
PAMS: Pattern Aware Memory System for
Embedded Systems

Tassadaq Hussain1,2, Nehir Sonmez1 Oscar Palomar1,2,
Osman Unsal1, Adrian Cristal1,2,3, Eduard Ayguadé1,2, Mateo Valero1,2

1 Computer Sciences, Barcelona Supercomputing Center, Barcelona, Spain
2 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona, Spain

3 Artificial Intelligence Research Institute (IIIA), Centro Superior de Investigaciones Cientı́ficas (CSIC), Barcelona, Spain
Email: {first}.{last}@bsc.es

Abstract— In this paper, we propose a hardware mechanism
for embedded multi-core memory system called Pattern Aware
Memory System (PAMS). The PAMS supports static and dynamic
data structures using descriptors and specialized memory and
reduces area, cost, energy consumption and hit latency. When
compared with a Baseline Memory System, the PAMS consumes
between 3 and 9 times and 1.13 and 2.66 times less program
memory for static and dynamic data structures respectively.
The benchmarking applications (having static and dynamic data
structures) results show that PAMS consumes 20% less hardware
resources, 32% less on chip power and achieves a maximum
speedup of 52x and 2.9x for static and dynamic data structures
respectively. The results show that the PAMS multi-core system
transfers data structures up to 4.65x faster than the MicroBlaze
baseline system.

I. INTRODUCTION

With the unveiling of on-chip memories such as memris-
tors [1] and embedded DRAMs [2] the size of on-chip memory
is getting a dramatic increase. As the amount of on-chip gates
increases, there is a dramatic increase in size and architecture
of local memories such as caches and scratchpads. Cache
memories [3] are very effective but only if the working set
fits in the cache hierarchy and there is locality. The concept of
Scratch-Pad memory [4] is an important architectural consid-
eration in modern HPC embedded systems, where advanced
technologies have made it possible to combine with DRAM.
Having huge local memory as shared memory still requires
a memory system in hardware and/or software that hides the
on-chip communication mechanism between the applications.

Integrating intelligent registers [5] [6] inside application
specific processors improve performance of the memory hi-
erarchy. The register file can improves the performance for
applications having data locality, but does not support appli-
cations with large and irregular data structures. Since different
applications have different memory access patterns and data
structures, finding one topology that fits well for all appli-
cations is difficult. Integrating more memory controllers on
the system platform can increase bandwidth, but would also
require a number of Input/Output pins that consume power
and routing overhead. Therefore, a memory system requires
an intelligent memory controller that manages and schedules
the data accesses. In this work, we propose the Pattern Aware
Memory System (PAMS), a memory system for multi-core
architectures. PAMS accelerates both static and dynamic data
structures and their access patterns by arranging memory
accesses to minimize access latency based on the information
provided by pattern descriptors.

The research leading to these results has received funding from the European 
Research Council under the European Unions FP7 (FP/2007-2013) / ERC GA 
n. 321253. It has been partially funded by the Spanish Government 
(TIN2014-34557).

PAMS operates independently from the master core at run-
time. PAMS keeps data structures and access pattern descrip-
tors in a separate memory and prefetches the complete data
structure into a special scratchpad memory. Data structures and
memory accesses are arranged in the pattern descriptors and
PAMS manages access patterns at run-time to reduce access
latency. PAMS manages data movement between the Main
Memory and the Local Scratchpad Memory; data present in
the Local Memory is reused and/or updated when accessed
by several memory transfers. The salient contribution of the
proposed PAMS architecture are:

• Handles complex and irregular memory accesses at
run-time, without the support of a processor or the
operating system.

• Manages data between consecutive iterations of the
memory accesses using register file and reuse data to
minimize memory accesses.

• Supports both static and dynamic data structures us-
ing a parameterizable memory system that manages
SDRAM rows/banks based on access patterns.

• When compared with the MicroBlaze baseline system
implemented on the Xilinx FPGA, PAMS transfers
memory patterns up to 4.65x faster and achieves
between 3.5x to 52x and 1.4x to 2.9x of speedup for
applications having static and dynamic data structures
respectively.

