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We present a method based on the Path Integral Monte Carlo formalism for the

calculation of ground-state time correlation functions in quantum systems. The key

point of the method is the consideration of time as a complex variable whose phase δ

acts as an adjustable parameter. By using high-order approximations for the quan-

tum propagator, it is possible to obtain Monte Carlo data all the way from purely

imaginary time to δ values near the limit of real time. As a consequence, it is possible

to infer accurately the spectral functions using simple inversion algorithms. We test

this approach in the calculation of the dynamic structure function S(q, ω) of two

one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω)

can be exactly calculated. We notice a clear improvement in the calculation of the

dynamic response with respect to the common approach based on the inverse Laplace

transform of the imaginary-time correlation function.
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I. INTRODUCTION

In the last decades, quantum Monte Carlo (QMC) methods have been extensively used

in the field of quantum many-body physics. Many of these numerical techniques rely on

stochastic propagation in imaginary time and can provide extremely accurate results for the

thermodynamic and static properties of many-body systems, even in those where quantum

correlations make unavoidable the use of non-perturbative approaches.1–4 The main draw-

back of QMC methods is the difficulty arising in the calculation of spectral functions. These

functions, which are particularly relevant for the study of the dynamical properties of quan-

tum many-body systems (e.g. the excitation spectrum or the transport coefficients), can

be obtained as Fourier transforms of real-time correlation functions. A QMC calculation

of these quantities, however, is particularly inefficient since the rapidly oscillating exponen-

tials appearing in the definition of real-time propagators make the statistical errors grow

exponentially with time. Many approximation schemes have been developed and used to

investigate the dynamic properties of quantum many-body systems. For instance, centroid5

or ring-polymer molecular dynamics6 has been successfully applied to the study of quan-

tum many-body systems in the semi-classical regime. In the limit of zero temperature, an

alternative approach is to use correlated perturbation theory7 relying on the ground-state

properties of the system obtained with QMC calculations.8–10

Nevertheless, the mainstream approaches to the calculation of spectral functions from

QMC simulations consist in attempting a numerical inversion of a Laplace transform. This

integral transform relates the desired spectral functions to the correlation functions in imag-

inary time, easily attainable with QMC methods. However, the inverse Laplace transform

of noisy data is an ill-posed problem. This means that, given a particular set of data for the

imaginary-time correlation function, it is hardly possible to recover a unique, well-defined

solution to the problem. Sophisticated regularization techniques can then be used to repro-

duce a reasonable estimate of the spectral function.11 In the last decades, several algorithms

to deal with the inverse Laplace transform of noisy data have been proposed,12–16 but these

methods can only be reliably applied to the analysis of the low-energy dynamic properties

of quantum systems, since the Laplace kernel tends to suppress high-energy contributions.

In order to overcome these limitations and to get more accurate results of spectral functions

from QMC data, it is necessary to develop new estimators for the quantum time correlation
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functions. 17

In this work, we propose to infer the dynamic structure function of a quantum system at

zero temperature from a QMC estimation of the corresponding correlation function in com-

plex time. Similar approaches have been already used for studying the dynamic properties

of quantum systems at finite temperature T . In this case, the e−βĤ term (with β = 1/T )

appearing in the definition of the thermal averages can be considered as an evolution oper-

ator in imaginary time. Thus, the real-time correlation function can be rewritten in terms

of a correlation function in complex time,18,19 which can be calculated using path-integral

formalism20 and estimated in QMC calculations.21 Even though this estimation is reliable

only for times t . ~β, the spectral functions obtained within this approach exhibit a sig-

nificant improvement over the results derived from analytic continuation of imaginary-time

correlation functions.22–29

Our goal is to extend this formalism to the calculation of ground-state time correlation

functions, even considering that at zero temperature the notion of complex time has not

a precise physical meaning. This strategy allows us to introduce an adjustable parameter,

namely the phase δ of the complex time tc = |tc|e
−iδ, which makes possible to calculate the

correlation function in an intermediate regime between the commonly used imaginary time

(δ = π/2) and real time (δ = 0).

More precisely, we sample paths connecting two configurations distributed according to

the ground-state wave function of the quantum system and calculate, over these paths, the

propagator at the complex time tc. Changing the phase δ, we can find an optimal value for

which the correlation functions estimated with QMC are affected by moderate statistical

errors and, at the same time, present a relevant amount of information on the real dynamics

of the quantum system. This approach makes it possible to infer the spectral functions using

rather simple inversion techniques since the ill-posed character of the inversion procedure

is appreciably reduced. In this way, more accurate and more stable results than the usual

ones, based on the inverse Laplace transform of imaginary-time data, can be obtained.

Similarly to what happens in the case at finite temperature, the QMC estimation of the

ground state correlation function in complex time is reliable only up to a certain value of |tc|

depending on δ, above which the statistical error becomes too large and makes the numerical

results meaningless. It is therefore crucial to develop strategies that make the range of

accessible times as large as possible. In this work, we propose to tackle this problem using
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high-order approximations for the quantum propagator.30 In particular, we show that the

propagator derived by Zillich et al.31 is particularly suitable for the complex-time evolution.

