∗ a , double ∗ b , double ∗ c , int s t r i d e) {
9 // CPU c o d e w i t h OpenMP d i r e c t i v e s

10 }
11#pragma omp target device (smp) copy deps
12#pragma omp task in (s t a t i c c o r r e c t r e s u l t [0 : s t r i d e] , c [0 : s t r i d e])
13 void c h e c k r e s u l t s (double ∗ p r e c a l c r e s u l t , double ∗ c , int s t r i d e) {
14 // CPU c o d e s w i t h OpenMP d i r e c t i v e s
15 }
16 int main (int argc , char ∗∗ argv) {
17 double a [SIZE] , b [SIZE] , c [SIZE] ;
18
19 for (begin=0 ; begin < nX ; begin+=s t r i d e)
20 saxpy(&a [begin] , &b [begin] , &c [begin] , s t r i d e) ;
21
22 for (begin=0 ; begin < nX ; begin+=s t r i d e)
23 ch e c k r e s u l t s (& p r e c a l c r e s u l t [begin] , &c [begin] , SIZE) ;
24 }

Fig. 3. Heterogeneous task example with OmpSs

With the device clause the programmer informs the compiler and runtime
system about the kind of device that can execute the task, not an integer number
that explicitly maps the offloading to a certain device as done in OpenMP 4.0.
This is a big difference that improves programming productivity when targeting
systems with different number and type of accelerators and regular cores. The
code in Figure 3 could be executed on any number of devices without changes.

The acc device type is used to specify that the task will make use of OpenMP
4.0 directives to specify what to execute on the accelerator device, relying on
the compiler to generate the kernel code to be executed on the device. We will
describe in more detail the current compiler implementation in Section 5.

Multiple implementations tailored to different accelerators/cores can be spec-
ified for the same task (currently only available for tasks that are specified at
the function declaration/definition). In this case, the programmer is delegating
to the runtime system the responsibility of dynamically selecting the most ap-
propriate device/core to execute each task instance, for example based on the
availability of resources or the availability of the data needed to execute the
task in the device (locality–aware scheduling). With the implements clause the
programmer can indicate alternative implementations for a task function tai-
lored to different devices (accelerator or host). Figure 3 shows the use of the
implements clause: the saxpy smp function in Line 6 is defined as an alternative
implementation to the CUDA implementation of saxpy at Line 3. Observe that
the programmer simply invokes saxpy in Line 20, delegating in the runtime the
selection of the most appropriate implementation for each task instance.

5 MACC compiler

A new compilation phase (MACC2) has been included in the Mercurium [9] com-
piler supporting the OpenMP 4.0 accelerator model with the OmpSs runtime.
MACC takes care of kernel configuration, loop scheduling and appropriate use

2 MACC is abbreviation for ”Mercurium Accelerator Compiler”.

8 G. Ozen, E. Ayguadé and J. Labarta

of the memory hierarchy for those tasks whose device is set to acc in the target
clause. Some of the OpenMP 4.0 directives for accelerators (target data target
update directives and map clause) are simply ignored because we delegate their
functionality to the runtime system. Others have been extended to better map
with the OmpSs model or to provide additional functionalities.

OpenMP 4.0 MACC OpenMP 4.0 MACC

target extended (implements, device(int) extended
ndrange for CUDA and
OpenCL kernels)

map(to/from/tofrom) implemented but different distribute new clauses
names (copy in/out/inout) dist private

map(alloc) ignored teams implemented

target data currently ignored parallel for implemented

target update ignored distribute parallel for implemented

Fig. 4. MACC vs OpenMP 4.0

5.1 Kernel configuration, loop scheduling and thread mapping

When generating kernel code MACC needs to decide: 1) the dimensionality of
the resources hierarchy (one-, two- or three-dimension teams and threads) and
2) the size in each dimension (number of teams and threads). In order to support
the organization of the threads in multiple dimensions MACC allows the nesting
of parallel for directives inside a target region (dimensionality equals the nesting
degree). Other proposals considered the use of collapse which includes an integer
to specify the number of nested loops with the same purpose [17].