II. RELATED WORK

Scratchpads are a possible alternative to caches, being
a low latency memory that is tightly coupled to the CPU
[7]. Therefore it is a popular choice for on-chip storage in
real-time embedded systems. The allocation of code/data to
scratchpad memory is performed at compile time, leading to
predictable memory access latencies. Panda et al. [8] devel-
oped a complete allocation strategy for scratchpad memory to
improve the average-case program performance. They assume
the access patterns are predictable and are available on top of
the scratchpad memory. Therefore, the goal of the proposal
is allocation strategy that minimizes the conflict among the
variables in the local memory. Suhendra et al. [9] aimed at
optimizing memory access tasks for worst-case performance.
However, in the study, the scratch-pad allocation is for static
and predictable access patterns that do not change during
run-time. This raises performance issues when the amount
of code/data is much larger than scratchpad size. Dynamic
data structure management using scratchpad techniques are
more effective in general, because they may keep the working

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.



set in scratchpad. This is done by copying objects at pre-
determined points in the program in response to execution
[10]. Dynamic data structure management requires a dynamic
scratchpad allocation algorithm to decide where the copy
operations should be carried out. A time-predictable dynamic
scratchpad allocation algorithm has been described by Deverge
and Puaut [10]. The program is divided into regions, each
with a different set of objects loaded into the scratchpad.
Each region supports only static data structures, i.e. global
and local variables. This restriction ensures that every program
instruction can be trivially linked to the variables it might
use. Udayakumaran et al. [11] proposed a dynamic scratchpad
allocation algorithm that supports dynamic data structures. It
uses a form of data access shape analysis to determine which
instructions can access which data structures, and thus ensures
that accesses to any particular object type can only occur
during the regions where that object type is loaded into the
scratchpad. However, the technique is not time-predictable,
because the objects are spilled into external memory when
insufficient scratchpad space is available. The PAMS address
manager arranges unpredictable memory access at run-time
in the form of pattern descriptors. The PAMS is also able
to perform data management and to handle complex memory
accesses at run-time using 1D/2D/3D Scratchpad Memory.

Weisz et al. [12] presented a C to hardware compiler
framework that generates CoRAM FPGA implementations
of 2D loop nests from software source code. Pouchet et
al. [13] proposed a framework that reuse data through loop
transformation-based program restructuring. These frameworks
generate accelerators which manage and process accessed data.
The accelerator requires a master core which performs off-chip
data access. The generated accelerators are used for the Convey
machine, which manages off-chip data. Results indicate that
loop transformation-based program restructuring increases the
overall area growth on the FPGA and does not support complex
and large loops (e.g. three-dimension and irregular code). On
the other hand the PAMS can accomplish off-chip and on-
chip data management and supports complex and irregular
memory accesses. The current evaluation supports complex
(i.e. three-dimension, pointer etc) memory accesses and can
provide 3D data to processing core with a single cycle latency.
The access patterns can be rearranged by re-programming the
PAMS descriptor memory and does not require the re-synthesis.

Hussain et al. [14] also discussed the architecture of
a pattern based memory controller for application specific
single accelerator. He provided a memory controller [15] and
[16] [17] for single core vector processor and graphics system
respectively. The design is appropriate only for single core,
whereas in PAMS we present a mechanism that supports static
and dynamic data structures of real-time applications. More-
over, features of PAMS like the Run-Time Address Management
enable higher performance of multi-core embedded systems.

III. PATTERN AWARE MEMORY SYSTEM (PAMS)
In this work, we present a memory system (shown in

Figure 1) that allocates static and dynamic data structures
and improves the system performance by managing the data
transfers in patterns. This section is further divided into follow-
ing subsections, the Memory Organization, the Data Structures
and Access Description, the Memory Manager and the Pattern
Aware Main Memory Controller.

A. Memory Organization

To provide isolation and improve data locality the PAMS
memory is subdivided into three parts that are: the Register
File the Scratchpad Memory and the Main Memory.

Fig. 1. Architecture of Pattern Aware Memory System

1) Register File: The Register File is fast and efficient as
it provides parallel/patternized data access in a single cycle
to the processing cores. It uses FPGA resources/slices that
have multiple small independent memory register arrays. The
PAMS Memory Manager (see Section III-C) splits, interleaves,
or reorganizes registers that reuse the portion of data. The
PAMS registers can be further categorized into the load register,
reuse register and update register. The load register gets the
input data pattern from the Main Memory using the Memory
Manager and transfers those elements which are not already
accessed or not present in the registers. The reuse register
exploits the data reuse and forwards data requests which are
not available to the load register. The update register manages
the access patterns by taking the data elements from the load
register and reuse register, transferring data to the processing
cores in the form of patterns.

