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Jośe Maŕıa Alonso–Meijide1 Francesc Carreras2

Julián Costa3 Ignacio Garćıa–Jurado4
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Abstract

A new coalitional value is proposed under the hypothesis of isolated
unions. The main difference between this value and the Aumann–Drèze
value is that the allocations within each union are not given by the Shap-
ley value of the restricted game but proportionally to the Shapley value of
the original game. Axiomatic characterizations of the new value, examples
illustrating its application and a comparative discussion are provided.
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1 Introduction

The cooperative game theory deals with situations where a group of agents (play-

ers) want to share the benefits derived from their cooperation. It offers mathemat-

ical tools to propose, according to different criteria, allocation vectors that could

be acceptable for the agents. This theory has given rise to relevant applications in

many fields (see e.g. Fiestras–Janeiro et al., 2011).
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Corresponding author. E–mail: julian.costa@udc.es

4Departamento de Mateḿaticas. Facultade de Inforḿatica. Universidade da Coruña. Spain.

1

*Manuscript
Click here to download Manuscript: ppShapley.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41779219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/dam/download.aspx?id=165387&guid=1634193d-65ff-4d53-9dd9-8a784534d62c&scheme=1


Among those mathematical tools there are the so–calledvalues. A value pro-

poses for every cooperative game an allocation vector that represents a fair com-

promise for the players. Probably, the most important value is the Shapley value

(Shapley, 1953), denoted here byΦ. Moretti and Patrone (2008) is a survey that

shows the impact of the Shapley value in several scientific disciplines.

The notion of cooperative game with acoalition structure(a partition of the

setN of players intounions) was considered in Aumann and Drèze (1974), and a

modification of the Shapley value was proposed. Later on, othercoalitional values

(i.e. values for cooperative games with a coalition structure) have been introduced

and analyzed in the game theoretical literature. The two most cited coalitional

values are the Aumann–Drèze value, denoted here byα, and the Owen value

(Owen, 1977), denoted here byΩ. They are based on two different interpretations

of the coalition structure that give rise to two different approaches when defining

coalitional values:

1. Aumann and Dr̀eze consider that, once a partition{P1, . . . ,Pm} of N has

been formed,m independent cooperative situations arise (isolated unions),

so their value allocates the benefits generated by eachPk to its members by

applying the Shapley value to the restricted game.

2. Instead, Owen considers the partition rather as a way to influence the nego-

tiation among the agents (bargaining unions), so his value allocates the ben-

efits generated byN by applying the Shapley value twice: first, to sharing

the total utility among the unions and, then, to sharing among the members

of each union the payoff obtained in the first step.1

Example 1 (A glove game)

To illustrate both approaches, let us consider an elementary glove game with three

players where player 1 has two right gloves and players 2 and 3 have one left

glove each. Only each left–and–right pair of gloves has a worth of 1; otherwise,

the worth is 0. The cooperative gamev associated to this situation is given by

v( /0) = v({1}) = v({2}) = v({3}) = v({2,3}) = 0,

1The first sharing takes place in thequotient game, played by unions; the second sharing applies
to games defined in eachPk that we will not describe. We refer the reader to Owen (1977).
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v({1,2}) = v({1,3}) = 1, v(N) = 2.

Consider now that partitionP = {{1,2},{3}} forms. The Aumann–Drèze

value yields the allocationα(v,P) = (1/2,1/2,0). Indeed, onceP is formed, this

value merely takes into account that players 1 and 2 are symmetric (inP1) and

must share 1 unit, whereas player 3 is a null player (inP3). Instead, the Owen

value yields the allocationΩ(v,P) = (1,1/2,1/2). It first allocates to the unions

3/2 and 1/2, respectively, and assigns then 1 to player 1, 1/2 to player 2, and 1/2

to player 3. Note that the shared worth is different.

In this paper we adopt approach 1, thus leaving aside the Owen value defi-

nitely, and introduce a new coalitional value, called the proportional partitional

Shapley value and denoted asπ, as an alternative to the Aumann–Drèze value.

Hence we assume that, once a partition forms, a new cooperative situation arises

in each union independently of the remaining ones. However, we wish to take

into account in some manner the outside options of the players, reflected by the

Shapley value of the original game. More precisely, given a cooperative gamev in

N with a coalition structureP = {P1, . . . ,Pm}, our value divides each worthv(Pk)
among the players inPk proportionally to the Shapley value of these players in

gamev.

Thus, in Example 1 we obtain the allocationπ(v,P) = (2/3,1/3,0) since the

Shapley value isΦ(v) = (1,1/2,1/2). It reflects that player 1 is in a better position

than player 2 because he might join player 3 if{1,2} collapses. We will restrict

the domain of our value to the class of monotonic games in order to avoid some

problems that often arise when using proportionality.