MACC takes into account the restrictions of the device (for example max-
imum number of blocks and threads warp size in the CUDA computing capa-
bility) and the information provided by the programmer in the num teams or
max threads clauses; if not specified, MACC simply assigns one iteration per
block and one iteration per thread. MACC currently generates one dimensional
teams (the current implementation does not support nesting of distribute direc-
tives). Thread dimensions are initially assigned in loop nesting order. As we will
see in the experimental section3, this ordering (for example outer loop for second
thread dimension and inner loop for first thread dimension) may have a notice-
able impact in performance; for now this is the responsibility of the compiler
with no hints from the programmer in the current OpenMP 4.0 specification.

5.2 Coalesced accesses and use of shared memory

MACC code generation makes use of coalesced accesses to access global mem-
ory in warps. To that end MACC performs a cyclic mapping of loop iterations

3 opt3 in the experimental evaluation of DG-kernel in Section 6.

On the roles of the programmer, the compiler and the runtime system 9

and tries to eliminate redundant ”one–iteration” loops and simplifies increment
expressions for induction variables in order to improve kernel execution time4.

MACC also makes use of shared memory for threads in a team based on
the specification of private and firstprivate data structures in the distribute di-
rective, so that each team allocates a private copy in its own shared memory.
MACC analyzes the size of the data structure to be privatized and generates
code for its allocation and copying from global memory to shared memory in
each team. However, for very large private arrays this is not possible to apply.
For these cases we have implemented 3 new clauses (dist private, dist firstprivate
and dist lastprivate); with these clauses and the chunk size provided in the
dist schedule(static,chunk size) clause in the distribute directive or near by ar-
ray variable the compiler just allocates a portion of the arrays to each team
and performs the necessary copies according to the firstprivate and lastprivate
semantics5.

– dist private(list) : shared memory is only allocated up to indicated chunk size.
– dist firstprivate(list) : shared memory is allocated up to indicated chunk size

and it is filled with own part of array at global memory.
– dist lastprivate(list) : shared memory is allocated up to indicated chunk size.

End of the distribute scope, allocated area from shared memory is recopied
to own location at the global memory.

– dist first lastprivate(list) : it is a short-cut for specifying dist firstprivate(list)
and dist lastprivate(list) at the same time.

Figure 5 shows the use of shared variables with distribute and team direc-
tives for the DG kernel application (which is used later in the evaluation sec-
tion). In this example, delta, der and grad are small arrays which are privatized
with private and firstprivate at line 13. However, flx and fly are specified as
dist first lastprivate with a chunk size of CHUNK at line 14.

6 Preliminary performance evaluation

The objective of the performance evaluation in this section is to show how the
OmpSs proposal to program accelerators behaves, which just integrates those
directives from OpenMP 4.0 accelerator model that are used to specify the kernel
computations. For the evaluation we use three codes: Jacobi, DG-kernel [11] from
NCAR and CG from NAS Parallel Benchmark [12].

For the experimental evaluation we have used a node with 2 Intel Xeon E5649
sockets (6 cores each) running at 2.53 GHz and with 24 GB of main memory,
and two Nvidia Tesla M2090 GPU devices (512 CUDA cores each, compute
capability 2.0) running at 1.3GHZ and with 6GB of memory per device. For
the compilation of OpenACC codes we have used the HMPP (version 3.2.3)
compiler from CAPS [13]. For the compilation of OmpSs codes we have used the

4 opt2 in the experimental evaluation of DG-kernel in Section 6.
5 opt1 in the experimental evaluation of DG-kernel in Section 6.

10 G. Ozen, E. Ayguadé and J. Labarta

1#define nX 4
2#define NELEM 90000
3#define SIZE (NELEM∗nX∗nX)
4#define CHUNK 256
5#define NUM TEAMS 5625
6
7 double de l ta [nX∗nX] , der [nX∗nX] , grad [nX∗nX] , f l x [SIZE] , f l y [SIZE] ;
8
9 for (i t =0; i t<n i t ; i t++)