The rest of the paper is organized as follows. In Sec. II, we discuss the QMC method

that we have devised for the calculation of complex-time correlation functions and, more

briefly, the inversion method that we have used to obtain the dynamic structure function. In

Sec. III, the results obtained with this method in one-dimensional problems are shown and

compared with the standard approach relying only on imaginary-time correlation functions.

Finally, the summary and main conclusions are reported in Sec. IV.

II. METHOD

A. Calculation of the complex-time correlation function

The main objective of our work is the calculation of ground-state time correlation func-

tions of a quantum system. At zero temperature, a general time correlation function is

defined as

CAB(tc) = 〈Ψ0|e
itcĤ/~Âe−itcĤ/~B̂|Ψ0〉 , (1)

where Â and B̂ are time-independent quantum mechanical operators in the Schrödinger

picture corresponding to measurable observables, Ĥ is the Hamiltonian, and |Ψ0〉 is the

ground state. For the sake of simplicity, in the following we consider correlations among

operators which are diagonal in coordinate space and use one-dimensional notation (the

generalization to multi-dimensional space is straightforward).

The main idea of this work is to calculate CAB(tc), defined in Eq. 1, where tc has been

analytically extended to the complex plane. We indicate with tm > 0 and −δ the modulus

and the phase of the complex time, tc = tme
−iδ, respectively. In order to elaborate a form

for the estimator of CAB(tc) implementable in computer simulations, we rewrite Eq. 1 in

the coordinate space,

CAB(tc) =

∫

dx0dxM eitcE0〈Ψ0|xM〉〈xM |Âe−itcĤB̂|x0〉〈x0|Ψ0〉 =

= N

∫

dx0dxM Ψ⋆
0(xM)A(xM)G(x0, xM ; tc)B(x0)Ψ0(x0) , (2)

where G(x0, xM ; tc) = 〈xM |e−itcĤ |x0〉 is the propagator from position x0 to position xM in

complex time tc, and N is a normalization constant. In the general case of complex time
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tc, the propagator G(x0, xM ; tc) is a complex function that becomes real and positive only

when tc is a purely imaginary time. Thus, the function G(x0, xM ; tc) cannot be used as a

probability distribution function for the sampling of coordinates in any QMC algorithm (as

it is normally done, for instance, in the PIMC method). Therefore, what we do is to sample

first the positions x0 and xM according to a probability distribution constructed from an

accurate approximation to the ground-state wave function. This sampling can be performed

using any conventional QMC technique at zero temperature. In this work, we use the Path

Integral Ground State (PIGS) method.2,32 Then, having sampled the positions x0 and xM ,

we calculate CAB(tc) estimating the quantity A(xM)G(x0, xM ; tc)B(x0).

In order to carry on this procedure one needs to know the exact form of the Green’s

function G(x0, xM ; tc) for any value tc, but this is in general unknown. However, what

is possible is to construct accurate approximations to the propagator in the limit of small

tm = |tc|. Then, to estimate CAB(tc) for larger values of tm we use the path-integral formalism

to rewrite G(x0, xM ; tc) as a convolution of M propagators of a shorter time εc = tc/M ,

G(x0, xM ; tc) =

∫

dx1 . . . dxM−1

M
∏

k=1

G (xk, xk−1; εc) . (3)

Within this approach, it becomes necessary to sample all the configurations {x1, x2, . . . , xM−1},

i.e., to build paths from the position x0 to the position xM . However, the choice of the

probability distribution ppath(x0, x1, . . . , xM) for these paths is not trivial and depends on

the system studied. Generally, we notice that using imaginary-time propagator to this end

is not a good choice, because in this case the sampled paths would remain close to the

minimum energy path and the estimator would not be able to capture all the contributions

to CAB coming from the excited states. As a simple and flexible enough option, it is possible

to choose ppath as the product of M free propagators of imaginary-time step τs,

ppath(x0, x1, . . . , xM) =
M
∏

k=1

Gfree(xk, xk−1; τs) , (4)

with

Gfree(xk, xk−1; τs) = (4πλτs)
Nd/2 exp

(

−
(xk − xk−1)

2

4λτs

)

. (5)

In Eq. 5, N is the number of particles, d is the dimensionality of the system, and λ =

~
2/(2m). This choice indeed allows to construct the paths by means of simple sampling

techniques which do not require a large computational effort, like for instance the staging
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algorithm.34,35 In the case of quantum systems interacting with a smooth potential, we

notice that it is possible to obtain good results for CAB(tc) using ppath in Eq. 4, provided

that the parameter τs is properly chosen. Indeed, we see that the variance of the estimator

for CAB(tc) is reduced when the free propagator in the imaginary time τs is similar to the

modulus of the kinetic propagator in the complex time εc.

Since the purpose of this work is to test our QMC approach in two model systems inter-

acting with smooth potentials (the quantum harmonic and quartic oscillators), we decide

to use this choice of ppath with τs ≃ (ℜ[1/(iεc)])
−1 to perform the sampling of the paths

{x1, x2, . . . , xM−1}. Nevertheless, this may not be the best choice in general, and one may

have to use more sophisticated and more computationally demanding algorithms for the

sampling of the paths.