2) Scratchpad Memory: A programmable and parameter-
izable Scratchpad Memory [3] architecture acts as a cache
in the system. It accesses the whole data pattern as a cache
line and temporarily holds data to speedup later accesses. The
structure of Scratchpad Memory is programmed according to
the application data structures and access patterns. Unlike a
cache, the accessed block can have data of non-contiguous
memory locations and is deliberately placed in the Scratchpad
Memory at a known location, rather than automatically cached
according to a fixed hardware policy. A program structure that
is used to initialize a 3D Scratchpad Memory is shown in Fig-
ure 2(a). The values for SCRATCHPAD WIDTH, SCRATCH-
PAD HEIGHT and SCRATCHPAD BLOCKS describe the size
of row NX, column NZ and the 3rd dimension (in this example
32x32x64) in size. The 32x32 size of the block is selected
to fit in one BRAM of the target device, therefore, in the
current evaluation, 64 BRAM blocks are used to design this
3D data memory structure. Furthermore, a master port (M)
and load register are used to transfer data between the Main
and Scratchpad Memories.

3) Main Memory: The slowest memory in the PAMS is the
shared Main Memory which is accessible by the whole system.
A program structure to define a 3D data set in Main Memory
is also shown in Figure 2(a) for a 3D data set of 128x128x128
of size. The PAMS divides the Main Memory data set into
tiles according to the Scratchpad Memory size. At run-time,
the PAMS performs auto-tiling [18] and transfers a tile of data,
having a size equivalent to Scratchpad Memory.

B. Data Structures and Access Description
Just like the cache hierarchy, the PAMS supports two types

of data structure classes for memory allocation that are: the
static data structure and the dynamic data structure, initialized
at compile-time and run-time respectively. The PAMS static
data structure method allocates the memory that usually has
a dense data set with predictable and aligned access patterns.
The dynamic data structure has a data set with unpredictable
and unaligned data access requests.



t y p e d e f s t r u c t ONCHIP MEMORY
{ / / S c r a t c h p a d Memory S t r u c t u r e
i n t SCRATCHPAD BASE ADDRESS;
i n t SCRATCHPAD WIDTH;
i n t SCRATCHPAD HEIGHT ;
i n t SCRATCHPAD BLOCK;
}SCRATCHPAD MEMORY
t y p e d e f s t r u c t MAIN MEMORY
{Main Memory S t r u c t u r e
i n t DATASET BASE ADDRESS ;
i n t DATASET WIDTH;
i n t DATASET HEIGHT ;
i n t DATASET DIMENSION ;
}PAMS DATASET;
/ / Main Program

SCRATCHPAD MEMORY SM0;
PAMS DATASET DS0 ;
/ / 3D S c r a t c h p a d Memory (32 x32x64 )

SM0 . SCRATCHPAD BASE ADDRESS=0 x00000000 ;
SM0 . SCRATCHPAD WIDTH=32;
SM0 . SCRATCHPAD HEIGHT=32;
SM0 .SCRATCHPAD BLOCK=64;
/ / Main Memory ( Data S e t ) 128 x128x128
DS0 . DATASET BASE ADDRESS=0 x30000000 ;
DS0 . DATASET WIDTH=128;
DS0 . DATASET HEIGHT=128;
DS0 . DATASET DIMENSION=128;

(a)
(b) (c)

Fig. 2. PAMS : (a) Scratchpad and Main Memory Structure & Initialization (b) Run-Time Address Manager (c) Pattern Aware Main Memory Controller

The PAMS organizes static and dynamic data structures
requests in two types of descriptors: the regular and the
irregular descriptors. The regular descriptor memory [18]
holds information of static data structures (1D/2D/3D arrays)
and their access patterns. The static data structures are aligned
in terms of memory addressing, managing data structures
that have compile-time predictable and aligned data accesses.
The irregular descriptor memory [3] holds information about
unaligned dynamic data structures (tree-based) and their access
patterns, where the descriptor memory is allocated during run-
time. The size of the allocated memory can vary between
executions of the program. The PAMS descriptor memory
has a number of attribute fields. The set of parameters for
a descriptor memory block includes, the Local Address, the
Main Address, Priority, Size, Stride and Offset. The Address
parameters hold the base addresses of Scratchpad Memory
and Main Memory. The Priority defines the order by which
a memory access pattern is entitled to be processed. The
parameters Size and Stride define the types of memory access.
The Offset register field is used to point to the next linked
memory access pattern.