Example 2 (A second glove game)2

Let N = {r, r, `, `,`,`} be, informally, the set of players, each one with a glove:

r means righty,̀ means lefty. Only each left–and–right pair of gloves has a worth

of one. The glove gamev describing this is a linear combination of 45 unanimity

games that we omit. The Shapley value is

Φ(v) =
1
15

(11,11,2,2,2,2)

2We are grateful to a reviewer for suggesting this numerical example.
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and, for any partitionP = {A, . . .}, whereA = {r, r, `}, the Aumann–Dr̀eze and

proportional partitional Shapley values respectively yield

α(v,P) =
1
6
(1,1,4,0,0,0) and π(v,P) =

1
24

(11,11,2,0,0,0).

These allocations do not depend on the way the remaining three players` are

arranged (a general property ofα andπ). Instead, for the Owen value, this greatly

matters. There are three possibilities:

P1 = {A,{`},{`},{`}}, P2 = {A,B,{`}} and P3 = {A,C},

whereB = {`,`} andC = {`,`,`}. Thus for the Owen value we obtain

Ω(v,P1) = 1
12(9,9,3,1,1,1), Ω(v,P2) = 1

36(25,25,10,3,3,6), and

Ω(v,P3) = 1
12(7,7,4,2,2,2).

This example is interesting. First, because it shows a difference between the

Aumann–Dr̀eze value and the proportional partitional Shapley value: the former

is concerned with the possibilities existing inA = {r, r, `} only, and hence it gives

the bulk of the payoff to player̀; instead, the latter recalls the strategic strength

in the original game, thus avoiding a striking change in the payout ratios that

would not satisfy the righties. Second, it shows the main difference between the

Aumann–Dr̀eze and proportional partitional Shapley values and the Owen value.

The former two satisfy local efficiency, whereas the latter satisfies efficiency, as

the Shapley value does.

The background for our new coalitional value shares ideas with the propor-

tional coalitional Shapley value (Alonso–Meijide and Carreras, 2011), which fol-

lows approach 2. In Wiese (2007) and Casajus (2009) other variations of the

Aumann–Dr̀eze value can be found that also take into account, in a way different

from ours, the players’ outside options.

The organization of the paper is as follows. We assume that the reader is

generally familiar with the basic ideas of the cooperative game theory (including

simple games) and omit, therefore, a preliminary section. In Section 2 we for-

mally define the Aumann–Drèze value and the proportional partitional Shapley

value and study the properties of the latter. Section 3 includes several examples

to illustrate the use of this new value. Section 4 is devoted to some comparative

discussion and final remarks.
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2 The proportional partitional Shapley value

Let N = {1,2, . . . ,n} represent a finite but otherwise arbitrary set of players. We

will consider TU games only (just “games”, in the sequel). The vector space

of games inN will be denoted asG(N), and asMG(N) the subclass (cone) of

monotonic games, which will be the domain of our new value. The set of partitions

(coalition structures) inN will be denoted asP(N).
For every nonempty coalitionT ⊆ N, the unanimity gameuT is defined by

uT(S) = 1 if T ⊆ S or elseuT(S) = 0. Every gamev∈ MG(N) can be uniquely

written as a linear combination of unanimity games using the Harsanyi dividends

(Harsanyi, 1959):

v = ∑
T⊆N : T 6= /0

cTuT where cT = ∑
S⊆T

(−1)t−sv(S), t = |T|, s= |S|.

The following relationship among monotonic games will be useful later:

v+v− = v+ where v+ = ∑
T : cT>0

cTuT and v− = ∑
T : cT<0

−cTuT .

The Shapley value is the mapΦ : G(N)→ RN defined by

Φi(v) = ∑
S⊆N\{i}

s!(n−s−1)!
n!

[v(S∪{i})−v(S)],

for all v∈G(N) andi ∈ N, wheres= |S| for everyS⊆ N.

The Shapley value is the only value onMG(N) that satisfies the following

properties3:

• Efficiency: ∑
i∈N

Φi(v) = v(N) for all v∈MG(N).

• Null player property4: if i is null in v thenΦi(v) = 0.

• Symmetry: if i, j are symmetric inv thenΦi(v) = Φ j(v).

• Additivity: Φ(v+w) = Φ(v)+Φ(w) for all v,w∈MG(N).

3An analogous characterization holds inG(N).
4It is noteworthy that, ifv∈ MG(N), thenΦi(v) = 0 if, and only if, i is a null player inv, so

that the null player property could be so stated forΦ in this subclass of games.
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Now, we introduce two key concepts for this paper: those ofpartitional value,

using local efficiency, andpartitional Shapley value, as a generalization of the

Shapley value. We state them forG(N) but will use both notions also inMG(N).

Definition 3 A partitional valueon G(N) is a mapφ : G(N)×P(N)→ RN such

that

∑
i∈Pk

φi(v,P) = v(Pk)

for all v ∈G(N), P∈ P(N) and Pk ∈ P (we call thislocal efficiency).

