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Abstract

A new coalitional value is proposed under the hypothesis of isolated
unions. The main difference between this value and the AumargzeDr
value is that the allocations within each union are not given by the Shap-
ley value of the restricted game but proportionally to the Shapley value of
the original game. Axiomatic characterizations of the new value, examples
illustrating its application and a comparative discussion are provided.
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1 Introduction

The cooperative game theory deals with situations where a group of agents (play-
ers) want to share the benefits derived from their cooperation. It offers mathemat-
ical tools to propose, according to different criteria, allocation vectors that could
be acceptable for the agents. This theory has given rise to relevant applications in
many fields (see e.g. Fiestras—Janeiro et al., 2011).
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Among those mathematical tools there are the so—caléges A value pro-
poses for every cooperative game an allocation vector that represents a fair com-
promise for the players. Probably, the most important value is the Shapley value
(Shapley, 1953), denoted here @y Moretti and Patrone (2008) is a survey that
shows the impact of the Shapley value in several scientific disciplines.

The notion of cooperative game withcaalition structure(a partition of the
setN of players intouniong was considered in Aumann andd2e (1974), and a
modification of the Shapley value was proposed. Later on, ctheditional values
(i.e. values for cooperative games with a coalition structure) have been introduced
and analyzed in the game theoretical literature. The two most cited coalitional
values are the Aumann—Bze value, denoted here oy and the Owen value
(Owen, 1977), denoted here By They are based on two different interpretations
of the coalition structure that give rise to two different approaches when defining
coalitional values:

1. Aumann and D&ze consider that, once a partiti¢R,...,Pn} of N has
been formedm independent cooperative situations ariselated unionj
so their value allocates the benefits generated by Bathits members by
applying the Shapley value to the restricted game.

2. Instead, Owen considers the patrtition rather as a way to influence the nego-
tiation among the agentbdrgaining union} so his value allocates the ben-
efits generated b by applying the Shapley value twice: first, to sharing
the total utility among the unions and, then, to sharing among the members
of each union the payoff obtained in the first step.

Example 1 (A glove game)

To illustrate both approaches, let us consider an elementary glove game with three
players where player 1 has two right gloves and players 2 and 3 have one left
glove each. Only each left—and—right pair of gloves has a worth of 1; otherwise,
the worth is 0. The cooperative gamassociated to this situation is given by

v(0) =v({1}) = v({2}) = v({3}) = v({2,3}) =0,

1The first sharing takes place in theotient gamgplayed by unions; the second sharing applies
to games defined in eaék that we will not describe. We refer the reader to Owen (1977).
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v({1,2}) =v({1,3}) =1, V(N)=2.

Consider now that partitio® = {{1,2},{3}} forms. The Aumann-[ze
value yields the allocatioo(v,P) = (1/2,1/2,0). Indeed, onc® is formed, this
value merely takes into account that players 1 and 2 are symmetrig )(iand
must share 1 unit, whereas player 3 is a null playePn Instead, the Owen
value yields the allocatiof®(v,P) = (1,1/2,1/2). It first allocates to the unions
3/2 and 12, respectively, and assigns then 1 to player/2,tb player 2, and 12
to player 3. Note that the shared worth is different.

In this paper we adopt approach 1, thus leaving aside the Owen value defi-
nitely, and introduce a new coalitional value, called the proportional partitional
Shapley value and denoted Asas an alternative to the Aumann-€2e value.
Hence we assume that, once a partition forms, a new cooperative situation arises
in each union independently of the remaining ones. However, we wish to take
into account in some manner the outside options of the players, reflected by the
Shapley value of the original game. More precisely, given a cooperative game
N with a coalition structur® = {Py,..., Py}, our value divides each worti{F)
among the players iR proportionally to the Shapley value of these players in
gamev.

Thus, in Example 1 we obtain the allocatiafv,P) = (2/3,1/3,0) since the
Shapley value i®(v) = (1,1/2,1/2). It reflects that player 1 is in a better position
than player 2 because he might join player 3if2} collapses. We will restrict
the domain of our value to the class of monotonic games in order to avoid some
problems that often arise when using proportionality.