The PAMS descriptor memory aims to identify the static
and dynamic data structures. It presents data transfers in the
form of a descriptor that tailors variables of random locations.
The PAMS categorises access patterns into three sections:

a) Compile-time predictable: These accesses are man-
aged in descriptor memory before execution. At run-time,
PAMS reads the descriptor information, tailors it in pattern
descriptors before execution and transfers the access pattern
to the Scratchpad Memory.

b) Run-time predictable: The run-time predictable ac-
cesses are managed in descriptor memory at run-time in paral-
lel with execution using Address Manager (see Section III-C).

c) Run-time unpredictable: For access patterns with
run-time unpredictable accesses, PAMS uses separate control
(select & ready) signals to communicate with the processing
core, that generates address for next access pattern.

C. Memory Manager
The PAMS Memory Manager uses descriptor history table

that keeps the knowledge of memory and whether a certain
memory area is in the Scratchpad Memory. The history table
allows the PAMS to reuse the already accessed memory and to
share it between applications. As the data access pattern size
and stride are arranged in regular and irregular descriptors,
the PAMS efficiently utilizes these access patterns at runtime.
The PAMS Memory Manager supports programmed and auto-
matic scheduling policies. These parameters are programmed

statically at program-time and are executed by hardware at
run-time. The program strategy emphasizes on priority and
incoming requests of the processing cores. It also schedules
memory requests depending on the access pattern, transfer
size and program priorities. The Memory Manager is further
divided into two sections which are: the Address and the Data
Manager (shown in Figure 1).

1) Address Manager: The Address Manager uses one or
multiple descriptors at run-time to describe the data access.
Unlike the cache, which transfers an aligned block of data
for each data miss, the PAMS Address Manager accesses
only the missed data by gathering address requests at run-time
and transfers irregular blocks of data. The Address Manager
also manages run-time unpredictable memory accesses and
places them in descriptor memory. The Address Manager
takes memory address requests from a Processor Core, buffers
them and compares the consecutive requesting addresses with
the previous one. If the addresses of consecutive memory
requests have constant strides, the Address Manager allocates
a descriptor block by defining Stride and Size parameters. If
the request has variable strides, then the Address Manager
uses the Offset parameter of the descriptor that points at the
random location of the Main Memory. The structure of run-
time Address Manager is shown in Figure 2(b). The Address
Manager Stride Detector takes an address from the address
bus and gives it to reg 0 and comparator 0. The comparator
0 compares current address value (Addresst) with the previous
one (Addresst−1) and generates the stride which is given
to Pattern Controller. The Pattern Controller compares two
strides (Stridet and Stridet−1) and checks if they are same. If
they are same then it increment in Size register of descriptor
memory and if strides are not same then it generates a start
signal. The descriptor memory stores first value of reg 0 and
reg 1 in Main Address and Stride respectively. Once a start
signal is generated a new descriptor memory block or Offset
is allocated for the requesting source.

2) Data Manager: The Data Manager [15] takes Scratch-
pad Memory information from the PAMS descriptor memory
and manages the Register File data. The Data Manager uses
the Register File to arrange and align the data patterns and
saves read data information for further reuse. It loads/up-
dates patterns from the Main Memory which are not present
in Scratchpad Memory. The Data Manager improves the
Computational Intensity (the number of operations per byte
accessed from the memory) by organizing and managing the
memory accesses. For a core processing a single computed
point, the maximum achievable (ideal) Computational Inten-
sity is 1. The Data Manager accesses the data elements in



the form of patterns which are required for a single output
(Computedelement). After accessing the first access pattern, the
Data Manager reuses and updates data where required. The
Data Manager reuses elements that are available in the reuse
register and updates the accesses (elements) required for the
processing core.