Definition 4 A partitional Shapley valueon G(N) is a partitional valueφ on G(N)
such thatφ(v,PN) = Φ(v) for all v ∈G(N).5

We next recall the Aumann–Drèze value (Aumann and Drèze, 1974) and in-

troduce the proportional partitional Shapley value.

Definition 5 TheAumann–Dr̀eze valueis the partitional Shapley valueα defined

on G(N) by

αi(v,P) = Φi(vP(i))

for all v ∈G(N), P∈ P(N) and i∈ N, where P(i) denotes the union of P to which

i belongs, and vP(i) denotes the restriction of game v to P(i).

Definition 6 Theproportional partitional Shapley valueis the partitional Shapley

valueπ defined on MG(N) by

πi(v,P) =


Φi(v)

∑ j∈P(i)
Φ j(v)

v(P(i)) if i is not a null player in v,

0 otherwise,

for all v ∈MG(N), P∈ P(N) and i∈ N, where P(i) denotes again the union of P

to which i belongs.

The definition makes sense because, ifi is not null in a monotonic gamev,

thenΦi(v) > 0 and hence the denominator does not vanish.

Our next goal will consist in establishing the basic properties of the new value

and obtaining two axiomatic characterizations, which will be discussed in Section

4. We first state these properties for a generic partition valueφ onMG(N).
5PN denotes the trivial partition{N}.
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• Nonnegativity (NN): φi(v,P)≥ 0 for all v∈MG(N), P∈ P(N) andi ∈ N.

• Null player property (NPP): if i is null in v thenφi(v,P) = 0 for all P∈P(N).

• Symmetry within unions (SWU): if i, j ∈N are symmetric inv andP(i) = P( j)

thenφi(v,P) = φ j(v,P).

• Proportionality within unions (PWU): if i, j ∈N andP(i) = P( j) then, for all

v∈MG(N),
φi(v,P)φ j(v,PN) = φ j(v,P)φi(v,PN).

• Weighted additivity (WA)6: for all v,w∈MG(N) andP∈ P(N),

hφ(v+w,P) = hφ(v,P)+hφ(w,P),

where, for alli ∈ N andv∈MG(N),

hφ
i (v,P) =

 φi(v,P)
∑ j∈P(i)

φ j (v,PN)

v(P(i))
if v(P(i)) > 0,

φi(v,PN) if v(P(i)) = 0.

The next results provide alternative characterizations of the new value.

Theorem 7 (First axiomatic characterization of the proportional partitional Shap-

ley value) The proportional partitional Shapley valueπ is the unique partitional

Shapley value on MG(N) that satisfies NPP and PWU.

Proof. (Existence) It is straightforward to check thatπ is a partitional Shapley

value onMG(N) that satisfies NPP7 and PWU.

(Uniqueness) Letφ be a partitional Shapley value onMG(N) satisfying NPP

and PWU. We show thatφ = π. Let v∈MG(N), P∈ P(N) andi ∈ N.

• If i is a null player inv, thenφi(v,P) = 0 = πi(v,P) sinceφ andπ satisfy

NPP.

• If P(i) = {i}, thenφi(v,P) = v({i}) = πi(v,P) sinceφ andπ are partitional

values.
6This property recalls the classical additivity forφ: the difference lies in the attached weights.
7π also satisfies a null playerstrongproperty (NPP*):πi(v,P) = 0 iff i is null in v or v(P(i)) = 0.
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• If every j ∈ P(i) different from i is a null player, thenφi(v,P) = v({i}) =
πi(v,P) sinceφ andπ are partitional values and satisfy NPP.

• In any other case, takej ∈ P(i) such thatj is not a null player. Then, sinceφ
andπ are partitional Shapley values and satisfy PWU,

φi(v,P)
φ j(v,P)

=
Φi(v)
Φ j(v)

=
πi(v,P)
π j(v,P)

.

This means thatφ j(v,P) = λπ j(v,P) for every non–null playerj ∈ P(i),

whereλ is a constant which does not depend onj. Sinceφ andπ are parti-

tional values, it is clear thatλ = 1, and henceφi(v,P) = πi(v,P).

We conclude thatφ = π. �

Theorem 8 (Second axiomatic characterization of the proportional partitional

Shapley value) The proportional partitional Shapley valueπ is the unique parti-

tional value on MG(N) that satisfies NN, NPP, SWU and WA.

Proof. (Existence) Again, it is straightforward to check thatπ satisfies NN, NPP

and SWU. We proceed to prove WA. Letv∈MG(N), P∈ P(N) andi ∈ N.

• If i is a null player andv(P(i)) = 0, thenhπ
i (v,P) = πi(v,PN) = 0 = Φi(v)

sinceπ is a partitional Shapley value.

• If i is a null player andv(P(i)) > 0, then by NPPhπ
i (v,P) = 0 = Φi(v).

• If i is not a null player andv(P(i)) = 0, thenhπ
i (v,P) = πi(v,PN) = Φi(v)

becauseπ is a partitional Shapley value.