Once the probability distribution ppath is chosen, the expression of the ground state

complex time correlation function becomes

CAB(tc) = N ′

∫

dx0 . . . dxMA(xM)

∏M
k=1G(xk, xk−1; εc)

ppath(x0, x1, . . . , xM)
B(x0)×

Ψ0(xM)ppath(x0, x1, . . . , xM )Ψ0(x0) . (6)

At this point, one has to choose an approximation scheme for G(xk, xk−1; εc) in order to

derive an analytical expression that can be implemented in computer simulations. Increasing

the number of convolution terms M , and thus decreasing the modulus of εc, it is possible

to systematically improve the quality of the approximation and to asymptotically recover

the exact correlation function. Nevertheless, every propagator G(xk, xk−1; εc) introduces an

oscillating phase term in the integrand of Eq. 6, and thus the statistical noise of the estimator

for CAB(tc) increases notably when M becomes large. In order to obtain reliable results,

it is fundamental to develop numerical strategies that keep the number M of convolution

terms as low as possible.

The simplest approximation to the propagator is the primitive approximation (PA), which

relies on the factorization eitcĤ ≃ eitcK̂eitcV̂ , where K̂ and V̂ are the kinetic and potential

operators, respectively. In this scheme, the complex-time propagator can be written as

G(xk, xk−1; εc) ≃ GPA(xk, xk−1; εc) =

= exp

(

−
(xk − xk−1)

2

4λ iεc

)

exp

(

−i
V (xk) + V (xk−1)

2~
εc

)

. (7)

The PA approximation is easily implementable within our QMC procedure but requires a
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large number M of convolution terms in Eq. 6. In order to improve the accuracy, it is impor-

tant to use higher-order approximations to the complex-time propagator. In conventional

PIMC simulations, a significant improvement in efficiency can be obtained using symplectic

expansions of the time-evolution operator that incorporates double commutators between

kinetic and potential operators.30,36 For local potentials, these commutators lead to extra

terms that are exponentials of the gradient of the potential squared times the third power

of the time step. The inclusion of this contribution in the propagator largely improves the

efficiency of the PIMC37 and PIGS32 methods. In imaginary-time propagation, the contri-

bution of the double commutator always appears in the argument of the exponential with

a negative sign. However, in complex time this sign turns out to be positive for δ < 600,

producing largely increasing amplitudes and thus unreliable results that make the use of this

high-order scheme unpractical (see Appendix A). Therefore, it is very important to look for

other expansions which can improve the PA but that do not include double-commutator

terms.

A high-order approximation for the complex-time propagator without double commuta-

tor has been reported in Ref. 31. In that work, the authors were able to improve the quality

of the small-time propagator by introducing a linear combination, with some negative co-

efficients, of different symplectic expansions on the same time. This expansion has some

drawbacks when used in conventional PIMC simulations, since it gives rise to an approxi-

mation for the imaginary-time propagator which is not positive definite. This feature does

not represent a problem here, since in the calculation of CAB(tc) the complex-time propa-

gator is not used as the probability distribution of the Monte Carlo sampling but rather as

the estimator.

Once we have chosen the approximation for the complex-time propagator, the only thing

that is still lacking in order to calculate CAB(tc) is the normalization constant N ′. This can

be computed imposing the autocorrelation function of the identity operator to be 1 for any

value of tc. Therefore, if we define the complex quantity

OA(x0, . . . , xM) =

∏M
k=1 GA(xk, xk−1; εc)

ppath(x0, x1, . . . , xM)
, (8)

where GA(xk, xk−1; εc) is the chosen approximation for the time propagator, the complex-

time correlation function in Eq. 6 can be written as

CAB(tc) =
〈A(xM)OA(x0, . . . , xM )B(x0)〉

〈OA(x0, . . . , xM)〉
. (9)
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The bracket 〈. . .〉 indicates the averages over the configurations {x0, x1, . . . , xM} sampled

following the scheme described above, i.e., with x0 and xM sampled according to a reasonable

approximation of the ground-state wave function, and {x1, x2, . . . , xM−1} sampled according

to the probability distribution ppath(x0, x1, . . . , xM).

Summarizing, the evaluation of CAB(tc) (9) for a given complex time tc = tme
−iδ consists

of the following steps:

1. To generate the x0 and xM configurations according to the probability distribution

Ψ0(x0)Ψ0(xM), by means of a QMC technique at zero temperature, like the PIGS

algorithm.

2. To choose M (number of points of the discrete path from x0 to xM), so that the

parameter εm = tm/M is sufficiently small to recover the εm → 0 limit. In practice,

one selects the value of M that makes εm = tm/M < ε∗m, where the parameter ε∗m

depends on the accuracy of the approximated action.

3. To generate the configurations {x1, x2, . . . , xM−1}, i.e., the path from x0 to xM , ac-

cording to the probability distribution ppath.

4. To evaluate OA(x0, . . . , xM) from Eq. 8 and accumulate the estimator of CAB(tc)

defined in Eq. 9.