Example 2 (A second glove gante)

LetN = {r,r,¢,¢,¢,¢} be, informally, the set of players, each one with a glove:
r means rightyf means lefty. Only each left—and-right pair of gloves has a worth
of one. The glove gamedescribing this is a linear combination of 45 unanimity
games that we omit. The Shapley value is

(V) = 1—15(11, 11,2,2,2,2)

2We are grateful to a reviewer for suggesting this numerical example.




and, for any partitiorP = {A,...}, whereA = {r,r,/}, the Aumann-D&ze and
proportional partitional Shapley values respectively yield
1 1
a(v,P) = é(1, 1,4,0,0,00 and T(Vv,P)= ﬂ(ll’ll’ 2,0,0,0).
These allocations do not depend on the way the remaining three plapees
arranged (a general propertyafindm). Instead, for the Owen value, this greatly
matters. There are three possibilities:

PL={A {0}, {},{¢}}, P?’={AB{¢}} and P3={AC},
whereB = {/,¢} andC = {¢,¢,¢}. Thus for the Owen value we obtain
Q(v,PY = £(9,9,3,1,1,1), Q(v,P?) = 4(252510,3,3,6), and

Q(v,P?) = £(7,7,4,2,2,2).

This example is interesting. First, because it shows a difference between the
Aumann-Degze value and the proportional partitional Shapley value: the former
is concerned with the possibilities existingAn= {r,r,¢} only, and hence it gives
the bulk of the payoff to playef; instead, the latter recalls the strategic strength
in the original game, thus avoiding a striking change in the payout ratios that
would not satisfy the righties. Second, it shows the main difference between the
Aumann-Degze and proportional partitional Shapley values and the Owen value.
The former two satisfy local efficiency, whereas the latter satisfies efficiency, as
the Shapley value does.

The background for our new coalitional value shares ideas with the propor-
tional coalitional Shapley value (Alonso—Meijide and Carreras, 2011), which fol-
lows approach 2. In Wiese (2007) and Casajus (2009) other variations of the
Aumann-Deze value can be found that also take into account, in a way different
from ours, the players’ outside options.

The organization of the paper is as follows. We assume that the reader is
generally familiar with the basic ideas of the cooperative game theory (including
simple games) and omit, therefore, a preliminary section. In Section 2 we for-
mally define the Aumann—@ee value and the proportional partitional Shapley
value and study the properties of the latter. Section 3 includes several examples
to illustrate the use of this new value. Section 4 is devoted to some comparative
discussion and final remarks.



2 The proportional partitional Shapley value

LetN ={1,2,...,n} represent a finite but otherwise arbitrary set of players. We
will consider TU games only (just “games”, in the sequel). The vector space
of games inN will be denoted as5(N), and asMG(N) the subclass (cone) of
monotonic games, which will be the domain of our new value. The set of partitions
(coalition structures) iftN will be denoted a®(N).

For every nonempty coalitiom C N, the unanimity gameir is defined by
ur(S)=1if T C Sor elseur(S) = 0. Every gamer € MG(N) can be uniquely
written as a linear combination of unanimity games using the Harsanyi dividends
(Harsanyi, 1959):

V= crur where cr= S (-1)'5v(9), t=|T|, s=1S.
TCNZ:T;AU) %

The following relationship among monotonic games will be useful later:

V4+Vv_ =v" where v = Z crur and v = z —CTUT.
T:cr>0 T:cr<0

The Shapley value is the map: G(N) — RN defined by

si(n—s—1)!

Pilv) = n!

SCN\i}

V(SU{i}) = v(S)],

for allve G(N) andi € N, wheres= |§] for everySC N.
The Shapley value is the only value &G(N) that satisfies the following
properties:

e Efficiency Z\‘CDi (v) = V(N) for all ve MG(N).
ic

o Null player property: if i is null in v then®;(v) = 0.
e Symmetryif i, j are symmetric irvthen®;(v) = ®j(v).

e Additivity: ®(v+w) = P(v) + P(w) for all vw € MG(N).

3An analogous characterization holdsG(N).
41t is noteworthy that, ifv € MG(N), then®;(v) = 0 if, and only if i is a null player inv, so
that the null player property could be so stateddoin this subclass of games.



Now, we introduce two key concepts for this paper: thosgeofitional value
using local efficiency, angartitional Shapley valueas a generalization of the
Shapley value. We state them 18(N) but will use both notions also iIMG(N).

Definition 3 A partitional valueon G(N) is a map@: G(N) x P(N) — RN such
that

i€

ka(v, P) = Vv(R)
forallv e G(N), Pe P(N) and R € P (we call thislocal efficiency.

Definition 4 A partitional Shapley valuen G(N) is a partitional valuepon G(N)
such thatp(v,PN) = ®(v) for all v € G(N).5

We next recall the Aumann—Bze value (Aumann and Bze, 1974) and in-
troduce the proportional partitional Shapley value.