10 {
11 #pragma omp target device (acc) copy deps
12 #pragma omp task inout (f l x [0 : SIZE] , f l y [0 : SIZE])
13 #pragma omp teams num teams(NUM TEAMS) private (grad) f i r s tpr ivate (de lta , der)
14 #pragma omp distribute para l le l for d i s t f i r s t l a s tpr iva te (f l x [CHUNK] , f l y [CHUNK])
15 for (i e =0; i e < NELEM; i e++)
16 {
17 #pragma omp para l le l for private (j , i)
18 for (i i =0; i i < nX∗nX; i i ++) {
19
20 // < . . c om p u t a t i o n .. >
21
22 for (j =0; j < nX; j++)
23 {
24 // < . . c om p u t a t i o n .. >
25
26 for (int i =0; i < nX; i++)
27 // < . . c om p u t a t i o n .. >
28
29 // < . . c om p u t a t i o n .. >
30 }
31
32 // < . . c om p u t a t i o n .. >
33 }
34
35 #pragma omp para l le l for
36 for (j =0; j < nX∗nX; j++)
37 // < . . c om p u t a t i o n .. >
38 }
39 }

Fig. 5. Example to explain MACC implementation of shared memory - DG Kernel

Mercurium/Nanos environment [9],[10]. GCC 4.6.1 has been used as back-end
compiler for CPU code generation and the CUDA 5.0 toolkit for device code
generation. Performance is reported in terms of execution time for the kernels
generated and speed–up, with respect to sequential execution on a single core,
for the complete application.

6.1 Jacobi

Jacobi is a simple iterative program to get an approximate solution of a lin-
ear system A*x=b. In each iteration of an outer while loop two nested loops
are executed, the second one performing the main computation and including
a reduction operation on a scalar variable used to control convergence in the
while loop. The structure of the code is shown in Figure 6, with three different
annotations that correspond to three different versions6:

– ”OpenACC baseline” – each loop is a kernels region with the individual
specification of data copying.

– ”OpenACC optimized” – a data region is defined, which includes the two
kernels regions mentioned in the previous version.

– ”MACC/OmpSs” – equivalent to ”OpenACC baseline” in terms of target
regions but written in OpenMP 4.0. In this version the programmer relies

6 The OpenACC versions could have equivalent versions in OpenMP 4.0.

On the roles of the programmer, the compiler and the runtime system 11

on the runtime system to do all data allocations and copying when neces-
sary. Observe that all target regions are tasks. This is because the current
OmpSs implementation just supports asynchronous target regions (not yet
in OpenMP 4.0 specification); in this code this does not have any influence
due to the serialization caused by data dependences.

The left plot in Figure 7 shows the total execution time of the kernels gener-
ated by HMPP and MACC compilers for a data size of 2048 elements. For this
code there are no significant differences in the quality of the CUDA kernels gen-
erated. The right plot in the same figure shows the speed–up that is obtained
for the three versions mentioned above for three different problem sizes: 512,
1024 and 2048. First of all, observe that in OpenACC (and in OpenMP 4.0) the
programmer needs to define an external data region to minimize data copying
between consecutive kernels regions, while taking care of updating the scalar
error variable in the device and host. This achieves a relative speed–up of 25
between the OpenACC optimized and baseline versions. And second, the per-
formance plot also shows that the runtime system in OmpSs is able to achieve a
slightly better performance even with the overheads incurred by keeping track
of memory allocations, data copying and orchestration of kernel execution.

OpenACC baseline

1 while ((k <= mits) && (e r r o r > t o l)) {
2 e r r o r = 0 . 0 ;
3
4 #pragma acc kernels copyin (u)
5 copyout (uold)
6 #pragma acc loop
7 for (i = 0 ; i < n ; i++)
8 // < . . c om p u t a t i o n .. >
9

10 #pragma acc kernels copyin (uold)
11 copyin (u) copy (e r r o r)
12 #pragma acc loop reduction (+: e r r o r)
13 for (i = 1 ; i < (n − 1) ; i++)
14 // < . . c om p u t a t i o n .. >
15
16 e r r o r = sqr t (e r r o r) / (n ∗ m) ;
17 k++;
18 }

OpenACC optimized

1#pragma acc data copy (u) copyout (error)
2 create (uold , e r r o r)
3 while ((k <= mits) && (e r r o r > t o l)) {
4 e r r o r = 0 . 0 ;
5
6 #pragma acc kernels loop
7 for (i = 0 ; i < n ; i++)
8 // < . . c om p u t a t i o n .. >
9

