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Abstract. In logical categorial grammar (Morrill 2011[23], Moot and Retoré
2012[11]) syntactic structures are categorial proofs and semantic structures are
intuitionistic proofs, and the syntax-semantics interface comprises a homomor-
phism from syntactic proofs to semantic proofs. Thereby, logical categorial gram-
mar embodies in a pure logical form the principles of compositionality, lexical-
ism, and parsing as deduction. Interest has focused on multimodal versions but the
advent of the (dis)placement calculus of Morrill, Valentı́n and Fadda (2011[21])
suggests that the role of structural rules can be reduced, and this facilitates com-
putational implementation. In this paper we specify a comprehensive formalism
of (dis)placement logic for the parser/theorem prover CatLog integrating catego-
rial logic connectives proposed to date and illustrate with a cover grammar of the
Montague fragment.

1 Introduction

According to the principle of compositionality of Frege the meaning of an expression
is a function of the meanings of its parts and their mode of composition. This is refined
in Montague grammar where the syntax-semantics interface comprises a homomor-
phism from a syntactic algebra to a semantic algebra. In logical categorial grammar
(Morrill 2011[23], Moot and Retoré 2012[11]) both syntactic structures and semantic
structures are proofs and the Montagovian rendering of Fregean compositionality is
further refined to a homomorphism from syntactic (categorial) proofs to semantic (in-
tuitionistic) proofs. Thus we see successive refinements of Frege’s principle in theories
of the syntax-semantics interface which are expressed first as algebra and then further
as algebraic logic. The present paper gathers together and integrates categorial connec-
tives proposed to date to specify a particular formalism according to this design, one
implemented in the parser/theorem-prover CatLog (Morrill 2011[15], 2012[16]) and
illustrates with a cover grammar of the Montague fragment.

Multimodal categorial grammar (Oehrle and Zhang 1989[25]; Moortgat and Morrill
1991[9]; Moortgat and Oehrle 1994[6]; Morrill 1994[22]; Moortgat 1995[7], 1997[8];
Oehrle 2011[24]) constitutes a methodology rather than a particular categorial calculus,
admitting an open class of residuated connective families for multiple modes of compo-
sition related by structural rules of interaction and inclusion. On the one hand, since no
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particular system is identified, the problem of computational implementation is an open-
ended one; and on the other hand, the structural rules add to the proof search-space.
Moot (1998[10]) and Moot and Retoré (2012[11], Ch. 7) provides a general-purpose
implementation Grail. It supports the so-called Weak Sahlqvist structural inclusions
and is based on proof-net contraction criteria, with certain contractions according to the
structural rules. This seems to constitute the computational scope of the potential of the
multimodal framework.

The displacement calculus of Morrill et al. (2011[21]) creates another option. This
calculus provides a solution to the problem of discontinuous connectives in categorial
grammar initiated in Bach (1981[1], 1984[2]). The calculus addresses a wide range of
empirical phenomena, and it does so without the use of structural rules since the rules
effecting displacement are defined. This opens the possibility of categorial calculus in
which the role of structural rules is reduced. To accommodate discontinuity of resources
the calculus invokes sorting of types according to their syntactical datatype (number
of points of discontinuity), and this requires a novel kind of sequent calculus which
we call a hypersequent calculus. In this paper we consider how displacement calculus
and existing categorial logic can be integrated in a uniform hypersequent displacement
logic, which we call simply placement logic.1 We observe that this admits a relatively
straightforward implementation which we use to illustrate a Montague fragment and we
define as a program the goal of implementing increasing fragments of this logic with
proof nets.

In the course of the present paper we shall specify the formalism and its calcu-
lus. This incorporates connectives introduced over many years addressing numerous
linguistic phenomena, but the whole enterprise is characterized by the features of the
placement calculus which is extended: sorting for the types and hypersequents for the
calculus. In Section 2 we define the semantic representation language; in Section 3 we
define the types; in Section 4 we define the calculus. In Section 5 we give a cover gram-
mar of the Montague fragment of Dowty, Wall and Peters (1981[4], Ch. 7). In Section 6
we give analyses of the examples from the second half of that Chapter. We conclude in
Section 7.

2 Semantic representation language

Recall the following operations on sets:

(1) a. Functional exponentiation: XY = the set of all total functions from Y to X
b. Cartesian product: X × Y = {〈x, y〉| x ∈ X & y ∈ Y }
c. Disjoint union: X ] Y = ({1} ×X) ∪ ({2} × Y )
d. i-th Cross product, i ≥ 0: X0 = {0}

X1+i = X × (Xi)

The set T of semantic types of the semantic representation language is defined on
the basis of a set δ of basic semantic types as follows:

1 The prefix ‘dis-’ is dropped since reversing the line of reasoning which displaces items places
items.



(2) T ::= δ | > | ⊥ | T + T | T &T | T → T | LT | T +

A semantic frame comprises a family {Dτ}τ∈δ of non-empty basic type domains and a
non-empty set W of worlds. This induces a type domain Dτ for each type τ as follows:

(3) D> = {∅}
D⊥ = {}

Dτ1+τ2 = Dτ2 ]Dτ1

Dτ1&τ2 = Dτ1 ×Dτ2

Dτ1→τ2 = D
Dτ1
τ2

DLτ = DW
τ

Dτ+ =
⋃
i>0(Dτ )

i

The sets Φτ of terms of type τ for each type τ are defined on the basis of sets Cτ of
constants of type τ and enumerably infinite sets Vτ of variables of type τ for each type
τ as follows:

(4) Φτ ::= Cτ constants
Φτ ::= Vτ variables
Φτ ::= Φτ1+τ2 → Vτ1 .Φτ ; Vτ2 .Φτ case statement

Φτ+τ ′ ::= ι1Φτ first injection
Φτ ′+τ ::= ι2Φτ second injection

Φτ ::= π1Φτ&τ ′ first projection
Φτ ::= π2Φτ ′&τ second projection

Φτ&τ ′ ::= (Φτ , Φτ ′) ordered pair formation
Φτ ::= (Φτ ′→τ Φτ ′) functional application

Φτ→τ ′ ::= λVτΦτ ′ functional abstraction
Φτ ::= ∨ΦLτ extensionalization
ΦLτ ::= ∧Φτ intensionalization
Φτ+ ::= [Φτ ] | [Φτ |Φτ+ ] non-empty list construction

Given a semantic frame, a valuation f mapping each constant of type τ into an element
of Dτ , an assignment g mapping each variable of type τ into an element of Dτ , and a
world i ∈ W , each term φ of type τ receives an interpretation [φ]g,i ∈ Dτ as shown in
Figure 1.