D. Pattern Aware Main Memory Controller (PAMMC)
Unlike a conventional Main Memory controller, the

PAMMC (Figure 2(c)) uses descriptors to access data. At run-
time PAMMC takes descriptors for an access pattern from
the Memory Manager. The PAMMC deals with the Address,
Stream and Stride registers of pattern descriptors and trans-
lates patterns into main memory addresses. Each address is
categorized into Bank, Row and Column address of SDRAM.
The PAMMC supports two possible modes of operations for
bank management: the single-bank mode and the multi-bank
mode to parallelize data accesses. In the single bank mode,
the controller keeps one bank and row combination open at
any given time. In the multi-bank mode, the controller keeps
multiple banks open at any given time. This mode is used
when the data access patterns of an application require data
from different banks at the same time. The PAMMC Bank
Manager is integrated in the design to reduce the memory
access time and power by managing either the single- or
the multi-bank mode according to the memory access pattern
descriptions. The multi-bank mode is used for complex data
patterns having long strides that access data from multiple
banks in parallel. If the access pattern has unit stride and
requires data from a single bank, then the PAMMC opens the
row buffer of the appropriate bank, transfers data in bursts and
keeps the same bank open and, if required, keeps contiguous
rows precharged. These types of access patterns are very
common in the PAMS system because access patterns are
organised in descriptors and occurs for around 70% of all
memory patterns for the studied benchmarks. Depending on
the SDRAM banks, the PAMMC processes multiple patterns
in parallel, each accessing a single bank.

IV. EXPERIMENTAL FRAMEWORK

In this section, we describe and evaluate the PAMS and
compare with a Baseline Memory System (BMS). The BMS
uses cache, scratchpad and buffer memories. The Xilinx Plat-
form Studio 14.3 and Integrated Software Environment 14.3
are used to design the memory systems on the Virtex-7 FPGA
VC707 Evaluation Kit. The power analysis is done by Xilinx
Power Estimator. The section is divided into three subsections:
the Processing Cores, the Baseline Memory System and the
Pattern Aware Memory System.

A. Processing Cores

Table 3 shows the application kernels that are used in the
design. Column Access Pattern presents type of access
patterns of the application kernels. Each color represents a
separate memory transfer pattern. Figure 3(a) has compile-time
predictable access patterns with static data structure. Column
Descriptor shows the number of descriptors requires to
access a data structure for the computation. Figure 3(b) shows
applications having access patterns for dynamic data struc-
ture. Column Com_Pre % presents percentage of compile-
time predictable access patterns. Column Run-time % shows
percentage of run-time predicate and un-predictable access pat-
terns. Application Specific Hardware Accelerator (ASHA) and
Microblaze cores are used to process the application kernels.
MicroBlaze is a 32-bit soft-core processor [19] and features
a Harvard RISC architecture, 32-bit instructions, a 3-stage
pipeline, a 32 register wide register file, a shift unit and two

(a)

(b)

Fig. 3. Application Kernels: (a) Static data structures (b) Dynamic Data
Strictures



(a)

(b)
Fig. 4. System Architecture: (a) BMS (b) PAMS

levels of interrupt. The ASHA is generated by ROCCC [20],
a tool that creates streaming hardware accelerators from a
subset of C. The ROCCC generates the smart buffers for
computationally intensive window operations. The hardware
generated by ROCCC speeds up applications by replacing crit-
ical regions in software with a dedicated hardware component.
These dedicated accelerators have low footprint and low power
consumption and provide high performance. The applications
having dynamic data structures with irregular accesses are
executed on the MicroBlaze processor, and the application
kernels with static data structures having regular accesses
are executed on ASHA. In our current designs, applications
are executed at 100 MHz and the highest bandwidth required
400 MB for computational intensity=1 (i.e. the number of
operations per word accessed from the memory). The Main
Memory is shared between all application kernel.

B. Baseline Memory System (BMS)

A Xilinx FPGA based state of the art memory system is
used as a BMS shown in Figure 4(a). Like a conventional
memory system, the BMS uses a microprocessor that manages
and handles static and dynamic data structures. The memory
system takes instructions from the MicroBlaze processor and
performs memory management and data transfer operations.
The MicroBlaze core of BMS uses Instruction Cache Link
(IXCL) and Data Cache Link (DXCL) to access instruction
Cache and Data Cache memory respectively. Fast Simplex
Link (FSL) is used to feed data to ASHA. Each FSL has one
input and one output port and provides a low latency dedi-
cated interface to the ASHA. A High Performance Multi-Port
Memory Controller (MPMS) is used to provide an efficient
interfacing between the Microblaze processor and SDRAM
using the Advanced eXtensible Interface (AXI) bus. A modular
DDR3 SDRAM controller (with an AXI4 Wrapper) is used
with the MPMS system to access the Main Memory. The
BMS uses Central Direct Memory Access (CDMA) controller
to improve the performance of the SDRAM controller by
managing complex patterns in hardware. The CDMA allows
full-duplex, high-bandwidth bus interfaces into memory.