• Finally, if i is not a null player andv(P(i)) > 0, by the definition ofπ, which

is a partitional Shapley value, we get

hπ
i (v,P) =

Φi(v)
∑ j∈P(i)

Φ j(v)
v(P(i))

∑ j∈P(i)
π j(v,PN)

v(P(i))
= Φi(v)

∑ j∈P(i)
Φ j(v)

∑ j∈P(i)
Φ j(v)

which reduces toΦi(v).
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Summing up, we findhπ(v,P) = Φ(v) for all v∈ MG(N). Therefore, the re-

lationshiphπ(v+ w,P) = hπ(v,P)+hπ(w,P) for anyv,w∈ MG(N) follows from

the additivity ofΦ.

(Uniqueness) Letφ be a partitional value onMG(N) satisfying NN, NPP, SWU

and WA. We show thatφ is determined. Letv∈MG(N) andP∈ P(N).

• If v = 0 then, by NPP,φi(v,P) = 0 for all i ∈ N.

• Let uT be the unanimity game for a given nonempty coalitionT ⊆ N. Let

v = cuT with c > 0 andTk = T ∩Pk for eachPk ∈ P. If i /∈ T then i is a

null player inv andφi(v,P) = 0 by NPP. LetTk 6= /0. Sinceφ is a partitional

value,

∑
i∈Pk

φi(v,P) = ∑
i∈Tk

φi(v,P) = v(Pk) = cuT(Pk),

and hence

∑
i∈Pk

φi(v,P) =
{

c if T ⊆ Pk,
0 otherwise.

Since all players inTk are symmetric inv, by SWU we have

φi(v,P) =
{

c/tk if i ∈ T andT ⊆ Pk,
0 otherwise,

for all i ∈ Pk, wheretk = |Tk|. This determinesφ in this case.

• Let P = PN and i ∈ N. It is clear thatP(i) = N. Let v be any game. If

v(N) = 0 thenhφ
i (v,P

N) = φi(v,PN). If, instead,v(N) > 0, using thatφ is a

partitional value we have

hφ
i (v,P

N) = φi(v,PN)
∑ j∈N φ j(v,PN)

v(N)
= φi(v,PN).

From WA it follows thatφ(v+ w,PN) = φ(v,PN)+ φ(w,PN) for all v,w ∈
MG(N). Then, if we considerφ as a function only ofv, onceP = PN has

been fixed, it is easily seen thatφ satisfies efficiency, the null player prop-

erty, symmetry and additivity, and the uniqueness of the Shapley value gives

φ(v,PN) = Φ(v) for all v∈MG(N).

• Let v= ∑r
`=1v` in MG(N) andi ∈N. (a) If v(P(i)) = 0 thenφi(v,P) = 0 since

φ is a partitional value satisfying NN. (b) Ifv(P(i)) > 0, letR= {1,2, . . . , r},

9



R+ = {`∈R : v`(P(i)) > 0} andR0 = R\R+, soR0 = {`∈R : v`(P(i)) = 0}
becausev` is monotonic. By WA we have

φi(v,P)
∑ j∈P(i)

φ j (v,PN)

v(P(i))
=

∑
`∈R+

φi(v`,P)
∑ j∈P(i)

φ j(v`,PN)

v`(P(i))
+ ∑

`∈R0

φi(v`,P
N).

By the previous item,∑ j∈P(i)
φ j(v,PN) = ∑ j∈P(i)

Φ j(v), which is positive

sincev(P(i)) > 0 implies that somej ∈ P(i) is not null inv (recall footnote

4). Thus, ifφi(v`,P) is uniquely determined for all̀∈R+ then so isφi(v,P)
by solving the above equation for it.

• Finally, let v∈ MG(N) andP∈ P(N) be arbitrary. Usingv+v− = v+, the

decomposition ofv+ andv− as linear combinations of unanimity games, and

the preceding item, it follows thatφ is completely determined on(v+,P) and

(v−,P) and hence on(v,P). �

3 Several examples

We sketch here some applications of the proportional partitional Shapley value.

Example 9 (Allocating primary assistance centres)

Due to budget constraints, the National Health Ministry (NHM) of a country re-

stricts the creation of primary assistance centres (PACs) in regions with low popu-

lation (< 50000 inhabitants). Villages in such a region are allowed to freely form

disjoint unions, and only unions with at least 5000 inhabitants will obtain a PAC.

The final decision will be the location of the PAC for each such union. It will

be placed on the centre of gravity of the concerned villages, which minimizes the

weighted sum of squares of distances and is easy to compute; however, the “mass”

attached to each village will not be its population but a different parameter related

to it.