An occurrence of a variable x in a term is called free if and only if it does not
fall within any part of the term of the form x.· or λx·; otherwise it is bound (by the
closest x. or λx within the scope of which it falls). The result φ{ψ1/x1, . . . , ψn/xn} of
substituting terms ψ1, . . . , ψn (of types τ1, . . . , τn) for variables x1, . . . , xn (of types
τ1, . . . , τn) respectively in a term φ is the result of simultaneously replacing by ψi every
free occurrence of xi in φ. We say that ψ is free for x in φ if and only if no variable
in ψ becomes bound in φ{ψ/x}. We say that a term is modally closed if and only
if every occurrence of ∨ occurs within the scope of an ∧. A modally closed term is
denotationally invariant across worlds. We say that a term ψ is modally free for x in
φ if and only if either ψ is modally closed, or no free occurrence of x in φ is within
the scope of an ∧. The laws of conversion in Figure 2 obtain; we omit the so-called
commuting conversions for the case statement.



[a]g,i = f(a) for constant a ∈ Cτ
[x]g,i = g(x) for variable x ∈ Vτ

[φ→ x.ψ; y.χ]g,i =

{
[ψ](g−{(x,g(x))})∪{(x,snd([φ]g,i))},i if fst([φ]g,i) = 1

[χ](g−{(y,g(y))})∪{(y,snd([φ]g,i))},i if fst([φ]g,i) = 2

[ι1φ]
g,i = 〈1, [φ]g,i〉

[ι2φ]
g,i = 〈2, [φ]g,i〉

[π1φ]
g,i = fst([φ]g,i)

[π2φ]
g,i = snd([φ]g,i)

[(φ, ψ)]g,i = 〈[φ]g,i, [ψ]g,i〉
[(φ ψ)]g,i = [φ]g,i([ψ]g,i)

[λxφ]g,i = d 7→ [φ](g−{(x,g(x))})∪{(x,d)},i

[∨φ]g,i = [φ]g,i(i)
[∧φ]g,i = j 7→ [φ]g,j

[[φ]]g,i = 〈[φ]g,i, 0〉
[[φ|ψ]]g,i = 〈[φ]g,i, [ψ]g,i〉

Fig. 1. Interpretation of the semantic representation language

φ→ y.ψ; z.χ = φ→ x.(ψ{x/y}); z.χ
if x is not free in ψ and is free for y in ψ
φ→ y.ψ; z.χ = φ→ y.ψ;x.(χ{x/z})

if x is not free in χ and is free for z in χ
λyφ = λx(φ{x/y})

if x is not free in φ and is free for y in φ
α-conversion

ι1φ→ y.ψ; z.χ = ψ{φ/y}
if φ is free for y in ψ and modally free for y in ψ
ι2φ→ y.ψ; z.χ = χ{φ/z}
if φ is free for z in χ and modally free for z in χ

π1(φ, ψ) = φ
π2(φ, ψ) = ψ
(λxφ ψ) = φ{ψ/x}

if ψ is free for x in φ, and modally free for x in φ
∨∧φ = φ

β-conversion

(π1φ, π2φ) = φ
λx(φ x) = φ

if x is not free in φ
∧∨φ = φ

if φ is modally closed
η-conversion

Fig. 2. Semantic conversion laws



3 Syntactic types

The types in (dis)placement calculus and placement logic which extends it are sorted
according to the number of points of discontinuity (placeholders) their expressions con-
tain. Each type predicate letter will have a sort and an arity which are naturals, and a
corresponding semantic type. Assuming ordinary terms to be already given, where P
is a type predicate letter of sort i and arity n and t1, . . . , tn are terms, Pt1 . . . tn is an
(atomic) type of sort i of the corresponding semantic type. Compound types are formed
by connectives given in the following subsections, and the homomorphic semantic type
map T associates these with semantic types. In Subsection 3.1 we give relevant de-
tails of the multiplicative (dis)placement calculus basis and in Subsection 3.2 we define
types for all connectives.

3.1 The placement calculus connectives

Let a vocabulary V be a set which includes a distinguished placeholder symbol 1 called
the separator. For i ∈ N we define Li as the set of strings over V containing i separa-
tors:

(5) Li = {s ∈ V ∗| |s|1 = i}

V induces the placement algebra

({Li}i∈N ,+, {×k}k∈Z± , 0, 1)

where + : Li, Lj → Li+j is concatenation, and k-th wrapping ×k : Li+|k|, Lj →
Li+|k|−1+j is defined as replacing by its second operand the |k|-th separator in its first
operand, counting from the left for positive k and from the right for negative k.2 0 is
the empty string. Note that 0 is a left and right identity element for + and that 1 is a left
and right identity element for ×:

(6) 0+s = s s = s+0
1×s = s s = s×1

Sorted types Fi, i ∈ N , are defined and interpreted sort-wise as shown in Figure 3.
WhereA is a type, let sA denotes its sort. The sorting discipline ensures that [A] ⊆ LsA.
Note that {\, •, /} and {↓k,�k, ↑k} are residuated triples with parents • and �k, and
that as the canonical extensions of the operations of the placement algebra, I is a left
and right identity for • and J is a left and right identity for �k.