B. Inversion technique

Once we have obtained the QMC data for the complex-time correlation function CAB(tc),

we need to recover the desired spectral function SAB(ω) inverting the integral transform

CAB(tc) =

∫

dω e−itcωSAB(ω) . (10)

Considering that both the function CAB(tc) and SAB(ω) are evaluated over a finite set of

complex times {tc i} and frequencies {ωj}, Eq. 10 is formally equivalent to a linear equation

y = Ax , (11)

where the vector y represents the QMC data for the correlation function CAB(tc), the vector

x the spectral function SAB(ω) that we want to obtain, and A is a matrix defined from the
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kernel of the integral transform (10) which relates CAB(tc) and SAB(ω). Notice that CAB(tc)

is a complex function: thus, its real and its imaginary part provide two different rows of the

matrix A, both of them real.

The best least-squares solution to Eq. 11 is given by the pseudo-inverse matrix

x = AT (AAT )−1 y . (12)

In well-posed problems, Eq. 12 directly provides useful solutions. If x has larger dimen-

sionality than y, then the linear equation in (11) has an infinite number of solutions, and

(12) provides the one which minimizes |x|2. Contrarily, if x has lower dimensionality than

y, then no solution exists and Eq. 12 (using the Moore-Penrose pseudoinverse if AAT is not

full-rank) provides the x vector which minimizes |y − Ax|2, i.e., a best fit to the y data is

obtained.

However, when the eigenvalues of the matrix AAT , which are all positive or zero, span

a range of many orders of magnitude (in the numerical inversions performed in the present

work, eigenvalues of AAT covering the range 100-10−20 are routinely found), the inversion

problem becomes ill-posed, and the solution x to Eq. 12 is extremely sensitive to errors in

the vector y. The ill-posed nature of the inversion process means that the statistical noise

in the original data for CAB(tc), that is unavoidable in any QMC calculation, is uncontrol-

lably magnified in the inversion process, resulting in a meaningless solution for the spectral

function SAB(ω).

In these situations, regularization techniques are useful to obtain meaningful solutions

to the ill-posed problem.38 The basic idea of these methods is to define a well-conditioned

linear operator Ca which depends on a regularization parameter a > 0 that approaches the

pseudo-inverse A+ = AT (AAT )−1 in the limit a → 0. Then, the solution of the original

problem can be obtained as x = lima→0 Cay.

In this work, we have chosen to use the Tikhonov regularization,39 in which

Ca = AT (AAT + Ia2)−1 , (13)

where I is the identity matrix. Thanks to Tikhonov regularization, the solution x of the

problem is much less sensitive to errors in the initial vector y. On the other hand, the

regularization procedure introduces a bias in the estimation of x. The goal is however to

keep the regularization parameter a as small as possible yo avoid introducing unwanted

artifacts in the reconstructed solution.
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In practice, the choice of the regularization parameter must avoid two different problems.

If the regularization parameter a is too small, the solution is unstable and similar QMC data

for the correlation function lead to different spectral functions. If a is too large, systematic

effects start to appear in the solution. These effects can be controlled verifying that the

correlation function obtained applying the direct integral transform (Eq. 10) to the given

solution for the spectral function is in agreement with the starting QMC data for CAB(tc)

(see Appendix B for additional information). Monte Carlo data of higher quality allow for

smaller values of the regularization parameter and thus they are crucial for a satisfactory

direct inversion.

Focusing on the dynamic structure factor, the physical solution must verify xi ≥ 0 for

every component of x since S(q, ω) ≥ 0 . We introduce this requirement explicitly in the

construction of the solution, making use of a square diagonal matrix Q = Diag(q1, . . . , qN),

where each of the qi is to be understood as a factor (which we restrict to be either 0 or 1)

that will multiply explicitly the component xi of the vector solution x. The new solution,

that can be written formally as

x = QAT (AQAT )−1 y , (14)

satisfies by construction both xi = 0 if qi = 0 and y = Ax, irrespective of Q. The reg-

ularization procedure can be performed in this case by simply making the substitution

AQAT → AQAT + I a2. We use Eq. 14 as a means of imposing the positiveness of S(q, ω).

In order to do so, we set an iterative procedure, starting with Q = Diag(q1 = 1, . . . , qN = 1),

using the regularized version of Eq. 14, to obtain the vector solution x, and we set qi = 0 for

all components xi < 0 and form a new Q matrix which contains more zeroes in the diagonal

than the previous one. Inserting the new Q back in Eq. 14, a new solution is obtained.

The procedure is repeated until no negative components are present, and we end up with a

regularized, positive solution to the inversion problem.

III. RESULTS

The formalism developed in Sec. II has been applied to the calculation of the density-

density correlation function in complex time,

S(q, tc) = 〈Ψ0|e
itcĤ/~ρ̂qe

−itcĤ/~ρ̂−q|Ψ0〉 , (15)
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FIG. 1. (Color online) Real (top) and imaginary (bottom) parts of S(q, tc) for HP, with q = 1.5

and δ = π/9, as a function of tm = |tc|. The line stands for the exact result (16) and the points

to different approximations for the action. Triangles, primitive action; squares, Chin action;30

diamonds, Zillich action.31

with the density-fluctuation operator ρ̂q =
∑N

i=1 e
iq·ri and complex time tc = tme

−iδ. The

reliability of the method has been checked in two model problems which can be easily

solved: a particle in a one-dimensional harmonic potential (HP), V (x) = x2/2, and a particle

in a one-dimensional anharmonic potential (AP), V (x) = x4/4. We work in units where

~ = m = 1. The ground-state wave function Ψ0 (15) is obtained using the PIGS algorithm

with the high-order Chin action.30,32

As commented in Sec. II, a relevant aspect that makes the calculation in complex time

be more accurate is to use high-order actions in the evaluation of Eq. 15. We need to work

with as few number of beads M as possible to reach the maximum accessible time. In Fig.