Definition 5 TheAumann—Deze values the partitional Shapley value defined
on G(N) by

ai (v, P) = ®i(vp;)
forallve G(N), P P(N) and i€ N, where R denotes the union of P to which
i belongs, and i, denotes the restriction of game v tg)P

Definition 6 Theproportional partitional Shapley valigthe partitional Shapley
valuettdefined on MGN) by

dj(v)

TE(V, P) = ZJGP(i> CDJ(V)
0 otherwise,

V(Pj)) ifiis nota null playeriny

for allv e MG(N), P € P(N) and i€ N, where R denotes again the union of P
to which i belongs.

The definition makes sense because,iff not null in a monotonic game,
then®;(v) > 0 and hence the denominator does not vanish.

Our next goal will consist in establishing the basic properties of the new value
and obtaining two axiomatic characterizations, which will be discussed in Section
4. We first state these properties for a generic partition valoieMG(N).

5PN denotes the trivial partitiodN}.



e Nonnegativity (NN)@ (v,P) > 0 for allve MG(N), P € P(N) andi € N.
¢ Null player property (NPPR)if i is null invtheng (v,P) =0 for allP € P(N).

e Symmetry within unions (SWu i, j € N are symmetric ivandP;) = P,
then@ (v, P) = @;(v, P).

e Proportionality within unions (PWUJif i, j € N andR;) = P;) then, for all
ve MG(N),
@ (v, P)gj(v,P") = ¢j (v, P)i (v, PY).

o Weighted additivity (WA) for all v,w € MG(N) andP € P(N),
h®(v+w, P) = h®(v,P) + h®(w,P),
where, for alli € N andv € MG(N),
Yicry @ (wPN)

h;P(V’ P) _ (H(V, P)T(I)) if V(P(l)) > 0,
@ (v, PN) if v(P)) =0.

The next results provide alternative characterizations of the new value.

Theorem 7 (First axiomatic characterization of the proportional partitional Shap-
ley value) The proportional partitional Shapley values the unique partitional
Shapley value on M@®) that satisfies NPP and PWU.

Proof. (Existence) It is straightforward to check thais a partitional Shapley
value onMG(N) that satisfies NPPand PWU.

(Uniqueness) Lep be a partitional Shapley value &AG(N) satisfying NPP
and PWU. We show thag= 1t Letve MG(N), P € P(N) andi € N.

e If i is a null player inv, theng(v,P) = 0 = 15(Vv, P) since@ andt satisfy
NPP.

e If Pj) = {i}, thena(v,P) = v({i}) = (v, P) sinceg andm are partitional
values.

6This property recalls the classical additivity fprthe difference lies in the attached weights.
"malso satisfies a null playstrongproperty (NPP*):1 (v, P) = 0iff i is null inv orv(Rj)=0.
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e If every j € P different fromi is a null player, them (v,P) = v({i}) =
15 (v, P) since@ andm are partitional values and satisfy NPP.

e In any other case, takec P;) such that is not a null player. Then, sincg
andrtare partitional Shapley values and satisfy PWU,

@(v,P) ;i (V) T§ (V7 P)

Qj(vP)  @j(v) m(vP)’

This means thatp;(v,P) = At (v,P) for every non-null playerj € P,
whereA is a constant which does not dependjorsince andrtare parti-
tional values, it is clear that = 1, and hence(v,P) = 15(v, P).

We conclude thap=1t. [

Theorem 8 (Second axiomatic characterization of the proportional partitional
Shapley value) The proportional partitional Shapley vatuis the unique parti-
tional value on MGN) that satisfies NN, NPP, SWU and WA.

Proof. (Existence) Again, it is straightforward to check tiegatisfies NN, NPP
and SWU. We proceed to prove WA. bet MG(N), P € P(N) andi € N.

e If i is a null player and/(P;)) = 0, thenh{(v,P) = (v, P") = 0 = ®;(v)
sincertis a partitional Shapley value.

e If iis a null player and(P;)) > 0, then by NPI(v,P) = 0 = ®;(v).

e If i is not a null player and(P;)) = 0, thenh[(v,P) = (v, PN) = @;(v)
becausetis a partitional Shapley value.

e Finally, if i is not a null player ang(P;)) > 0, by the definition oft, which
is a partitional Shapley value, we get

ZJEF’(U CDJ (V)

Zjer q)J (V)

@i (V)

_ ZJEF’(i) T (V7 PN)
ZjeP(i) qJJ(V)

hIT[<V7 P) = V(P(I)) V(P(,))

= @;(v)

which reduces t@;(v).