2 In the version of Morrill and Valentı́n (2010[18]) wrapping is only counted from the left, and in
the “edge” version of Morrill et al. (2011[21]) there is only leftmost and rightmost wrapping,
hence these can be seen as subinstances of the general case given in this paper where k > 0
and k ∈ {+1,−1} respectively.



Fj ::= Fi\Fi+j [A\C] = {s2| ∀s1 ∈ [A], s1+s2 ∈ [C]} under
Fi ::= Fi+j/Fj [C/B] = {s1| ∀s2 ∈ [B], s1+s2 ∈ [C]} over
Fi+j ::= Fi•Fj [A•B] = {s1+s2| s1 ∈ [A] & s2 ∈ [B]} product
F0 ::= I [I] = {0} product unit
Fj ::= Fi+1↓kFi+j [A↓kC] = {s2| ∀s1 ∈ [A], s1×ks2 ∈ [C]} infix
Fi+1 ::= Fi+j↑kFj [C↑kB] = {s1| ∀s2 ∈ [B], s1×ks2 ∈ [C]} circumfix
Fi+j ::= Fi+1�kFj [A�kB] = {s1×ks2| s1 ∈ [A] & s2 ∈ [B]} wrap
F1 ::= J [J ] = {1} wrap unit

Fig. 3. Types of the placement calculus D and their interpretation

3.2 All connectives

We consider type-logical connectives in the context of the placement sorting discipline.
The connectives in types may surface as main connectives in either the antecedent or
the succedent of sequents and some connectives are restricted with respect to which of
these may occur. Hence we define sorted types of each of two polarities: input (•) or
antecedent and output (◦) or succedent; where p is a polarity, p is the opposite polarity.
The types formed by primitive connectives together with the type map T are defined
as shown in Figure 4. The structural modality and Kleene plus are limited to types of

Fpj ::= Fpi \F
p
i+j T (A\C) = T (A)→ T (C)

Fpi ::= Fpi+j/F
p
j T (C/B) = T (B)→ T (C)

Fpi+j ::= F
p
i •F

p
j T (A•B) = T (A)&T (B)

Fp0 ::= I T (I) = >
Fpj ::= Fpi+1↓kF

p
i+j T (A↓kC) = T (A)→ T (C)

Fpi+1 ::= Fpi+j↑kF
p
j T (C↑kB) = T (B)→ T (C)

Fpi+j ::= F
p
i+1�kF

p
j T (A�kB) = T (A)&T (B)

Fp1 ::= J T (J) = >
Fpi ::= Fpi &Fpi T (A&B) = T (A)&T (B) additive conjunction [5, 12]
Fpi ::= Fpi ⊕F

p
i T (A⊕B) = T (A) + T (B) additive disjunction [5, 12]

Fpi ::= Fpi u F
p
i T (A uB) = T (A) = T (B) sem. inert additive conjunction [22]

Fpi ::= Fpi t F
p
i T (A tB) = T (A) = T (B) sem. inert additive disjunction [22]

Fpi ::= �Fpi T (�A) = LT (A) modality [13]
Fpi ::= �Fpi T (�A) = T (A) rigid designator modality
Fp0 ::= !Fp0 T (!A) = T (A) structural modality [3]
Fpi ::= 〈 〉Fpi T (〈 〉A) = T (A) exist. bracket modality [14, 7]
Fpi ::= [ ]−1Fpi T ([ ]−1A) = T (A) univ. bracket modality [14, 7]
Fpi ::= ∀XFpi T (∀xA) = T (A) 1st order univ. qu. [22]
Fpi ::= ∃XFi T (∃xA) = T (A) 1st order exist. qu. [22]
F0
◦ ::= F0

◦+ T (A+) = list(T (A)) Kleene plus [22]
Fi◦ ::= ¬Fi◦ T (¬A) = ⊥ negation-as-failure [19]

Fig. 4. Primitive connectives



sort 0 because structural operations of contraction and expansion would not preserve
other sorts. The Kleene plus and negation-as-failure are restricted to succedent polarity
occurrences.

In addition to the primitive connectives we may define derived connectives which
do not extend expressivity, but which permit abbreviations. Unary derived connectives
are given in Figure 5. Continuous and discontinuous nondeterministic binary derived

.−1A =df J\A {s| 1+s ∈ A} T (.−1A) = T (A) right projection [20]
/−1A =df A/J {s|s+1 ∈ A} T (/−1A) = T (A) left projection [20]
.A =df J•A {1+s| s ∈ A} T (.A) = T (A) right injection [20]
/A =df A•J {s+1| s ∈ A} T (/A) = T (A) left injection [20]

ˇkA =df A↑kI {s| s×k0 ∈ A} T (ˇkA) = T (A) split [17]
ˆkA =df A�kI {s×k0| s ∈ A} T (ˆkA) = T (A) bridge [17]

Fig. 5. Unary derived connectives

connectives are given in Figure 6, where +(s1, s2, s3) if and only if s3 = s1+s2 or
s3 = s2+s1, and ×(s1, s2, s3) if and only if s3 = s1 ×1 s2 or . . . or s3 = s1 ×n s2
where s1 is of sort n.