1, we show results for the real and imaginary parts of S(q, tc) for the HP as a function of tm.

The results correspond to q = 1.5 and δ = π/9. The line stands for the HP exact result,33

S(q, tc) = exp

[

q2

2

(

e−itc − 1
)

]

. (16)

In the figure, we compare the exact function (16) with our QMC results obtained with a

single bead,M = 1, using different approximations for the actions employed in the evaluation

of S(q, tc). As expected, the PA is only accurate at very short times. If we consider QMC
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results for S(q, tc) with a relative error of 0.4%, we notice that these are in agreement with

the exact result for tm . 0.3 and depart significantly of the exact result al larger time.

Therefore, the PA is not a good choice because we would need a large number of beads to

span the full time range. The results are significantly better if one uses high-order actions.

In the figure, we show estimations of the real and imaginary parts using the Chin action30

and a sixth-order expansion reported by Zillich et al.31 Comparing numerical results of

S(q, tc), with the same precision as before, we notice that the Chin action reproduces the

exact results up to tm ≃ 2. However, the Chin action is in general not appropriate because

of the divergence terms derived from the double commutator (notice that for the HP this

divergence is reduced because this contribution produces a renormalization of the oscillator

frequency). The best result is obtained using the sixth-order approximation.31 This action is

able to account for the exact data up to tm ≃ 3.5 and with the added benefit of not requiring

double-commutator terms since it is based on extrapolations of PA actions with different

time steps. Therefore, we have selected this action as the best option for this complex-time

estimation.

A second step in our methodology is the estimation of ε∗m (see Sec. II) which determines

the maximum time tm that can be covered with a single bead, with no significant bias coming

from the small-time approximation of the action. This estimation is performed by studying

the convergence of S(q, tc), with tm = |tc| fixed, for small values of εm = tm/M . To perform

this analysis, we have selected δ = π/2 (imaginary time). Using a different value of δ, the

statistical error of S(q, tc) tends to increase largely with the number of beads M because

the phase of the estimator of S(q, tc) is proportional to cos δ (see Appendix A), and it is not

possible to give precise estimates in the limit of small εm.

With the estimation of the accuracy of the action (for HP, we get εm = 2.5), one can easily

determine the number of complex-time beads required in the calculation of S(q, tc) at any tc:

M is the minimum integer for which the condition |tc|/M < ε∗m is satisfied. Accordingly, the

whole range of times tm = |tc| is divided in different regions where S(q, tc) is estimated with

a different number of beads. In practice, M = 1 for tm ∈ [0, ε∗m], M = 2 for tm ∈ [ε∗m, 2ε
∗

m],

and so on. The results obtained with this splitting are reported in Fig. 2 for the HP and

δ = π/9. In the figure, the vertical lines separate the different intervals [(M − 1)ε∗m,Mε∗m]

where S(q, tc) is calculated with the same number of beads M . The trends observed in

this particular case are quite general. The results obtained are statistically reliable up to
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FIG. 2. (Color online) Real and imaginary parts of S(q, tc) for HP, with δ = π/9, as a function

of tm. The line is the exact expression (16) and the points correspond to our QMC results. The

vertical lines separate the results obtained with different number of beads M . Where not shown,

error bars are smaller than the symbol size.

a maximum time tm which decreases when the phase δ is reduced. This feature directly

implies that the maximum number of beads producing sound results is also reduced when

approaching the real axis. In general, the number of beads is small but the high accuracy

of the action used in the calculation makes the total covered time be quite large. In the

case shown in Fig. 2, one can see that our QMC estimation is satisfactory up to Mmax = 3,

with a total time tm = Mmaxε
∗

m = 7.5. The results with M = 4 are spread around the

exact function but with too large error bars to be used in the subsequent transform to the

dynamic structure function S(q, ω).

In Fig. 3, we show QMC results of the complex function S(q, tc) for the HP and different

values of the phase δ, in comparison with the exact function (16). When approaching the

real axis, i.e. when δ decreases, both the real and imaginary parts show an increase of

their oscillatory behavior (notice that for HP, the exact S(q, t) for real time is periodic),

but the maximum reachable value tm decreases. Therefore, there is a compromise between

lowering δ as much as possible and reaching times as large as possible. Our results show

that the optimal phase for a posterior transform to the frequency domain is within the range

13
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FIG. 3. (Color online) Real and imaginary parts of S(q, tc) for HP as a function of tm. The

upper and lower lines in each panel correspond to the real and imaginary parts of the exact result

(Eq. 16), respectively. The symbols correspond to our QMC results (squares: real part; triangles:

imaginary part). Each panel corresponds to the calculation of S(q, tc) for different values of the

phase δ of the complex time. Error bars are smaller than the symbol size.