Summing up, we find(v,P) = ®(v) for all ve MG(N). Therefore, the re-
lationshiph™(v+w, P) = h™(v,P) + h"™(w, P) for anyv,w € MG(N) follows from
the additivity of®.

(Uniqueness) Lepbe a partitional value oMG(N) satisfying NN, NPP, SWU
and WA. We show thapis determined. Let € MG(N) andP € P(N).

e If v=0then, by NPRg(v,P) =0 foralli € N.

e Let ur be the unanimity game for a given nonempty coalifio® N. Let
v = cur with c >0 andT, = T NP for eachR € P. If i ¢ T theni is a
null player invand@ (v,P) = 0 by NPP. LefT # 0. Sinceg@is a partitional
value,

3 @uP)= 5 @(P) =VIR) = cur (R

and hence
c If TCHh,

i;k(ﬂ(V, P) :{ 0 otherwise

Since all players ik are symmetric irv, by SWU we have

[ ¢/t ifieTandT CHR,
@(vP) = { 0 otherwise

for all i € P, wherety = |Tk|. This determinegin this case.

e LetP=PN andi e N. ltis clear thatP;) = N. Letv be any game. If
V(N) = 0 thenh(v,PN) = @ (v,PN). If, instead,v(N) > 0, using thatpis a
partitional value we have

ZjEN (pj (V7 PN)

h?(v,PN) = @ (v,PN) VN

=@ (v,PN).

From WA it follows that@(v+w,PN) = @(v, PN) 4 @(w, PN) for all v,w €
MG(N). Then, if we conside as a function only of/, onceP = PN has

been fixed, it is easily seen thatsatisfies efficiency, the null player prop-
erty, symmetry and additivity, and the uniqueness of the Shapley value gives
@(v, PN) = d(v) for all v € MG(N).

e Letv=y; ;v inMG(N) andi € N. (a) If v(P;) = 0 theng (v, P) = 0 since
@is a partitional value satisfying NN. (b) WP;)) > 0, letR={1,2,...,r},
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RT={lcR:v)(Pj)>0}andRR=R\R", soR® = {¢ € R : v;(P;)) =0}
because/, is monotonic. By WA we have

S jepy @ (PY)
@V, P)i,%pT = )
@ (ve,P) + ) @(v,PY).
ZGZR+ ve(Piy) EGZRO

By the previous item,zjgp(i) @ (v, PN) = Y jer;) ®(v), which is positive
sincev(P;)) > 0 implies that somg € Py is not null inv (recall footnote
4). Thus, ifg (v, P) is uniquely determined for afle R™ then so isg (v, P)
by solving the above equation for it.

e Finally, letv e MG(N) andP € P(N) be arbitrary. Usingg+v~ = v', the
decomposition oft andv— as linear combinations of unanimity games, and
the preceding item, it follows thatis completely determined v, P) and
(v—,P) and hence ofv,P). [

3 Several examples

We sketch here some applications of the proportional partitional Shapley value.
Example 9 (Allocating primary assistance centres)

Due to budget constraints, the National Health Ministry (NHM) of a country re-
stricts the creation of primary assistance centres (PACS) in regions with low popu-
lation (< 50000 inhabitants). Villages in such a region are allowed to freely form
disjointunions and only unions with at least 5000 inhabitants will obtain a PAC.
The final decision will be the location of the PAC for each such union. It will
be placed on the centre of gravity of the concerned villages, which minimizes the
weighted sum of squares of distances and is easy to compute; however, the “mass
attached to each village will not be its population but a different parameter related
to it.

To fix ideas, let A(0,0), B(3,0), C(4,1), D(3,3) and E(1,3) be the locations of
the five villages 1, 2, 3, 4 and 5 of a region (see Fig. 1), and 4230, 3160, 2120,
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2005 and 1355 be, respectively, their populations (in all, 12870 inhabitants). The
NHM takes into account the weighted majority game

v = [5000;42303160 2120 2005 1355

(a simple but improper, i.e. not superadditive, game) because the unions that
would get a PAC constitute, precisely, the family of winning coalitions. in

W(v) ={{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{3,4,5}, and superseis

Since small differences between populations are considered not meaningful, in or-
der to locate PACS the NHM prefers using parameters proportional to the Shapley
value of this game, which disregards irrelevant weight differences and is given by
P(v) = £(4,3,2,2,1).