10 #pragma acc update device (e r r o r)
11 #pragma acc kernels loop reduction (+: e r r o r)
12 for (i = 1 ; i < (n − 1) ; i++)
13 // < . . c om p u t a t i o n .. >
14
15 #pragma acc update host (e r r o r)
16 e r r o r = sqr t (e r r o r) / (n ∗ m) ;
17 k++;
18 }

MACC/OmpSs

1 while ((k <= mits) && (e r r o r > t o l)) {
2 e r r o r = 0 . 0 ;
3
4 #pragma omp target device (acc) copy deps
5 #pragma omp task in (u) out (uold)
6 #pragma omp teams distribute para l le l for
7 for (i = 0 ; i < n ; i++)
8 // < . . c om p u t a t i o n .. >
9

10 #pragma omp target device (acc) copy deps
11 #pragma omp task in (uold) out (u) inout (e r r o r)
12 #pragma omp teams distribute para l le l for reduction (+: e r r o r)
13 for (i = 1 ; i < (n − 1) ; i++)
14 // < . . c om p u t a t i o n .. >
15
16 #pragma omp taskwait
17 e r r o r = sqr t (e r r o r) / (n ∗ m) ;
18 k++;
19 }

Fig. 6. Annotated codes for Jacobi application

12 G. Ozen, E. Ayguadé and J. Labarta

Fig. 7. Performance evaluation of Jacobi application

6.2 DG Kernel

DG is a kernel version of a climate benchmark developed by National Center for
Atmospheric Research [11]. The structure of the code has been omitted in this
submission version but will be included if the paper is accepted for publication.
The code consists of a single target region that is executed inside an iterative time
step loop that is repeated for a fixed number of iterations. Inside the target region
the iterations of two nested loops are mapped to the teams/thread hierarchy as
specified by the programmer.

Fig. 8. Performance evaluation of for DG kernel

Figure 8 plots the performance that is achieved by different versions of the
code, described in the following bullet points:

– CUDA: hand–optimized CUDA version of the application (with host and
kernel code written in CUDA) available from NCAR.

– OmpSs/CUDA: OmpSs version of the application leveraging (only) the com-
putational kernels written in CUDA.

– HMPP: OpenACC version available from NCAR.

On the roles of the programmer, the compiler and the runtime system 13

– MACC: different versions of our OpenMP 4.0 implementation in the MACC
compiler, including additional clauses to influence kernel code generation by
the compiler.

Comparing bars labelled CUDA and OmpSs/CUDA in Figure 8 one can
extract a first conclusion: OmpSs is able to leverage existing CUDA kernels with
similar performance as full host/device CUDA codes. In this case we observe
a small performance degradation probably due to overheads of the runtime in
generating tasks in each iteration of the time step loop.

Fig. 9. Performance evaluation of CUDA Kernel for DG kernel

The second conclusion from this evaluation is the important role of the com-
piler in generating efficient kernel codes for the target device. The first 3 bars
at Figure 9 show the execution time for the original CUDA kernel, the kernel
generated by the HMPP compiler and the initial kernel generated by the MACC
compiler. As one can observe, the manually programmed CUDA kernel clearly
outperforms the kernels generated by the two compilers, which directly trans-
late into significant performance degradation in terms of speed–up for the whole
application (first, third and fourth bar, in Figure 8).

Thanks to the previous observation and to the study of the kernels avail-
able and generated by the compilers, we have been investigating alternative
code generation schemes and proposed a new clause for the distribute directive
(dist private, as explained in Section 5). The impact of these optimizations is
shown in the performance plot at Figure 9. Observe that there is plenty of room
for improvement by using and combining these optimizations which result in a
clear impact in the overall speed–up of the application (last bar in the left plot).

14 G. Ozen, E. Ayguadé and J. Labarta

6.3 CG from NAS Parallel Benchmarks

The last code we have selected for the experimental evaluation in this paper is
NAS CG [12]. The main computational part of the application contains several
loops that can be made tasks and offloaded to a device or executed on the host.
The loop that contributes the most to the execution time performs a sparse
matrix vector operation. To execute this loop we want to use the two GPUs
available in the node.