B
A (A\B) u (B/A) {s| ∀s′ ∈ A, s3,+(s, s′, s3) ⇒ s3 ∈ B} T (BA ) = T (A)→ T (B) nondet. division

A⊗ B (A•B) t (B•A) {s3| ∃s1 ∈ A, s2 ∈ B,+(s1, s2, s3)} T (A⊗ B) = T (A)&T (B) nondet. product
A⇓C (A↓1C) u · · · u (A↓σAC) {s2| ∀s1 ∈ A, s3,×(s1, s2, s3) ⇒ s3 ∈ C} T (A⇓C) = T (A)→ T (C) nondet. infix
C⇑B (C↑1B) u · · · u (C↑σCB) {s1| ∀s2 ∈ B, s3,×(s1, s2, s3) ⇒ s3 ∈ C} T (C⇑B) = T (B)→ T (C) nondet. circumfix
A}B (A�1B) t · · · t (A�σAB) {s3| ∃s1 ∈ A, s2 ∈ B,×(s1, s2, s3)} T (A}B) = T (A)&T (B) nondet. wrap

Fig. 6. Binary nondeterministic derived connectives

4 Calculus

The set O of configurations of hypersequent calculus for our categorial logic is defined
as follows, where Λ is the empty string and * is the metalinguistic separator or hole:

(7) O ::= Λ | * | F0 | Fi+1{O : . . . : O︸ ︷︷ ︸
i+1 O’s

} | O,O | [O]

The sort of a configuration Γ is the number of holes it contains: |Γ |∗. Where ∆ is
a configuration of sort k+i, k > 0 and Γ is a configuration, ∆|+kΓ (∆|−kΓ ) is the
configuration resulting from replacing by Γ the k-th hole from the left (right) in ∆. The
figure

−→
A of a type A is defined by:

(8)
−→
A =


A if sA = 0
A{* : . . . : *︸ ︷︷ ︸

sA *’s

} if sA > 0



The usual configuration distinguished occurrence notation ∆(Γ ) signifies a con-
figuration ∆ with a distinguished subconfiguration Γ , i.e. a configuration occurrence
Γ with (external) context ∆. In the hypersequent calculus the distinguished hyperoc-
currence notation ∆〈Γ 〉 signifies a configuration hyperoccurrence Γ with external and
internal context ∆ as follows: where Γ is a configuration of sort i and ∆1, . . . ,∆i are
configurations, the fold Γ ⊗〈∆1, . . . ,∆i〉 is the result of replacing the successive holes
in Γ by ∆1, . . . ,∆i respectively; the distinguished hyperoccurrence notation ∆〈Γ 〉
represents ∆0(Γ ⊗ 〈∆1, . . . ,∆i〉).

A sequent Γ ⇒ A comprises an antecedent configuration Γ of sort i and a succedent
type A of sort i. The types which are allowed to enter into the antecedent are the input
(•) types and the types which are allowed to enter into the succedent are the output
(◦) types. The hypersequent calculus for the placement categorial logic defined in the
previous section has the following identity axiom:

(9) id−→
A ⇒ A

The logical rules for primitive multiplicatives, additives, exponentials,3 modalities and
quantifiers are given in Figures 7, 8, 9, 10 and 11 respectively.

3 As given, the contraction rules, which are for parastic gaps (Morrill 2011[23], Ch. 5), can
be applied only a finite number of times in backward-chaining proof search since they are
conditioned on brackets. Alternatively, the contraction rules may be given the form:

∆〈!A, [!A,Γ ]〉 ⇒ B
!C

∆〈!A,Γ 〉 ⇒ B

∆〈[Γ, !A], !A〉 ⇒ B
!C

∆〈Γ, !A, 〉 ⇒ B

We think there would still be decidability if there were a bound on the number of brackets
it would be appropriate to introduce applying the rules from conclusion to premise, but this
needs to be examined in detail.



Γ ⇒ A ∆〈
−→
C 〉 ⇒D

\L
∆〈Γ,

−−→
A\C〉 ⇒D

−→
A,Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B ∆〈
−→
C 〉 ⇒D

/L
∆〈
−−→
C/B, Γ 〉 ⇒D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

∆〈
−→
A,
−→
B 〉 ⇒D

•L
∆〈
−−→
A•B〉 ⇒D

Γ1⇒ A Γ2⇒ B
•R

Γ1, Γ2⇒ A•B

∆〈Λ〉 ⇒ A
IL

∆〈
−→
I 〉 ⇒ A

IR
Λ⇒ I

Γ ⇒ A ∆〈
−→
C 〉 ⇒D

↓kL
∆〈Γ |k

−−−→
A↓kC〉 ⇒D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B ∆〈
−→
C 〉 ⇒D

↑kL
∆〈
−−−→
C↑kB|kΓ 〉 ⇒D

Γ |k
−→
B ⇒ C

↑kR
Γ ⇒ C↑kB

∆〈
−→
A |k
−→
B 〉 ⇒D

�kL
∆〈
−−−−→
A�kB〉 ⇒D

Γ1⇒ A Γ2⇒ B
�kR

Γ1|kΓ2⇒ A�kB

∆〈*〉 ⇒ A
JL

∆〈
−→
J 〉 ⇒ A

JR
*⇒ J

Fig. 7. Multiplicative rules



Γ 〈
−→
A 〉 ⇒ C

&L1

Γ 〈
−−−→
A&B〉 ⇒ C

Γ 〈
−→
B 〉 ⇒ C

&L2

Γ 〈
−−−→
A&B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ 〈
−→
A 〉 ⇒ C Γ 〈