However, at the end all will depend on the arrangement of villages into unions.
Then, the NHM needs sonmalitional valueto attach weights and to compute
centres of gravity. Once the unions are formed, the process stops since they are
not interested in a further bargaining “at a higher level”, so the Owen value is not
suitable here. The alternative consists in using either the Aumagaealue or
the proportional partitional Shapley value that we have introduced in the previous
section.

Requirements such as the reduction to the Shapley value whenever the parti-
tion is P = PN, the null player property, symmetry within unions, and local effi-
ciency make sense and are easily interpretable in this context, but they are satisfied
by both values. Instead, the crucial property of interest for the NHM is proportion-
ality within unions, and this leads to choosing the proportional partitional Shapley
value. The reason is that, by social efficiency when computing centres of gravity
of unions, the NHM must respect the priority of bigger towns and hence the rele-
vant differences in population between the concerned towns, which are given by
the Shapley value of. (If the Aumann—Deze value were applied e.g. to partition
P={{1,5},{2,3,4}}, it would yield 1/2 for both villages 1 and 5, and hence a
PAC at the midpoint of the segment joining them, in spite of the great difference
in population and in Shapley value.)

Thus, between 52 possible partitions of the villages, 6 of them imply no PAC,
36 give rise to one PAC, and the remaining 10 give rise to two PACs. Here are
some examples:
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o If P={{1},{2,5},{3,4}} then no PAC is assigned.

o If P={{1,4},{2},{3,5}} then one PAC is assigned to uniph 4} at point
Gua=(1,1).

o If P={{1,5},{2,3,4}} then two PACs are assigned: to uni¢h 5} at
point G15 =(1/5, 3/5) and to union{2,3,4} at pointGp34 =(23/7, 8/7) (see
Fig. 1).

Fig. 1: Location of primary assistance centresRor {{1,5},{2,3,4}}

Example 10 (Sharing public funds)

A specific industrial sector in a given region consists of aNsetf enterprises.

The regional government wishes to give financial support to collaboration projects
endeavored by the enterprises, each one of which may remain isolated or intervene
in one project at most. Thus, the set of projects is given by (i.e. equivalent to) a
partitionP of N.

The individual capabilities and the synergies derived from collaborations be-
tween the enterprises have been evaluated by the government in terms of expected
benefits by means of a cooperative ganieN. Thus, the Shapley valug(v) de-
scribes the relative importance of each enterprise in the sector taking into account
all possible collaborations.
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Each project will be rewarded by sharing(F) among the participants in
the project. Since projects cannot be combined to give rise to “superprojects”,
the Owen value is not suitable here. The alternative consists in using either the
Aumann-Degze value or the proportional partitional Shapley value.

The governmental regulation establishes that the allocation to the members
of a project must take into account the relevance of each member in the sector.
The simplest way to do this consists in sharing each budget proportionally to the
Shapley valuab(v) (for the involved enterprises), so the proportional partitional
Shapley value seems to be the suitable option.

For example, len = 4 and assume that the individual capability (amounts
expressed in thousands of US Dollars) is given by

v({1}) =36000 v({2}) =v({3})=24000 v({4})= 18000

Gamev is completed this way: if§ > 2 then

VS = (1+ 3 0) 3 W({i}),

whereo; = 0.15, 02 = 03 = 0.20 andos = 0.05 are thesynergy coefficientg-or
exampley(N) = 163200. The Shapley value of this game is

®(v) = (53975411254112526975.

Assume that partitiol® = {{1,2},{3,4}} forms. Then the budgets to be
shared are(P;) = 81000 and/(P,) = 52500. The proportional partitional Shap-
ley value yields

™ (v,P) ~ 45972 mmp(v,P)~ 35028 T153(V,P)~ 31704 Tu(V,P)~ 20796

which keeps within each union the proportionality givend{v). As a matter of
comparison, the Aumann—Bze value would give

a1(v,P) = 46500 ao(V,P) = 34500 0g(v,P) =2925Q o4(V,P) = 23250

We remark that the proportional partitional Shapley value reflects the effects of
the synergy coefficients in the whole sector, whereas the AumagzeDmlue
takes into account only their effects within each union.
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Example 11 (Simple games and power indices)

Values and coalitional values are often used as power indices by applying them to
simple games. These games form a subct3#N) of monotonic games and are
useful for describing and analyzing binary voting procedures. We will discuss a
bit the possibilities to act as power indices of the AumanmzBrvalue and the
proportional partitional Shapley value.