To manage on-chip data for computationally intensive
window (loop) operations, the ASHA uses smart buffers in
BMS. The smart buffer helps to minimize the accesses to
the Main Memory for programs that operate on static data
structures and to perform loop operations over arrays. The
smart buffer is a part of ASHA and uses FPGA resources.

These smart buffers reuse data having regular access patterns
through loop transformation-based program restructuring. This
store the input and processed data for future iterations and
remove the old data if it is not required in future.
C. PAMS based System

The PAMS based system is shown in Figure 4(b). The
major difference between PAMS and the BMS is that the
baseline system uses a MicroBlaze microprocessor, which
manages the local and scratchpad memory data and transfers
data between the SDRAM controller and the Processing Cores
using the cache hierarchy. The MicroBlaze processor works
as slave in the PAMS system. The PAMS uses Scratchpad
Memory to manage static and dynamic data structures, a Data
Manager that organises and reuses, and an Address Manager
that manages the data transfers at compile-time and run-time
for the Processing Cores.

V. RESULTS AND DISCUSSION

This section analyzes the results of different experiments
conducted on PAMS and BMS. The experiments are charac-
terized into five subsections: Resource Utilization, Application
Performance, Program Memory, Throughput and Power Con-
sumption.
A. Resource Utilization

In this section we measure the resource utilization of
the memory hierarchy of the BMS and PAMS. The memory
hierarchies of BMS and PAMS are compiled for cache/scratch-
pad memories and scratchpad memory respectively. The BMS
smart buffers and the PAMS register file size is dependent on
the number and the size of ASHA nested loops.

Table I shows the resource utilization of the memory
hierarchy of the BMS and the PAMS. The memory hierarchy
of the baseline system is compiled for a 64KB of data cache
and 64KB of scratchpad. The PAMS is compiled for 128KB
of Scratchpad Memory. The Local Memory column presents
area of usage the data-path and control unit and BRAM usage
in bits of cache/Scratchpad and Scratchpad Memory of BMS
and PAMS respectively. The column (Reg, LUT) of Local
Memory shows the resources used by the cache hierarchy and
scratchpad controller of the BMS and the Memory Manager of
the PAMS. The BRAM presents the number of Block RAMs
(36k bitss). Table I shows that the Memory Manager of the
PAMS memory system occupies 2 times less resources (reg
and LUT) than the BMS scratchpad and cache management.
The Main Memory column presents the resource utilization for
the SDRAM DDR3 controller.

Table II shows ASHA buffer memory and register file that
are used to fetch and store data for BMS and PAMS ASHA
respectively. The ASHA of BMS uses ROCCC based Smart
Buffers that uses the data between the loop iterations, which
consist of registers that cache the portion of memory used.
The # loops presents the number of nested loops that are used
to perform computations on large blocks of data placed in
local scratchpad memory. The window size column shows the
amount of data that has to be dispatched to the ASHA datapath
per clock cycle. Results show that the impact of loop trans-
formations on the size of generated Smart Buffers hardware is
high. i.e. generated hardware to support loop transformation

TABLE I. RESOURCE UTILIZATION OF THE MEMORY HIERARCHY

Local Memory Main Memory
Reg LUT BRAMs (36kb) Reg LUT

BMS Cache 502 1188 19 5678 7589
Scratchpad 402 533 16

PAMS Scratchpad 190 1030 32 4742 6249



TABLE II. RESOURCE UTILIZATION OF SMART BUFFER AND
REGISTER FILE

ASHA # of Loops Window Reg LUT
BMS 1D (FIR) 1024 128 12203 4045

2D Filter (128x128) 8x8 1833 555
16x16 3306 1036
32x32 6122 2028

3D Stencil (128x128x128) 8x8x8 26364 43296
16x16x16 Failed
32x32x32 Failed

PAMS 1D (FIR) 1024 1024 4100 3912
2D Filter (128x128) 16x16 534 1018

32x32 2084 1958
3D Stencil (128x128x128) 8x8x8 10861 12323

16x16x16 42861 30323
32x32x32 112861 82323

consumes more FPGA logic. For large and complex window
sizes Xilinx ISE failed to synthesize hardware for Smart
Buffers due to complex loop transformations. The BMS ASHA
hardware register size increases when the loop is pipelined,
which holds a large window of input data, however the control
logic cost remains the same. The PAMS uses the Register
File which is handled by the Memory Manager. The PAMS
itself performs off-chip and on-chip data management and sup-
ports complex and irregular memory accesses. Table II shows
that PAMS supports complex (i.e. three-dimension, pointer,
etc.) memory accesses and uses less hardware resources then
the BMS. The PAMS access patterns are rearranged by re-
programming the PAMS descriptor memory, which does not
require the re-synthesis of hardware accelerators. The BMS
ASHA uses Smart Buffers to manage on-chip data, but in order
to read data from the Main Memory it requires a MicroBlaze
processor core.