To fix ideas, let A(0,0), B(3,0), C(4,1), D(3,3) and E(1,3) be the locations of

the five villages 1, 2, 3, 4 and 5 of a region (see Fig. 1), and 4230, 3160, 2120,
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2005 and 1355 be, respectively, their populations (in all, 12870 inhabitants). The

NHM takes into account the weighted majority game

v≡ [5000;4230,3160,2120,2005,1355]

(a simple but improper, i.e. not superadditive, game) because the unions that

would get a PAC constitute, precisely, the family of winning coalitions inv:

W(v) = {{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{3,4,5}, and supersets}.

Since small differences between populations are considered not meaningful, in or-

der to locate PACS the NHM prefers using parameters proportional to the Shapley

value of this game, which disregards irrelevant weight differences and is given by

Φ(v) = 1
12(4,3,2,2,1).

However, at the end all will depend on the arrangement of villages into unions.

Then, the NHM needs somecoalitional valueto attach weights and to compute

centres of gravity. Once the unions are formed, the process stops since they are

not interested in a further bargaining “at a higher level”, so the Owen value is not

suitable here. The alternative consists in using either the Aumann–Drèze value or

the proportional partitional Shapley value that we have introduced in the previous

section.

Requirements such as the reduction to the Shapley value whenever the parti-

tion is P = PN, the null player property, symmetry within unions, and local effi-

ciency make sense and are easily interpretable in this context, but they are satisfied

by both values. Instead, the crucial property of interest for the NHM is proportion-

ality within unions, and this leads to choosing the proportional partitional Shapley

value. The reason is that, by social efficiency when computing centres of gravity

of unions, the NHM must respect the priority of bigger towns and hence the rele-

vant differences in population between the concerned towns, which are given by

the Shapley value ofv. (If the Aumann–Dr̀eze value were applied e.g. to partition

P = {{1,5},{2,3,4}}, it would yield 1/2 for both villages 1 and 5, and hence a

PAC at the midpoint of the segment joining them, in spite of the great difference

in population and in Shapley value.)

Thus, between 52 possible partitions of the villages, 6 of them imply no PAC,

36 give rise to one PAC, and the remaining 10 give rise to two PACs. Here are

some examples:
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• If P = {{1},{2,5},{3,4}} then no PAC is assigned.

• If P= {{1,4},{2},{3,5}} then one PAC is assigned to union{1,4} at point

G14 = (1,1).

• If P = {{1,5},{2,3,4}} then two PACs are assigned: to union{1,5} at

point G15 =(1/5, 3/5) and to union{2,3,4} at pointG234 =(23/7, 8/7) (see

Fig. 1).

A B

C

DE

G15

G234

x

y

Fig. 1: Location of primary assistance centres forP = {{1,5},{2,3,4}}

Example 10 (Sharing public funds)

A specific industrial sector in a given region consists of a setN of enterprises.

The regional government wishes to give financial support to collaboration projects

endeavored by the enterprises, each one of which may remain isolated or intervene

in one project at most. Thus, the set of projects is given by (i.e. equivalent to) a

partitionP of N.

The individual capabilities and the synergies derived from collaborations be-

tween the enterprises have been evaluated by the government in terms of expected

benefits by means of a cooperative gamev in N. Thus, the Shapley valueΦ(v) de-

scribes the relative importance of each enterprise in the sector taking into account

all possible collaborations.
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Each projectPk will be rewarded by sharingv(Pk) among the participants in

the project. Since projects cannot be combined to give rise to “superprojects”,

the Owen value is not suitable here. The alternative consists in using either the

Aumann–Dr̀eze value or the proportional partitional Shapley value.

The governmental regulation establishes that the allocation to the members

of a project must take into account the relevance of each member in the sector.

The simplest way to do this consists in sharing each budget proportionally to the

Shapley valueΦ(v) (for the involved enterprises), so the proportional partitional

Shapley value seems to be the suitable option.

For example, letn = 4 and assume that the individual capability (amounts

expressed in thousands of US Dollars) is given by

v({1}) = 36000, v({2}) = v({3}) = 24000, v({4}) = 18000.

Gamev is completed this way: if|S| ≥ 2 then

v(S) = (1+∑
i∈S

σi)∑
i∈S

v({i}),

whereσ1 = 0.15,σ2 = σ3 = 0.20 andσ4 = 0.05 are thesynergy coefficients. For

example,v(N) = 163200. The Shapley value of this game is

Φ(v) = (53975,41125,41125,26975).

Assume that partitionP = {{1,2},{3,4}} forms. Then the budgets to be

shared arev(P1) = 81000 andv(P2) = 52500. The proportional partitional Shap-

ley value yields

π1(v,P)≈ 45972, π2(v,P)≈ 35028, π3(v,P)≈ 31704, π4(v,P)≈ 20796,

which keeps within each union the proportionality given byΦ(v). As a matter of

comparison, the Aumann–Drèze value would give

α1(v,P) = 46500, α2(v,P) = 34500, α3(v,P) = 29250, α4(v,P) = 23250.