We first remark that the axiomatic characterizations of the proportional parti-
tional Shapley value established in Section 2 can be easily translated to subclass
SG(N), thus supporting the meaning of this value as a power index. Indeed, The-
orem 5 (statement and proof) appliesG(N) without any change if the axioms
are restricted to this class. In the case of Theorem 6, only WA does not make
sense irBGN). In the Shapley value case, additivity was successfully replaced in
Dubey (1975) with theransfer property

D(VVW) +P(VAW) = D(v) +P(w)  forall vywe SGN).

Here it is only necessary to replace WA with a “weighted transfer” property. Of
course, also the proof requires some small modifications in this domain. We omit
the detalils.

Let v be a proper (i.e. superadditive) simple game. This means that there are
no disjoint winning coalitions. Some general rules hold for the Aumanéz®r
valuea: given a coalition structur®, (a) if B is a minimal winning coalition in
vthena(v,P) allocates ¥|P| to each member d& and 0 otherwise; (b) iP is
winning but not minimal winning thew allocates in all 1 unit to the members
of B, but the sharing depends on the minimal winning coalitions includé;in
(c) if P is not winning then all its members get 0. Only property (c) holds for
the proportional partitional Shapley valme The following numerical example
illustrates these assertions.

Let us consider the weighted majority game= [3;2,1,1,1]. The family
of minimal winning coalitions iSV™(v) = {{1,2},{1,3},{1,4},{2,3,4}} and
d(v) = (3/6,1/6,1/6,1/6). Some partitions are studied in Table 1.

Now letv be an improper simple game. Rules (a), (b) and (c) above still hold
for the Aumann-D&ze valuen if only one (minimal or not) winning coalition,
or none of them, appears in the partition. However, a new rule (d) says that if
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partitionP a(v,P) (v, P)
{{1,2},{3},{4}} | (1/2,1/2,0,0) (3/4,1/4,0,0)
{{1},{2,3,4}} (0,1/3,1/3,1/3) | (0,1/3,1/3,1/3)
{{1,2,3},{4}} (4/6,1/6,1/6,0) | (3/5,1/5,1/5,0)
{{1},{2},{3,4}} (0,0,0,0) (0,0,0,0)

Table 1:a andmtonv = [3;2,1,1,1]

two or more winning coalitions are unions Bfthen a worth of one unit is shared
in each of them. This is the main difference with the proper case. Here, the
proportional partitional Shapley valuesatisfies (c) and (d). A new numerical
example illustrates these assertions.

Let us consider now = [5;4,3,2,2,1], the game of Example 9. Here

Wh(v) = {{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{3,4,5}}

and®(v) = %2(4, 3,2,2,1). See some partitions in Table 2.

partition P a(v,P) (v, P)
{{1,2},{3,4,5}} (1/6)(3,3,2,2,2) | (1/35)20,15,14,14,7)
{{1,2,3,4},{5}} (1/6)(2,2,1,1,0) (1/11)4,3,2,2,0)
{{1,2,3},{4,5}} (1/3)(1,1,1,0,0) (1/9)(4,3,2,0,0)
{{1,5},{2,3,4}} (1/6)(3,4,1,1,3) | (1/35)28,15,10,10,7)
)
5;

{{1,3},{2,4},{5}) | 1/2(1,1,1,1,0) | (1/15(10,9,5,6,0)
Table 2:a andmtonv = [5;4,3,2,2, 1]

Our conclusion is that the Aumann-&ze value is not a suitable power index:
it disregards a lot of information given by the original game and ends up being
too “drastic”. On the contrary, we contend that, precisely because of the PWU
property, the proportional partitional Shapley value looks more interesting as a
measure of coalitional power. Indeed, due to PWU, all power relationships in
the original game among players of the same union are kept after the coalition
formation process. We feel that this should please politicians, who do not like too
radical and troubling variations.

For example, in Table 1, it does not seem very reasonable that under par-
tition P = {{1,2},{3},{4}} player 1 obtains by means of the same coali-
tional power as player 2. The same equal sharing of power would resuit if
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[136;13050,50,30,10] represents a parliamentary body ahd= {{1,2},...},
in spite of beingv™(v) = {{1,2},{1,3},{1,4},{1,5},{2,3,4,5}} and®(v) =
+(6,1,1,1,1). The Aumann-D&ze value yields hera(v,P) = 3(1,1,0,0,0)
whereas the proportional partitional Shapley value yielgsP) = %(6, 1,0,0,0).