The performance plot in Figure 10 shows the speed–up of the GPU accel-
erated version of NAS CG (bars HMPP, MACC and MACC/2 GPU) and the
speed–up using 8 processors in the host, for three different classes of NAS CG.
The speed–up with 2 GPU is significant although we only refined one of the
loops. Note that data transfers between GPUs will take place, automatically
handled by the runtime.

Fig. 10. Performance evaluation for NAS CG

7 Conclusions

In this paper we presented the main design considerations that are embedded in
our current implementation of the OpenMP 4.0 [4] accelerator model in OmpSs,
making emphasizing on the roles of the programmer, compiler and runtime sys-
tem in the whole picture. The compiler plays a key role and for this reason pre-
vious efforts have been devoted to the automatic generation of device–specific
programs from high-level programs annotations such as OpenMP and OpenACC
[3], including both research efforts at academia [15–17] as well as commercial im-
plementations [13, 14]. Our compiler implementation in Mercurium [9] has been
useful to experiment with different code generation strategies, trying to fore-
see the need for new clauses in current OpenMP 4.0 specification. OmpSs [5] is
strongly rooted on the assumption that the runtime system should play a key

On the roles of the programmer, the compiler and the runtime system 15

role, making appropriate use of the information that can be gathered at exe-
cution time. In this paper we tried to emphasize this aspect supported by an
experimental evaluation on three application kernels.

8 Acknowledgments

This work is partially supported by the Spanish TIN2012-34557 project and
the IBM/BSC Technology Center for Supercomputing collaboration agreement.
Thanks to John Dennis from NCAR for providing the OpenACC and CUDA
versions of the DG kernel as part of the G8 ECS project.

References

1. Nvidia CUDA parallel computing and programming. url="www.nvidia.com/

cuda".
2. OpenCL Open Computing Language. url="www.khronos.org/opencl/".
3. OpenACC: Directives for Accelerators. url="www.openacc-standard.org".
4. The OpenMP API Specification for Parallel programming. url="www.openmp.org".
5. Barcelona Supercomputing Center. The OmpSs programming model. url=pm.bsc.

es/ompss
6. Pieter Bellens, Josep M. Perez, Rosa M. Badia and Jesus Labarta. CellSs: a pro-

gramming model for the Cell/B.E. architecture. In ACM/IEEE Supercomputing,
November 2006.

7. J. Bueno, J. Planas, A. Duran, R.M. Badia, X. Martorell, E. Ayguade and
J. Labarta. Productive programming of GPU clusters with OmpSs. In Parallel
Distributed Processing Symposium (IPDPS), IEEE 26th International, May 2012.

8. Josep M. Perez, Rosa M. Badia and Jesus Labarta. A dependency-aware task-based
programming environment for multi-core architectures. In IEEE International
Conference on Cluster Computing, September 2008.

9. Barcelona Supercomputing Center. Mercurium source-to-source compiler.
url="pm.bsc.es/mcxx".

10. Barcelona Supercomputing Center. Nanos++ runtime library. url="pm.bsc.es/

nanos".
11. S. Vadlamani, Youngsung Kim, and J. Dennis. DG-kernel: A climate benchmark on

accelerated and conventional architectures. In Extreme Scaling Workshop (XSW),
August 2013.

12. NAS Division. NAS parallel benchmarks, url="www.nas.nasa.gov/resources/

software/npb.html".
13. CAPS Entreprise, CAPS Compiler. url="www.caps-entreprise.com".
14. PGI Accelerator Compilers. url="www.pgroup.com/resources/accel.htm".
15. T. D. Han and T. S. Abdelrahman. hicuda: A high-level directive-based language

for gpu programming. In 2nd Workshop on General Purpose Processing on Graph-
ics Processing Units (GPGPU), March 2009.

16. S. Lee, S-J. Min and R. Eigenmann. OpenMp to GPGPU: A compiler framework
for automatic translation and optimization. In 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), February 2009.

17. C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan and B. Chapman Early experi-
ences with the OpenMP accelerator model. In International Workshop on OpenMP
(IWOMP-2013), May 2013.