[π/18, π/9].

Proceeding in a similar way we have applied our method to the study of the correlation

function for a particle in an AP. The results for the real and imaginary parts of S(q, tc) are

shown in Fig. 4 for different values of the phase δ ranging from π/2 (imaginary time) down

to π/36. Our Monte Carlo results are compared with exact ones obtained by numerical

integration over the eigenstates of the Hamiltonian (differently to the HP case, an analytical

form for the S(q, tc) of the AP is not known). The QMC estimation of the complex-time

correlation functions shows similar accuracy to the one achieved for the HP case. Similarly

to HP, we recover for the AP the exact results up to a maximum value of the modulus

14



−0.5
−0.3
−0.1
 0.1
 0.3
 0.5
 0.7
 0.9

 0  1  2  3  4  5  6  7  8  9

S
(q

,t c
)

tm

δ = π/2

−0.5
−0.3
−0.1
 0.1
 0.3
 0.5
 0.7
 0.9

 0  1  2  3  4  5  6  7  8  9

S
(q

,t c
)

tm

δ = π/9

−0.5
−0.3
−0.1
 0.1
 0.3
 0.5
 0.7
 0.9

 0  1  2  3  4  5  6  7  8  9

S
(q

,t c
)

tm

δ = π/18

FIG. 4. (Color online) Real and imaginary parts of S(q, tc) for AP as a function of tm. The

upper and lower lines in each panel correspond to the real and imaginary parts of the exact result,

respectively. The symbols correspond to our QMC results (squares: real part; triangles: imaginary

part). Each panel corresponds to the calculation of S(q, tc) for different values of the phase δ of

the complex time. Error bars are smaller than the symbol size.

of the complex time tm. Beyond this value, which decreases with δ, the statistical errors

grow significantly, making any estimation of S(q, tc) not reliable. Again, a good compromise

between statistical fluctuations and approaching the real axis as close as possible locates the

optimal values of the phase in the same range than in the HP case, δ ∈ [π/18, π/9].

Once we have found the working window, the next step is to make the inversion from

complex-time to energies. Our goal is to calculate the dynamic response S(q, ω) and compare

the results with the exact function for both the HP and AP. To this end, we have applied

the inversion technique described in the previous Section. A preliminary point is to know

up to which extent the inversion procedure can influence the results in the energy domain.
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FIG. 5. (Color online) Dynamic structure function S(q, ω) for the HP at q = 1.5. Diamonds

correspond to the exact values and and circles and squares with errorbars to the results derived

from the QMC results for S(q, tc). The circles are obtained using the method described in Sec.

II and the squares using a standard simulated annealing schedule. Left panel: imaginary time

(δ = π/2). Right panel: complex time (δ = π/9).

In the case of purely imaginary-time data, several inversion methods have been used,13–16

the majority of them being of stochastic nature. This inverse Laplace transform is normally

mapped to a multidimensional optimization problem. The ill-posed nature of this inversion

can lead to results that can depend on the method employed.

In Fig. 5, we compare results obtained for S(q, ω) in the HP problem using the inversion

method discussed in the previous Section and a standard simulated annealing algorithm. In

the figure, the exact result33

S(q, ω) = e−q2/2

∞
∑

n=0

1

2nn!
q2nδ(n− ω) (17)

is also plot with vertical lines. This comparison is made for two cases: imaginary-time data

(δ = π/2) and complex-time results with δ = π/9. As it has been commented, the inversion

from imaginary time to the frequency domain is an ill-posed problem and thus the results can

show differences depending on the selected method. This is shown in Fig. 5 (left panel): the

inversion obtained from the stochastic simulated annealing method and the one discussed in

Sec. II produce slightly different predictions for the higher transition lines, while they both

agree on the first and second peaks, although the latter has a total strength that is ∼ 15%

off from the exact value in both cases. None of the high transition lines is well reproduced

by any of the two models. In the same figure (right panel), we compare the results from

16



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7

S
(q

,ω
)

ω

δ=π/2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7

S
(q

,ω
)

ω

δ=π/9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7

S
(q

,ω
)

ω

δ=π/18

FIG. 6. (Color online) Dynamic structure function S(q, ω) for the HP at q = 1.5. Diamonds

correspond to the exact values (17) and circles with errorbars to the results derived from the QMC

results for S(q, tc). The inversion uses complex-time data calculated at the phases δ reported in

each panel.

both inversion methods for δ = π/9. In this case, the inversion works on complex-time

data which shows a richer structure. This significantly reduces the ill-posed character of the

inversion and thus the results obtained with both methods look much more similar than in

the δ = π/2 case. Our results show that the three main peaks are well reproduced and the

fourth one is approximated, slightly better using the non stochastic method which has been

computed averaging over a larger data set.