Formally, leti,j be any two players with weightsj, w;. It is well known
that if wi > wj then®;j(v) > ®;(v). In our coalitional structure framework, and
provided thatP;) = Pj), we have: if®;j(v) > ®;(v) thenai(v,P) > a;(v,P) and
(v, P) > m;(v,P), but the most interesting feature is thathf(v) > ®;(v) and,
moreoverp;) is winning inv, theng (v, P) > (v, P) whereas it may well happen
thatai(v,P) = a;(v,P). And this holds even in simple games that are not weighted
majority games.

Example 12 (Extension of the new value to level coalition structures)
A level coalition structuren N is a sequence of coalition structures
P={PO pL . P

whereP(© = PN andr > 1 (thus including the basic case dealt with above, which
arises for = 1). We require that, for everly with 0 < h < r, P s a refine-

ment of P that is, each member &M belongs taP"1) or splits into smaller
pieces belonging t®"1). The extension of the Owen value to this new setup
was treated in Owen (1977) and Winter (1989). We wish to discuss here the pos-
sibility of extending the notion of proportional partitional Shapley value to this
more general concept of coalition structure. To this end, the coherent inductive
definition of a new value, thproportional partitional level valuat”, which will
actoneachleveh=1,2,...,r,isasfollows. Ifie N, 1< h<r, andP((ir)') is the

union to whichi belongs inPM,

P (h-1)
i (vP™) v(P™) if i is not a null player irv,
T (V,PY) = jep@
0 otherwise.

Coherence means thaf (v, P(Y) = mi(v, PM). A numerical example will illustrate
the procedure. Let us take= [4;5,4,3,2,1, 1|, where

WT(v) = {{1},{2},{3,4},{3,5}.{3,6},{4,5,6}},
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and let? = {P(O) P P2} with
PO —pN pM =112} {34,56}}, P?={{1},{2},{3,4,5},{6}}.
Then we have1,2},{3,4,5,6},{1},{2},{3,4,5} ¢ W(v) but {6} ¢ W(v). The
results of applying the level value are displayed in Fig. 2.
A great difference between the Owen value and the Aumargeeédand the

proportional partitional Shapley value is that, in the latter two, the allocation
within any union is not affected by any change in other unions.

pl) {1,2,3,4,5,6}

o]  |7/20][7/20][3/20][1/20]/1/20][1/20

T

PO {1,2} {3,4,5,6}

7P [v; PO 1/2(1/2 3/6(|1/6][1/6||1/6
P® {1} {2} 38 4 5} {6}
7P v; P?)] 3/5(|1/5|1/5 [0]

Fig. 2: Level coalition structure and level value foe [4;5,4,3,2,1,1]

4 Some discussion

We include here some suplementary information. First, two axiomatic charac-
terizations of the Aumann—Bee value on monotonic games using two classical
propertie€ Second, a remark supplying counterexamples to showttages not

8Both characterizations are valid also G(N). We omit their proofs because they are quite
similar to the classical ones. In particular, Theorem 14 is analogous to the original characterization
of this value orG(N) (Aumann and D&ze, 1974). The difference lies in the final part of the proof.
Regarding Theorem 13, we recall that the balanced contributions property for the Shapley value
asserts tha®;(v) — ®i(v_j) = ®j(v) — ®j(v_) for all ve G(N) andi, j € N. Herev_y denotes
the restriction ofsto N\ {k} for anyk € N. This property was introduced and proved in Myerson
(1980).
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satisfy these properties anddoes not satisfy any of NPP*, PWU and WA. Third,
two remarks on the logical independence of the axiomatic systems used in Theo-
rems 7 and 8, respectively. Finally, a summary of all properties considered in the
paper, displayed in Table 3.

Let us recall two classical coalitional properties not yet mentioned here that
we state for a partitional valugon MG(N).

e Additivity (ADD) @(v+w,P) = ¢@(v,P) + @(w, P) for all vw € MG(N) and
PeP(N).

e Balanced contributions within unions (BCWUf) P = P;) for somei, j €
N then, for allv e MG(N),

(ﬂ(V, P) —(ﬂ(V, P_J) = (Pj(V, P) _(pJ (Vv P_i)a

where, for anyk € N, we define
P ={Py \{k}.{kK}}U{P : P € PR # Py .