−→
B 〉 ⇒ C

⊕L
Γ 〈
−−−→
A⊕B〉 ⇒ C

Γ ⇒ A
⊕L1

Γ ⇒ A⊕B

Γ ⇒ B
⊕L2

Γ ⇒ A⊕B

Γ 〈
−→
A 〉 ⇒ C

uL1

Γ 〈
−−−→
A uB〉 ⇒ C

Γ 〈
−→
B 〉 ⇒ C

uL2

Γ 〈
−−−→
A uB〉 ⇒ C

Γ ⇒ A Γ ⇒ B
uR

Γ ⇒ A uB

Γ 〈
−→
A 〉 ⇒ C Γ 〈

−→
B 〉 ⇒ C

tL
Γ 〈
−−−→
A tB〉 ⇒ C

Γ ⇒ A
tL1

Γ ⇒ A tB

Γ ⇒ B
tL2

Γ ⇒ A tB

Fig. 8. Additive rules

Γ (A)⇒ B
!L

Γ (!A)⇒ B

!A1, . . . , !An⇒ A
!R

!A1, . . . , !An⇒ !A

∆〈!A,Γ 〉 ⇒ B
!P

∆〈Γ, !A〉 ⇒ B

∆〈Γ, !A〉 ⇒ B
!P

∆〈!A,Γ 〉 ⇒ B

∆〈!A, [!A,Γ ]〉 ⇒ B
!C

∆〈!A, [[Γ ]]〉 ⇒ B

∆〈[Γ, !A], !A〉 ⇒ B
!C

∆〈[[Γ ]], !A, 〉 ⇒ B

Γ ⇒ A
+R

Γ ⇒ A+

Γ ⇒ A ∆⇒ A+

+R
Γ,∆⇒ A+

Fig. 9. Exponential rules



Γ 〈
−→
A 〉 ⇒ B

�L
Γ 〈
−→
�A〉 ⇒ B

�/�Γ ⇒ A
�R

�/�Γ ⇒ �A

Γ 〈
−→
A 〉 ⇒ B

�L
Γ 〈
−→
�A〉 ⇒ B

�/�Γ ⇒ A
�R

�/�Γ ⇒ �A

∆〈
−→
A 〉 ⇒ B

[ ]−1L
∆〈[
−−−→
[ ]−1A]〉 ⇒ B

[Γ ]⇒ A
[ ]−1R

Γ ⇒ [ ]−1A

∆〈[
−→
A ]〉 ⇒ B

〈 〉L
∆〈
−−→
〈 〉A〉 ⇒ B

Γ ⇒ A
〈 〉R

[Γ ]⇒ 〈 〉A

Fig. 10. Normal (semantic) and bracket (syntactic) modality rules, where �/�Γ signifies a con-
figuration all the types of which have main connective � or �

Γ 〈
−−−−→
A[t/x]〉 ⇒ B

∀L
Γ 〈
−−→
∀xA〉 ⇒ B

Γ ⇒ A[a/x]
∀R†

Γ ⇒ ∀xA

Γ 〈
−−−−→
A[a/x]〉 ⇒ B

∃L†
Γ 〈
−−→
∃xA〉 ⇒ B

Γ ⇒ A[t/x]
∃R

Γ ⇒ ∃xA

Fig. 11. Quantifier rules, where † indicates that there is no a in the conclusion



The rules for the unary and binary derived connectives are shown in Figures 12
and 13.

Γ 〈
−→
A 〉 ⇒ B

/−1L
Γ 〈
−−−→
/−1A, *〉 ⇒ B

Γ, *⇒ A
/−1R

Γ ⇒ /−1A

Γ 〈
−→
A, *〉 ⇒ B

/L
Γ 〈
−→
/A〉 ⇒ B

Γ ⇒ A
/R

Γ, *⇒ /A

Γ 〈
−→
A 〉 ⇒ B

.−1L
Γ 〈*,

−−−→
.−1A〉 ⇒ B

*, Γ ⇒ A
.−1R

Γ ⇒ .−1A

Γ 〈*,
−→
A 〉 ⇒ B

.L
Γ 〈
−→
.A〉 ⇒ B

Γ ⇒ A
.R

*, Γ ⇒ .A

∆〈
−→
B 〉 ⇒ C

ˇkL
∆〈
−−→
ˇkB|kΛ〉 ⇒ C

∆|kΛ⇒ B
ˇkR

∆⇒ ˇkB

∆〈
−→
B |kΛ〉 ⇒ C

ˆkL
∆〈
−−→
ˆkB〉 ⇒ C

∆⇒ B
ˆkR

∆|kΛ⇒ ˆkB

Fig. 12. Unary derived connective rules

5 Grammar

We give a grammar for the Montague fragment of Dowty, Wall and Peters (1981[4],
Ch. 7). We structure atomic types N for name or (referring) nominal and CN for com-
mon noun or count noun with feature terms for gender for which there are feature con-
stants m (masculine), f (feminine) and n (neuter) and a denumerably infinit supply
of feature variables. Feature variables are understood as being universally quantified
outermost in types and thus undergo unification in the usual way. Other atomic types
are S for statement or (declarative) sentence and CP for complementizer phrase. All
these atomic types are of sort 0. Our lexicon for the Montague fragment is as shown
in Figure 14; henceforth we omit the subscript (+)1 for first wrap on connectives and
abbreviate as − the subscript −1 for last wrap.