We remark that the proportional partitional Shapley value reflects the effects of

the synergy coefficients in the whole sector, whereas the Aumann–Drèze value

takes into account only their effects within each union.
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Example 11 (Simple games and power indices)

Values and coalitional values are often used as power indices by applying them to

simple games. These games form a subclassSG(N) of monotonic games and are

useful for describing and analyzing binary voting procedures. We will discuss a

bit the possibilities to act as power indices of the Aumann–Drèze value and the

proportional partitional Shapley value.

We first remark that the axiomatic characterizations of the proportional parti-

tional Shapley value established in Section 2 can be easily translated to subclass

SG(N), thus supporting the meaning of this value as a power index. Indeed, The-

orem 5 (statement and proof) applies toSG(N) without any change if the axioms

are restricted to this class. In the case of Theorem 6, only WA does not make

sense inSG(N). In the Shapley value case, additivity was successfully replaced in

Dubey (1975) with thetransfer property:

Φ(v∨w)+Φ(v∧w) = Φ(v)+Φ(w) for all v,w∈ SG(N).

Here it is only necessary to replace WA with a “weighted transfer” property. Of

course, also the proof requires some small modifications in this domain. We omit

the details.

Let v be a proper (i.e. superadditive) simple game. This means that there are

no disjoint winning coalitions. Some general rules hold for the Aumann–Drèze

valueα: given a coalition structureP, (a) if Pk is a minimal winning coalition in

v thenα(v,P) allocates 1/|Pk| to each member ofPk and 0 otherwise; (b) ifPk is

winning but not minimal winning thenα allocates in all 1 unit to the members

of Pk, but the sharing depends on the minimal winning coalitions included inPk;

(c) if Pk is not winning then all its members get 0. Only property (c) holds for

the proportional partitional Shapley valueπ. The following numerical example

illustrates these assertions.

Let us consider the weighted majority gamev ≡ [3;2,1,1,1]. The family

of minimal winning coalitions isWm(v) = {{1,2},{1,3},{1,4},{2,3,4}} and

Φ(v) = (3/6,1/6,1/6,1/6). Some partitions are studied in Table 1.

Now let v be an improper simple game. Rules (a), (b) and (c) above still hold

for the Aumann–Dr̀eze valueα if only one (minimal or not) winning coalition,

or none of them, appears in the partition. However, a new rule (d) says that if

14



partitionP α(v,P) π(v,P)
{{1,2},{3},{4}} (1/2,1/2,0,0) (3/4,1/4,0,0)
{{1},{2,3,4}} (0,1/3,1/3,1/3) (0,1/3,1/3,1/3)
{{1,2,3},{4}} (4/6,1/6,1/6,0) (3/5,1/5,1/5,0)
{{1},{2},{3,4}} (0,0,0,0) (0,0,0,0)

Table 1:α andπ onv≡ [3;2,1,1,1]

two or more winning coalitions are unions ofP then a worth of one unit is shared

in each of them. This is the main difference with the proper case. Here, the

proportional partitional Shapley valueπ satisfies (c) and (d). A new numerical

example illustrates these assertions.

Let us consider nowv≡ [5;4,3,2,2,1], the game of Example 9. Here

Wm(v) = {{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{3,4,5}}

andΦ(v) = 1
12(4,3,2,2,1). See some partitions in Table 2.

partitionP α(v,P) π(v,P)
{{1,2},{3,4,5}} (1/6)(3,3,2,2,2) (1/35)(20,15,14,14,7)
{{1,2,3,4},{5}} (1/6)(2,2,1,1,0) (1/11)(4,3,2,2,0)
{{1,2,3},{4,5}} (1/3)(1,1,1,0,0) (1/9)(4,3,2,0,0)
{{1,5},{2,3,4}} (1/6)(3,4,1,1,3) (1/35)(28,15,10,10,7)
{{1,3},{2,4},{5}} (1/2)(1,1,1,1,0) (1/15)(10,9,5,6,0)

Table 2:α andπ onv≡ [5;4,3,2,2,1]

Our conclusion is that the Aumann–Drèze value is not a suitable power index:

it disregards a lot of information given by the original game and ends up being

too “drastic”. On the contrary, we contend that, precisely because of the PWU

property, the proportional partitional Shapley value looks more interesting as a

measure of coalitional power. Indeed, due to PWU, all power relationships in

the original game among players of the same union are kept after the coalition

formation process. We feel that this should please politicians, who do not like too

radical and troubling variations.