The results that we have obtained for the HP dynamic response at q = 1.5 are reported in

17



Fig. 6. The different panels contain reconstructions from imaginary-time data (δ = π/2) and

complex-time correlation factors estimated at decreasing values of the phase, down to δ =

π/18. At δ = π/2 we recover the first peak (energy and strength) and approximate the second

one. In other words, only the lowest-energy mode is accurately reproduced. It is worth

noticing that this is the overall trend observed in transformations from purely imaginary-

time data. By progressively introducing a real component in the correlation factor, i.e., by

decreasing the phase δ, the quality of the dynamic response improves significantly. As one

can see, for δ = π/9 one gets the first four modes with their respective strengths in nice

agreement with the exact values. By reducing even more the phase down to δ = π/18 we

are able to reduce the variance of the data but no additional (higher) energies are resolved.

Notice, however, that the strength of the peaks beyond the first four ones is much smaller.

The same analysis has been carried out for the AP. Our results of the dynamic structure

functions are contained in Fig. 7. With imaginary-time data, we are able to reproduce only

the first peak. By decreasing the phase δ the dynamic response improves progressively. At

δ = π/9, the three main modes and their respective strengths are in close agreement with the

exact results. For the smallest value δ = π/18, we can even resolve the fourth mode whose

strength is already quite small. Again, the gain of working with complex-time correlation

factors becomes evident.

When the momentum q increases, the number of modes contributing to S(q, ω) also

increases, shifting the strength to higher energies. When q is large enough, the dynamic re-

sponse is centered around the free atom recoil energy ωR = ~
2q2/(2m).40 We have calculated

the dynamic response for the HP and AP at q = 5. Our results are reported in Figs. 8 and

9 for HP and AP, respectively. The theoretical response shows in both cases, but somehow

more clearly in the HP one, a distribution of modes nearly symmetric around the recoil

energy. The results obtained for the HP are reported in Fig. 8 where we compare two cases,

δ = π/2 and δ = π/9. Our results are shown with a continuous curve since our resolution

does not allow for a clear separation of the individual excitation energies. Nevertheless, in

the case of using complex time (δ = π/9) the curve precisely reproduces the envelope of the

exact spectrum plotted as vertical lines of strength hi given by

hi =
1

∆ωi

ωi+∆ωi/2
∫

ωi−∆ωi/2

S(q, ω) dω (18)
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FIG. 7. (Color online) Dynamic structure function S(q, ω) for the AP at q = 1.5. Diamonds

correspond to the exact values and circles with errorbars to the results derived from the QMC

results for S(q, tc). The inversion uses complex-time data calculated at the phases δ reported in

each panel.

located at the exact frequency modes ωi, with ∆ωi = (ωi+1 −ωi−1)/2. Using just imaginary

time produces results which are significantly worse. Similar conclusions are drawn from the

results for the AP reported in Fig. 9. The results at δ = π/2 are able only to localize the

signal of S(q, ω) around ωR, but they cannot reproduce the shape of the spectral function.

On the other hand, our results at δ = π/9 match almost perfectly the exact dynamic

response.
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FIG. 8. (Color online) Dynamic structure function S(q, ω) for the HP at q = 5. Diamonds

correspond to the exact values (17) and the curve corresponds to the results derived from our

QMC results. Left panel: imaginary time (δ = π/2). Right panel: complex time (δ = π/9).
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FIG. 9. (Color online) Dynamic structure function S(q, ω) for the AP at q = 5. Diamonds

correspond to the exact values and the curve to the results derived from the QMC results for

S(q, tc). Left panel: imaginary time (δ = π/2). Right panel: complex time (δ = π/9).

IV. CONCLUSIONS

The goal of this work is to propose a new QMC strategy aimed at the study of the dynamic

response of quantum systems at zero temperature. In quantum Monte Carlo methods, the

evolution of configurations is carried out in purely imaginary time, both at zero and finite

temperatures, in an attempt to describe the main properties of quantum systems with high

accuracy. Unfortunately, dynamics in real time is not accessible and the usual approach to

get information on the dynamic response has been to reconstruct it from purely imaginary-

time correlation factors. However, the ill-posed character of the inverse Laplace transform

of noisy data makes this procedure quite uncertain and with multiple solutions.
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Our work is an attempt of progressing in a different way, that is, to reduce the ill-posed

nature of the process by inverting data containing more information than the smooth signal

observed in imaginary-time. Working in the zero-temperature limit, where quantumness is

unavoidable, we have devised a strategy based on the PIGS method to sample complex-time

correlation factors. Our method consists in the sampling of paths connecting configurations

distributed according to the ground-state wave function and, in particular, the calculation

of the correlation function in complex time over the sampled paths. The use of high-order

actions for the propagation in complex time has proven to be crucial to get reliable data

within a time window which naturally shrinks when the real axis is approached. Optimizing

the phase δ of the complex time, we have shown that, in the two model problems studied,

we are able to improve significantly the calculated dynamic structure factor S(q, ω). Both

at low and high q the description of the dynamics is significantly improved in comparison

with the usual imaginary time approach. Nevertheless, additional effort is needed to confirm

the usefulness of the proposed method to problems in two and three dimensions and with

more particles. Work is in progress in our group to extend this formalism to many-particle

systems.
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Appendix A

In this Appendix, we report the explicit expressions for the estimator OA(x0, . . . , xM) ap-

pearing in Eq. 8 using different actions and having chosen to sample the paths {x1, x2, . . . , xM−1}

with ppath(x0, x1, . . . , xM) defined in Eq. 4. In general, OA is a complex number that can be

rewritten in the form

OA(x0, . . . , xM) =

∏M
k=1G(xk, xk−1; εc)

ppath(x0, x1, . . . , xM)
=

M
∏

k=1

G(xk, xk−1; εc)

Gfree(xk, xk−1; τs)
≡ exp(C) exp(iA) , (A1)
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with εc = εme
−iδ. The terms C and A are respectively the logarithm of the modulus and the

phase of the complex number OA, and their formula depends on the approximation scheme

chosen for the complex-time propagator.