Γ ⇒ A ∆〈
−→
C 〉 ⇒D

L1

∆〈Γ,
−→
C

A
〉 ⇒D

Γ ⇒ A ∆〈
−→
C 〉 ⇒D

L2

∆〈
−→
C

A
,Γ 〉 ⇒D

−→
A,Γ ⇒ C Γ,

−→
A ⇒ C

R

Γ ⇒ C

A

∆〈
−→
A,
−→
B 〉 ⇒D ∆〈

−→
B,
−→
A 〉 ⇒D

⊗L
∆〈
−−−−→
A⊗B〉 ⇒D

Γ1⇒ A Γ2⇒ B
⊗R1

Γ1, Γ2⇒ A⊗B

Γ1⇒ B Γ2⇒ A
⊗R2

Γ1, Γ2⇒ A⊗B

Γ ⇒ A ∆〈
−→
C 〉 ⇒D

⇓L
∆〈Γ |k

−−−→
A⇓C〉 ⇒D

−→
A |1Γ ⇒ C · · ·

−→
A |σAΓ ⇒ C

⇓R
Γ ⇒ A⇓C

Γ ⇒ B ∆〈
−→
C 〉 ⇒D

⇑L
∆〈
−−−→
C⇑B|kΓ 〉 ⇒D

Γ |1
−→
B ⇒ C · · · Γ |σC

−→
B ⇒ C

⇑R
Γ ⇒ C⇑B

∆〈
−→
A |1
−→
B 〉 ⇒D · · · ∆〈

−→
A |σA

−→
B 〉 ⇒D

}L
∆〈
−−−→
A}B〉 ⇒D

Γ1⇒ A Γ2⇒ B
}R

Γ1|kΓ2⇒ A}B

Fig. 13. Binary derived connective rules



a : �(((S↑�NA)↓S)/CNA) : ˆλBλC∃D[(B D) ∧ (C ˆD)]
and : �((S\S)/S) : ˆλAλB[B ∧ A]
and : �(((NA\S)\(NA\S))/(NA\S)) : ˆλBλCλD[(C D) ∧ (B D)]
believes : �((NA\S)/CP) : believe
bill : �Nm : ˆb
catch : �((NA\S)/NB) : catch
doesnt : �((NA\S)/(NA\S)) : ˆλBλC¬(B C )
eat : �((NA\S)/NB) : eat
every : �(((S↑NA)↓S)/CNA) : ˆλBλC∀D[(B D)→ (C D)]
finds : �((NA\S)/NB) : finds
fish : �CNn : fish
he : �((�S|Nm)/�(Nm\S)) : ˆλAλBˆ(ˇA B)
her : �(�((S↑Nf)− (J•(Nf\S)))↓(�S|Nf)) : ˆλAλBˆ(ˇA B)
her : �(((((S↑Nf)− (J•(Nf\S)))↑�Nf)− (J•((Nf\S)↑Nf)))↓−(S↑�Nf)) : ˆλAλB((A B) ˇB)
in : �(((NA\S)\(NA\S))/NB) : ˆλCλDλE((ˇin C ) (D E))
is : �((NA\S)/NB) : ˆλCλD[D = C ]
it : �(�(S↑Nn)↓(�S|Nn)) : ˆλAλBˆ(ˇA B)
it : �(((((S↑Nn)− (J•(Nn\S)))↑�Nn)− (J•((Nn\S)↑Nn)))↓−(S↑�Nn)) : ˆλAλB((A B) ˇB)
john : �Nm : ˆj
loses : �((NA\S)/NB) : loses
loves : �((NA\S)/NB) : loves
man : �CNm : man
necessarily : �(S/�S) : ˆnec
or : �((S\S)/S) : ˆλAλB[B ∨ A]
or : �(((NA\S)\(NA\S))/(NA\S)) : ˆλBλCλD[(C D) ∨ (B D)]
park : �CNn : park
seeks : �((NA\S)/�(((NB\S)/NC)\(NB\S))) : ˆλDλE((tries ˆ((ˇD find) E)) E)
she : �((�S|Nf)/�(Nf\S)) : ˆλAλBˆ(ˇA B)
slowly : �(�(NA\S)\(NA\S)) : slowly
such+that : �((CNA\CNA)/(S|NA)) : ˆλBλCλD[(C D) ∧ (B D)]
talks : �(NA\S) : talk
that : �(CP/�S) : ˆλAA
the : �(NA/CNA) : the
to : �((NA\S)/(NA\S)) : ˆλBB
tries : �((NA\S)/�(NA\S)) : ˆλBλC((ˇtries ˆ(ˇB C )) C )
unicorn : �CNn : unicorn
walk : �(NA\S) : walk
walks : �(NA\S) : walk
woman : �CNf : woman

Fig. 14. The Montague fragment



6 Analyses

We analyse the examples from the second half of Chapter 7 of Dowty, Wall and Peters
(1981[4]) — DWP; the example numbers of that source are included within displays.
The first examples involve the copula of identity. Minimally:

(10) (7-73) john+is+bill : S

For this there is the semantically labelled sequent:

(11) �Nm : ˆj ,�((NA\S)/NB) : ˆλCλD[D = C ],�Nm : ˆb ⇒ S

This has the derivation given in Figure 15.

Nm ⇒ Nm
�L

�Nm ⇒ Nm

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/Nm,�Nm ⇒ S
�L

�Nm,�((Nm\S)/Nm),�Nm ⇒ S

Fig. 15. Derivation for John is Bill

It delivers semantics:

(12) [j = b]

More subtly:

(13) (7-76) john+is+a+man : S

Inserting the same lexical entry for the copula, lexical lookup yields the semantically
annotated sequent:

(14) �Nm : ˆj ,�((NA\S)/NB) : ˆλCλD[D = C ],�(((S↑�NE)↓S)/CN E ) :
ˆλFλG∃H[(F H ) ∧ (G ˆH )],�CN m : man ⇒ S

This has the derivation given in Figure 16. The derivation delivers the semantics:

(15) ∃C[(ˇman C ) ∧ [j = C ]]

This is logically equivalent to (∨man j ), as required. This correct interaction of the
copula of identity with an indefinitely quantified complement is a nice prediction of
Montague grammar, conserved in type logical grammar, and simplified by the lower
type of the copula.

The next example involves an intensional adsentential modifier:



CNm ⇒ CNm
�L

�CNm ⇒ CNm

Nm ⇒ Nm
�L

�Nm ⇒ Nm

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/Nm,�Nm ⇒ S
�L

�Nm,�((Nm\S)/Nm),�Nm ⇒ S
↑R

�Nm,�((Nm\S)/Nm), 1 ⇒ S↑�Nm S ⇒ S
↓L

�Nm,�((Nm\S)/Nm), (S↑�Nm)↓S ⇒ S
/L

�Nm,�((Nm\S)/Nm), ((S↑�Nm)↓S)/CNm,�CNm ⇒ S
�L

�Nm,�((Nm\S)/Nm),�(((S↑�Nm)↓S)/CNm),�CNm ⇒ S

Fig. 16. Derivation for John is a man

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
�L

�Nm,�(Nm\S) ⇒ S
�R

�Nm,�(Nm\S) ⇒ �S S ⇒ S
/L

S/�S,�Nm,�(Nm\S) ⇒ S
�L

�(S/�S),�Nm,�(Nm\S) ⇒ S

Fig. 17. Derivation for Necessarily John walks



(16) (7-83) necessarily+john+walks : S

Lexical lookup yields the following semantically labelled sequent:

(17) �(S/�S) : ˆnec,�Nm : ˆj ,�(NA\S) : walk ⇒ S

This has the derivation given in Figure 17. The derivation delivers semantics:

(18) (nec ˆ(ˇwalk j ))

The following example involves an adverb:

(19) (7-86) john+walks+slowly : S

This is also assumed to create an intensional context. Lexical lookup yields:

(20) �Nm : ˆj ,�(NA\S) : walk ,�(�(NB\S)\(NB\S)) : slowly ⇒ S

This has the derivation given in Figure 18, which delivers semantics (in η-long form):

(21) ((ˇslowly ˆλA(ˇwalk A)) j )

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
�L

Nm,�(Nm\S) ⇒ S
\R

�(Nm\S) ⇒ Nm\S
�R

�(Nm\S) ⇒ �(Nm\S)

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
\L

�Nm,�(Nm\S),�(Nm\S)\(Nm\S) ⇒ S
�L

�Nm,�(Nm\S),�(�(Nm\S)\(Nm\S)) ⇒ S

Fig. 18. Derivation for John walks slowly

The next example involves an equi control verb:

(22) (7-91) john+tries+to+walk : S

We lexically analyse the equi semantics as a relation of trying between the subject and
a proposition of which the subject is agent (something Montague did not do). Lexical
lookup yields:

(23) �Nm : ˆj ,�((NA\S)/�(NA\S)) : ˆλBλC((ˇtries ˆ(ˇB C )) C ),
�((ND\S)/(ND\S)) : ˆλEE ,�(NF\S) : walk ⇒ S

This has the derivation given in Figure 19, which delivers the semantics:



Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
�L

Nm,�(Nm\S) ⇒ S
\R

�(Nm\S) ⇒ Nm\S

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
/L

Nm, (Nm\S)/(Nm\S),�(Nm\S) ⇒ S
�L

Nm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
\R

�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ Nm\S
�R

�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ �(Nm\S)

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/�(Nm\S),�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
�L

�Nm,�((Nm\S)/�(Nm\S)),�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S

Fig. 19. Derivation for John tries to walk

(24) ((ˇtries ˆ(ˇwalk j )) j )

I.e. that John tries to bring about the state of affairs that he (John) walks.
The next example involves control, quantification, coordination and also anaphora:

(25) (7-94) john+tries+to+catch+a+fish+and+eat+it : S

The sentence is ambiguous as to whether a fish is wide scope (with existential com-
mitment) or narrow scope (without existential commitment) with respect to tries, but in
both cases it must be the antecedent of it. Lexical lookup inserting a sentential coordi-
nator or the (clause) external anaphora pronoun assignment has no derivation. Lexical
lookup inserting the verb phrase coordinator and the internal (clause local) anaphora
pronoun assignment yields the semantically labelled sequent:

(26) �Nm : ˆj ,�((NA\S)/�(NA\S)) : ˆλBλC((ˇtries ˆ(ˇB C )) C ),
�((ND\S)/(ND\S)) : ˆλEE ,�((NF\S)/NG) : catch,
�(((S↑�NH)↓S)/CN H ) : ˆλIλJ∃K[(I K ) ∧ (J ˆK )],�CN n : fish,
�(((NL\S)\(NL\S))/(NL\S)) : ˆλMλNλO[(N O) ∧ (M O)],
�((NP\S)/NQ) : eat ,
�(((((S↑Nn) − (J•(Nn\S)))↑�Nn) − (J•((Nn\S)↑Nn)))↓<(S↑�Nn)) :
ˆλRλS((R S ) ˇS ) ⇒ S

Because we do not have verb form features on S this has one derivation on the pattern
[tries to catch a fish] and [eat it] in which a finite verb phrase coordinates with a base
form verb phrase. This would be excluded as required by adding the features. A wide
scope existential derivation delivers semantics with existential commitment as follows;
the derivation is too large to fit on a page.

(27) ∃C[(ˇfish C ) ∧ ((ˇtries ˆ[((ˇcatch C ) j ) ∧ ((ˇeat C ) j )]) j )]



Also because of the absence of verb form features, there is an existential narrow scope
derivation on the pattern of [to catch a fish] and [eat it] in which an infinitive verb
phrase coordinates with a base form verb phrase. This would also be straightforwardly
ruled out by including the relevant features on S. An appropriate existential narrow
scope derivation, which is too large to fit on the page, delivers the semantics without
existential commitment:

(28) ((ˇtries ˆ∃H[(ˇfish H ) ∧ [((ˇcatch H ) j ) ∧ ((ˇeat H ) j )]]) j )

The next example involves an extensional transitive verb:

(29) (7-98) john+finds+a+unicorn : S

This sentence cannot be true unless a unicorn exists. Our treatment of this is simpler
than Montague’s because while Montague had to raise the type of extensional verbs to
accommodate intensional verbs (“raising to the worst case”), and then use meaning pos-
tulates to capture the existential commitment, type logical grammar allows assignment
of the lower types which capture it automatically. Lexical lookup yields:

(30) �Nm : ˆj ,�((NA\S)/NB) : finds,�(((S↑�NC)↓S)/CN C ) :
ˆλDλE∃F [(D F ) ∧ (E ˆF )],�CN n : unicorn ⇒ S

This has the derivation given in Figure 20, which yields the semantics with existential