For example, in Table 1, it does not seem very reasonable that under par-

tition P = {{1,2},{3},{4}} player 1 obtains by means ofα the same coali-

tional power as player 2. The same equal sharing of power would result ifv≡

15



[136;130,50,50,30,10] represents a parliamentary body andP = {{1,2}, . . .},
in spite of beingWm(v) = {{1,2},{1,3},{1,4},{1,5},{2,3,4,5}} andΦ(v) =
1
10(6,1,1,1,1). The Aumann–Dr̀eze value yields hereα(v,P) = 1

2(1,1,0,0,0)
whereas the proportional partitional Shapley value yieldsπ(v,P) = 1

7(6,1,0,0,0).
Formally, let i, j be any two players with weightswi ,w j . It is well known

that if wi ≥ w j thenΦi(v) ≥ Φ j(v). In our coalitional structure framework, and

provided thatP(i) = P( j), we have: ifΦi(v) ≥ Φ j(v) thenαi(v,P) ≥ α j(v,P) and

πi(v,P) ≥ π j(v,P), but the most interesting feature is that ifΦi(v) > Φ j(v) and,

moreover,P(i) is winning inv, thenπi(v,P) > π j(v,P) whereas it may well happen

thatαi(v,P) = α j(v,P). And this holds even in simple games that are not weighted

majority games.

Example 12 (Extension of the new value to level coalition structures)

A level coalition structurein N is a sequence of coalition structures

P = {P(0),P(1), . . . ,P(r)},

whereP(0) = PN andr ≥ 1 (thus including the basic case dealt with above, which

arises forr = 1). We require that, for everyh with 0≤ h < r, P(h+1) is a refine-

ment ofP(h), that is, each member ofP(h) belongs toP(h+1) or splits into smaller

pieces belonging toP(h+1). The extension of the Owen value to this new setup

was treated in Owen (1977) and Winter (1989). We wish to discuss here the pos-

sibility of extending the notion of proportional partitional Shapley value to this

more general concept of coalition structure. To this end, the coherent inductive

definition of a new value, theproportional partitional level valueπP , which will

act on each levelh = 1,2, . . . , r, is as follows. Ifi ∈ N, 1≤ h≤ r, andP(h)
(i) is the

union to whichi belongs inP(h),

πP
i (v,P(h)) =


πP

i (v,P(h−1))

∑
j∈P(h)

(i)

πP
j (v,P(h−1))

v(P(h)
(i) ) if i is not a null player inv,

0 otherwise.

Coherence means thatπP (v,P(1)) = π(v,P(1)). A numerical example will illustrate

the procedure. Let us takev≡ [4;5,4,3,2,1,1], where

Wm(v) = {{1},{2},{3,4},{3,5},{3,6},{4,5,6}},

16



and letP = {P(0),P(1),P(2)} with

P(0) = PN, P(1) = {{1,2},{3,4,5,6}}, P(2) = {{1},{2},{3,4,5},{6}}.

Then we have{1,2},{3,4,5,6},{1},{2},{3,4,5} ∈W(v) but {6} /∈W(v). The

results of applying the level value are displayed in Fig. 2.

A great difference between the Owen value and the Aumann–Drèze and the

proportional partitional Shapley value is that, in the latter two, the allocation

within any union is not affected by any change in other unions.

{1} {2} {3 4 5} {6}

1 1 3/5 1/5 1/5 0

{1, 2} {3, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

1/2 1/2 3/6 1/6 1/6 1/6

7/20 7/20 3/20 1/20 1/20 1/20

P (2)

πP [v; P (2)]

P (1)

πP [v; P (1)]

P (0)

Φ[v]

Fig. 2: Level coalition structure and level value forv≡ [4;5,4,3,2,1,1]

4 Some discussion

We include here some suplementary information. First, two axiomatic charac-

terizations of the Aumann–Drèze value on monotonic games using two classical

properties.8 Second, a remark supplying counterexamples to show thatπ does not

8Both characterizations are valid also onG(N). We omit their proofs because they are quite
similar to the classical ones. In particular, Theorem 14 is analogous to the original characterization
of this value onG(N) (Aumann and Dr̀eze, 1974). The difference lies in the final part of the proof.
Regarding Theorem 13, we recall that the balanced contributions property for the Shapley value
asserts thatΦi(v)−Φi(v− j) = Φ j(v)−Φ j(v−i) for all v∈ G(N) and i, j ∈ N. Herev−k denotes
the restriction ofv to N\{k} for anyk∈ N. This property was introduced and proved in Myerson
(1980).
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satisfy these properties andα does not satisfy any of NPP*, PWU and WA. Third,

two remarks on the logical independence of the axiomatic systems used in Theo-

rems 7 and 8, respectively. Finally, a summary of all properties considered in the

paper, displayed in Table 3.

Let us recall two classical coalitional properties not yet mentioned here that

we state for a partitional valueφ onMG(N).

• Additivity (ADD): φ(v+w,P) = φ(v,P)+φ(w,P) for all v,w∈MG(N) and

P∈ P(N).

• Balanced contributions within unions (BCWU): if P(i) = P( j) for somei, j ∈
N then, for allv∈MG(N),

φi(v,P)−φi(v,P− j) = φ j(v,P)−φ j(v,P−i),

where, for anyk∈ N, we define

P−k = {P(k) \{k},{k}}∪{Pi : Pi ∈ P,Pi 6= P(k)}.