Theorem 13 (First axiomatic characterization of the Aumann-éze value) The

Aumann-Deze valuax is the unique partitional value on M@®!) that satisfies
BCWU. [J

Theorem 14 (Second axiomatic characterization of the Aumanreder value)
The Aumann-D#ze valuex is the unique partitional value on M@!) that satis-
fies NPP, SWU and ADD.[]

Remark 15 (Properties that distinguish betweeranda)

Letn=3,P={{1,2},{3}}, andv,w € MG(N) be the glove games defined by
v({1,2}) =v({1,3}) =Vv(N) =1, andv(S) = 0 otherwise, and
w({1}) =w({1,2}) = w({1,3}) = w({2,3}) = L w(N) = 2,
andw(S) = 0 otherwise.

(i) mtdoes not satisfy ADD. Indeed,

T4 (V,P) + Ty (W,P) = 4/5+2/3 # 10/7 = Ty (V+ W, P).
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(i) tdoes not satisfy BCWU. In effect,
m(%P) - (v,P2) =4/5-0#1/5—-0=Tp(V,P) — mp(v,P1).

(i) o does not satisfy NPP* (see footnote 7). Player 2 is not nuiiviand
W(P2)) # 0 butaz(w,P) = 0.

(iv) a does not satisfy PWU. We hawgv,P\) = ®(v) = (2/3,1/6,1/6) and
a(v,P)=(1/2,1/2,0), so

a1(v,P)az(v,PN) = 1/12+# 1/3 = ay(v,P)ay(v,PV).
(v) o does not satisfy WA. It is easily checked that
h (v, P) +h{(w,P) =5/12+3/2# 7/4 = h{ (v+w,P).
Remark 16 (Independence of the axiomatic system in Theorem 7)

(i) The valueg! defined for alliv e MG(N), P € P(N) andi € N by

Bi(v)
(ﬂl(vv P) = { ZiGP(i) B; (v)

0 otherwise

V(Pi)) if i is nota null player irv,

where[3 denotes the Banzhaf value (Owen, 1975), satisfies NPP and PWU
and is a partitional value but not a partitiorg&iaplewalue.

(i) The Aumann—D&ze valuex is a partitional Shapley value dG(N) that
satisfies NPP but not PWU.

(i) AsN=1{1,2,...,n}, for any nonempty subs&C N we can consider the
minimum and maximum members 8fccording to the ordering of natural
numbers. Let us consider the partitional vatpfedefined onMG(N) as
follows. For any(v,P), if P # PN and there existBy € P with |R| > 1 and
all i € B are null inv then, for each € R,

-1 if i = minP,
@ (v,P) = 1 if i = maxP,
0 otherwise

while, in any other caseg(v,P) = 1i(v,P) for all i € P. This value is a
partitional Shapley value that satisfies PWU but not NPP.
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Remark 17 (Independence of the axiomatic system in Theorem 8)

(i) Letus consider fon= 3 the gamev defined byw(0) =w({1}) =w({2}) =
w({3}) =w({1,2}) =0, w({1,3}) = 1, w({2,3}) = w(N) = 2, partition
Q= {{1,2},{3}}, and numbers; = —1, T, = 1, 13 = 0. We defineg® on

MG(N) by _
FP) = { T if (v,P)=(w,Q),

T5(Vv,P) otherwise
¢ is a partitional value that satisfies NPP, SWU and WA but not NN.

(i) The valueg* defined for allv € MG(N), P € P(N) andi € N by

4 v(Pr)
G (Va P) =
P

is a partitional value that satisfies NN, SWU and WA but not NPP.

(i) Let w= (w,wn) be a weighting vector such that # w, and®® be the
corresponding weighted Shapley value (Kalai and Samet, 1987). The parti-
tional valueg® on MG(N) defined by

DO (v if n=2 andP = PN,
Fup) =1 .
T5(V, P) otherwise
satisfies NN, NPP and WA but not SWU.

(iv) The Aumann—-De&ze valuen is a partitional value oMG(N) that satifies
NN, NPP and SWU but not WA.

All properties considered in this paper are shown in Table 3.
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properties A-D value | PPS value
a L1
efficiency no no
local efficiency
(partitional value) OK OK
partitional Shapley valueP{Y) OK OK
nonnegativity (NN) OK OK
null player property (NPP) OK OK
null player strong property (NPP?) no OK
symmetry within unions (SWU) OK OK
balanced contributions
within unions (BCWU) OK no
proportionality
within unions (PWU) no OK
additivity (ADD) OK no
weighted additivity (WA) no OK

Table 3: Comparison of properties forandmt
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