In the primitive action (PA) approximation, introducing the propagator GPA in Eq. A1

we get

CPA =
M
∑

k=1

[

−
(xk − xk−1)

2

4λ

(

sin δ

εm
−

1

τs

)

− εm
V (xk) + V (xk+1)

2~
sin δ

]

(A2)

and

APA =
M
∑

k=1

[

(xk − xk−1)
2

4λεm
cos δ − εm

V (xk) + V (xk+1)

2~
cos δ

]

. (A3)

In Chin’s approximation (CA) the propagator is given by

GCA =
3
∏

j=0

exp

(

i
(xk,j+1 − xk,j)

2

4λtjεc

)

exp

(

−i
V (xk,j) + V (xk,j+1)

2~
vjεc

)

× exp

(

i
u0

3

W (xk,j) +W (xk,j+1)

2~
ε3c

)

, (A4)

with a generalized potentialW (r), due to the double commutator [V̂ , [K̂, V̂ ]], and parameters

tj, vj, and u0 reported in Ref. 37. Introducing this propagator in Eq. A1, we can find the

functions CCA and ACA,

CCA =
4

∑

j=1

[(

−
(xk,j+1 − xk,j)

2

4λtj

)(

sin δ

εm
−

1

τs

)

+

(

−εmvj
V (xk,j+1) + V (xk,j)

2~

)

sin δ +

(

ε3m
u0

3

W (xk,j+1) +W (xk,j)

2~

)

sin(3δ)

]

(A5)

and

ACA =
4

∑

j=1

[(

(xk,j+1 − xk,j)
2

4λtjεm

)

cos δ+

(

−εmvj
V (xk,j+1) + V (xk,j)

2~

)

cos δ +

(

ε3m
u0

3

W (xk,j+1) +W (xk,j)

2~

)

cos(3δ)

]

(A6)

Unfortunately, for δ < π/3, the term with ε3m in the expression of CCA (A5) is positive, and

then exp(CCA) can become exceedingly large and spoil the calculation.
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In order to circumvent this problem, we have worked with the sixth-order expansion31

eεcĤ ≃
64

45
eεcV̂ /8eεcK̂/4eεcV̂ /4eεcK̂/4eεcV̂ /4eεcK̂/4eεcV̂ /4eεcK̂/4eεcV̂ /8

−
4

9
eεcV̂ /4eεcK̂/2eεcV̂ /2eεcK̂/2eεcV̂ /4 +

1

45
eεcV̂ /2eεcK̂eεcV̂ /2 , (A7)

which is built without double-commutator terms. This expansion corresponds to a linear

combination of expansions approximated with PA over the same time εc but with different

time steps (precisely, εc/4 in the first term, εc/2 in the second term and εc in the third

term). Therefore, the complete formula for the exponent CZA and for the phase AZA in the

Zillich approximation are easily obtained from CPA and APA (Eqs. A2 and A3) calculated

for different values of εc.

Appendix B

We discuss in this Appendix the method that we have followed to find the optimal

regularization parameter (see Sec. II.B). Given the spectral function SINV(ω, a) obtained

inverting a series of QMC data for the complex-time correlation function CQMC(tc) with

a certain regularization parameter a, we calculate the complex-time correlation function

CINV(tc, a) obtained from the integral transform of SINV(ω, a):

CINV(tc, a) =

∫

dωe−itcωSINV(ω, a) . (B1)

Then we calculate the residual χ2 between CQMC(tc) and CINV(tc, a) as a function of the

regularization parameter a. When a is large, the regularization procedure modifies the

inversion process up to the point that CINV(tc, a) starts to differ from the previous Monte

Carlo data CQMC(tc), thus showing an increase in χ2. For very small a, the noise in the

Monte Carlo data is largely amplified and the inversion procedure itself starts to produce

meaningless results, giving rise once again to the increase in χ2. A plot of the total residual

χ2 versus the regularization parameter a shows a minimum, as shown in Fig. 10 for the case

of the AP data at q = 1.5 and δ = π/4.

In the best scenario, with high quality Monte Carlo data, an optimal regularization

parameter may allow avoiding both problems. In any case, the full inspection of the inversion

landscape for several values of the regularization parameter is a quick calculation.
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FIG. 10. Residual χ2 between CQMC(tc) and CINV(tc, a) as a function of the regularization param-

eter a. The data corresponds to the calculation of the density correlation function S(q, tc) (Eq.

15) in complex time tc = tme−iδ for the AP at q = 1.5 and δ = π/4.
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