CNn ⇒ CNn
�L

�CNn ⇒ CNn

Nn ⇒ Nn
�L

�Nn ⇒ Nn

Nm ⇒ Nm
�L

�Nm ⇒ Nm S ⇒ S
\L

�Nm,Nm\S ⇒ S
/L

�Nm, (Nm\S)/Nn,�Nn ⇒ S
�L

�Nm,�((Nm\S)/Nn),�Nn ⇒ S
↑R

�Nm,�((Nm\S)/Nn), 1 ⇒ S↑�Nn S ⇒ S
↓L

�Nm,�((Nm\S)/Nn), (S↑�Nn)↓S ⇒ S
/L

�Nm,�((Nm\S)/Nn), ((S↑�Nn)↓S)/CNn,�CNn ⇒ S
�L

�Nm,�((Nm\S)/Nn),�(((S↑�Nn)↓S)/CNn),�CNn ⇒ S

Fig. 20. Derivation for John finds a unicorn

commitment:

(31) ∃C[(ˇunicorn C ) ∧ ((ˇfinds C ) j )]

DWP continue with a donkey sentence, for which of course Montague grammar and
our cover grammar make the wrong prediction:



(32) (7-105) every+man+such+that+he+loves+a+woman+loses+her : S

There is a dominant reading in which a woman which is the donkey anaphora antecedent
is understood universally, but Montague semantics obtains only an at best subordinate
reading in which a woman is quantified existentially at the matrix level. Lexical lookup
inserting the external anaphora assignment to her yields no derivation. Lexical insertion
of the internal anaphora assignment yields:

(33) �(((S↑NA)↓S)/CN A) : ˆλBλC∀D[(B D)→ (C D)],�CN m : man,
�((CN E\CN E )/(S|NE)) : ˆλFλGλH[(G H ) ∧ (F H )],
�((�S|Nm)/�(Nm\S)) : ˆλIλJˆ(ˇI J ),�((NK\S)/NL) : loves,
�(((S↑�NM)↓S)/CN M ) : ˆλNλO∃P [(N P) ∧ (O ˆP)],�CN f : woman,
�((NQ\S)/NR) : loses,
�(((((S↑Nf) − (J•(Nf\S)))↑�Nf) − (J•((Nf\S)↑Nf)))↓−(S↑�Nf)) :
ˆλSλT ((S T ) ˇT ) ⇒ S

The derivation of this is too large for the page, but it delivers semantics:

(34) ∃C[(ˇwoman C ) ∧ ∀K[[(ˇman K ) ∧ ((ˇloves C ) K )]→ ((ˇloses C ) K )]]

The assignment of lowest types in type logical grammar also means that existen-
tial commitment of a preposition comes without the need for devices such as meaning
postulates in Montague grammar:

(35) (7-110) john+walks+in+a+park : S

Lexical lookup for this example yields the semantically labelled sequent:

(36) �Nm : ˆj ,�(NA\S) : walk ,�(((NB\S)\(NB\S))/NC) :
ˆλDλEλF ((ˇin D) (E F )),�(((S↑�NG)↓S)/CN G) :
ˆλHλI∃J [(H J ) ∧ (I ˆJ )],�CN n : park ⇒ S

This sequent has the proof given in Figure 21, which delivers the semantics (with exis-
tential commitment):

(37) ∃C[(ˇpark C ) ∧ ((ˇin C ) (ˇwalk j ))]

Finally, DWP analyse the ambiguous example:

(38) (7-116, 7-118) every+man+doesnt+walk : S

This has a dominant reading in which the universal has narrow scope with respect to the
negation, and a subordinate reading in which the universal has wide scope with respect
to the negation. Our grammar generates only the subordinate reading. Lexical lookup
yields:

(39) �(((S↑NA)↓S)/CN A) : ˆλBλC∀D[(B D)→ (C D)],�CN m : man,
�((NE\S)/(NE\S)) : ˆλFλG¬(F G),�(NH\S) : walk ⇒ S

This has the derivation given in Figure 22, which delivers semantics:

(40) ∀C[(ˇman C )→ ¬(ˇwalk C )]
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Fig. 21. Derivation for John walks in a park



CNm ⇒ CNm
�L

�CNm ⇒ CNm

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
�L

Nm,�(Nm\S) ⇒ S
\R

�(Nm\S) ⇒ Nm\S

Nm ⇒ Nm S ⇒ S
\L

Nm,Nm\S ⇒ S
/L

Nm, (Nm\S)/(Nm\S),�(Nm\S) ⇒ S
�L

Nm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
↑R

1,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S↑Nm S ⇒ S
↓L

(S↑Nm)↓S,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
/L

((S↑Nm)↓S)/CNm,�CNm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S
�L

�(((S↑Nm)↓S)/CNm),�CNm,�((Nm\S)/(Nm\S)),�(Nm\S) ⇒ S

Fig. 22. Derivation for Every man doesn’t walk

7 Conclusion

The negation-as-failure rule is as follows:

(41)
6` Γ ⇒ A

¬R
Γ ⇒¬A

The calculus is presented without the Cut rule:

(42)
Γ ⇒ A ∆〈

−→
A 〉 ⇒ B

Cut
∆〈Γ 〉 ⇒ B

This is because transitivity of inference is unsuitable in the presence of the negation-
as-failure (Morrill and Valentı́n 2010[19]). We believe that the remaining rules enjoy
Cut-elimination. Thus, Morrill et al. (2011[21]) appendix proves Cut-elimination for
the displacement calculus D; Moortgat (1995[7]) proves Cut-elimination for the bracket
modalities in ordinary sequent calculus, and the other rules follow patterns in standard
logic or linear logic for which there is Cut-elimination. Cut-free backward chaining
hypersequent proof search operates in a finite space and so constitutes a terminating
procedure for parsing/theorem-proving. Cut-free categorial sequent proof search still
suffers from (finite) spurious ambiguity, but this can be treated by normalisation (Mor-
rill 2011[15]). This is the basis of the implementation of the placement logic used for
this paper: the parser/theorem prover CatLog of Morrill (2012[16]). Apart from the
shorter-term objective of refining the CatLog implementation of the current type for-
malism in hypersequent calculus, we define as a longer times goal the implementation
of the same logic in proof nets.
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