Theorem 13 (First axiomatic characterization of the Aumann–Drèze value) The

Aumann–Dr̀eze valueα is the unique partitional value on MG(N) that satisfies

BCWU. �

Theorem 14 (Second axiomatic characterization of the Aumann–Drèze value)

The Aumann–Dr̀eze valueα is the unique partitional value on MG(N) that satis-

fies NPP, SWU and ADD.�

Remark 15 (Properties that distinguish betweenπ andα)

Let n = 3, P = {{1,2},{3}}, andv,w∈MG(N) be the glove games defined by

v({1,2}) = v({1,3}) = v(N) = 1, andv(S) = 0 otherwise, and
w({1}) = w({1,2}) = w({1,3}) = w({2,3}) = 1,w(N) = 2,
andw(S) = 0 otherwise.

(i) π does not satisfy ADD. Indeed,

π1(v,P)+π1(w,P) = 4/5+2/3 6= 10/7 = π1(v+w,P).
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(ii) π does not satisfy BCWU. In effect,

π1(v,P)−π1(v,P−2) = 4/5−0 6= 1/5−0 = π2(v,P)−π2(v,P−1).

(iii) α does not satisfy NPP* (see footnote 7). Player 2 is not null inw and

w(P(2)) 6= 0 butα2(w,P) = 0.

(iv) α does not satisfy PWU. We haveα(v,PN) = Φ(v) = (2/3,1/6,1/6) and

α(v,P) = (1/2,1/2,0), so

α1(v,P)α2(v,PN) = 1/12 6= 1/3 = α2(v,P)α1(v,PN).

(v) α does not satisfy WA. It is easily checked that

hα
1(v,P)+hα

1(w,P) = 5/12+3/2 6= 7/4 = hα
1(v+w,P).

Remark 16 (Independence of the axiomatic system in Theorem 7)

(i) The valueφ1 defined for allv∈MG(N), P∈ P(N) andi ∈ N by

φ1
i (v,P) =


βi(v)

∑ j∈P(i)
β j(v)

v(P(i)) if i is not a null player inv,

0 otherwise,

whereβ denotes the Banzhaf value (Owen, 1975), satisfies NPP and PWU

and is a partitional value but not a partitionalShapleyvalue.

(ii) The Aumann–Dr̀eze valueα is a partitional Shapley value onMG(N) that

satisfies NPP but not PWU.

(iii) As N = {1,2, . . . ,n}, for any nonempty subsetS⊆ N we can consider the

minimum and maximum members ofSaccording to the ordering of natural

numbers. Let us consider the partitional valueφ2 defined onMG(N) as

follows. For any(v,P), if P 6= PN and there existsPk ∈ P with |Pk|> 1 and

all i ∈ Pk are null inv then, for eachi ∈ Pk,

φ2
i (v,P) =


−1 if i = minPk,

1 if i = maxPk,

0 otherwise,

while, in any other case,φ2
i (v,P) = πi(v,P) for all i ∈ Pk. This value is a

partitional Shapley value that satisfies PWU but not NPP.
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Remark 17 (Independence of the axiomatic system in Theorem 8)

(i) Let us consider forn= 3 the gamew defined byw( /0) = w({1}) = w({2}) =
w({3}) = w({1,2}) = 0, w({1,3}) = 1, w({2,3}) = w(N) = 2, partition

Q = {{1,2},{3}}, and numbersτ1 = −1, τ2 = 1, τ3 = 0. We defineφ3 on

MG(N) by

φ3
i (v,P) =

{
τi if (v,P) = (w,Q),
πi(v,P) otherwise.

φ3 is a partitional value that satisfies NPP, SWU and WA but not NN.

(ii) The valueφ4 defined for allv∈MG(N), P∈ P(N) andi ∈ N by

φ4
i (v,P) =

v
(
P(i)

)∣∣P(i)
∣∣

is a partitional value that satisfies NN, SWU and WA but not NPP.

(iii) Let ω = (ω1,ω2) be a weighting vector such thatω1 6= ω2 andΦω be the

corresponding weighted Shapley value (Kalai and Samet, 1987). The parti-

tional valueφ5 onMG(N) defined by

φ5
i (v,P) =

{
Φω(v) if n = 2 andP = PN,

πi(v,P) otherwise

satisfies NN, NPP and WA but not SWU.

(iv) The Aumann–Dr̀eze valueα is a partitional value onMG(N) that satifies

NN, NPP and SWU but not WA.

All properties considered in this paper are shown in Table 3.
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properties A–D value PPS value
α π

efficiency no no
local efficiency
(partitional value) OK OK
partitional Shapley value (PN) OK OK
nonnegativity (NN) OK OK
null player property (NPP) OK OK
null player strong property (NPP*) no OK
symmetry within unions (SWU) OK OK
balanced contributions
within unions (BCWU) OK no
proportionality
within unions (PWU) no OK
additivity (ADD) OK no
weighted additivity (WA) no OK

Table 3: Comparison of properties forα andπ
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