B. Program Memory

The program memory allocates memory space for the
retrieval and the manipulation of memory assignments. The
Xilinx library generator (libgen) is used to generate libraries
and header files necessary to build an executable file for
application kernel. Libgen parses the system hardware drivers,
interrupt handling, etc. and creates libraries for the system.
The libraries are then used by the MicroBlaze GCC compiler
to link the program code for the processing cores. The object
files from the application and the software platform are linked
together to generate the final executable object file. In this
section we compare the executable object files of the PAMS
and BMS for each kernel.

Figure 5 presents the memory used by the BMS and the
PAMS. The y axis is in logarithmic scale. In the PAMS, the
regular descriptor memory holds the local variables and the
descriptor information for static access patterns. In the BMS
implementation, the equivalent information is stored in the
stack and heap. The Rad Con and Thresh applications have
statically known Load/Store accesses, which occupy 6 times
less space in the regular descriptor memory compared to the
BMS. The FIR application has a streaming data pattern, which

Fig. 5. Program Memory: Static and Dynamic Data Structures

uses 6 times less memory. The FFT and Mat Mul/Lapl/Smith-
W kernels access 1D and 2D patterns respectively. These
applications use 4, 3, 5, and 9 times less space in the regular
descriptor memory respectively. The 3D-Sten kernel accesses
3D data patterns having 32x32x32 dimensions. Due to the
small dimensions of the 3D-stencil data set, the PAMS uses
two times more regular memory than the BMS. However
across results show as a rule of thumb, the PAMS can handle
applications having complex and dense access patterns more
efficiently as their dimension size increases. We measured
the heap memory usage of the BMS for applications having
dynamic data structures and compared it with the PAMS
irregular descriptor memory. For CRG, Huffman, In Rem
and N-Body, the PAMS system requires 1.13x to 2.66x less
irregular descriptor memory, compared to the baseline system.
The stack and regular descriptor memory size is the same in
both systems.

C. Application Performance

In this section we compare the performance of BMS and
PAMS. Figure 6, shows the number of clock cycles taken by an
application kernel to manage and process the data set. Each
application data set is placed in Main Memory. In Figure 6
the BMS Data Access presents main memory data access and
cahce/scratchpad memory management time. The BMS uses
a MicroBlaze processor, DMA and Memory Controller to
transfer data between the Main Memory and Cache/Scratchpad
memory. The BMS ASHA bar shows the number of clock cycles
to process the data available on scratchpad memory. The PAMS
uses Scratchpad Memory to feed data to the MicroBlaze and
ASHA. The PAMS Data Access column presents the time to
access data patterns from main memory and time to manage it
on Scratchpad Memory. The PAMS ASHA column shows the
number of clock cycles required to process the data available
on the Scratchpad Memory.

By using the PAMS system, the results show the Rad Con
and Thresh applications achieve 3.3x of speedup over the
BMS. These application kernels have several compile-time pre-
dictable memory access requests with no data locality. The FIR
application has a streaming data access pattern and achieves
25x of speedup. The FFT application kernel reads a 1D block
of data, processes it and writes it back to main memory. This
application achieves 10.2x of speedup. The Mat Mul kernel
accesses row and column vectors. The application attains 14x
of speedup. The PAMS system manages addresses of row
and column vectors in hardware. The Smith W and Lapl
applications take 2D blocks of data and achieve 38x and 36x
of speedup respectively. The 3D-Stencil data decomposition
achieves 52x of speedup. The PAMS takes 2D and 3D block
descriptors and manages them in hardware. The compile-
time predictable access patterns are placed on the descriptor
memory at program-time and are programmed in such a way
that few operations are required for generating addresses at
run-time. The baseline system uses multiple load/store or
DMA calls to access complex patterns. The CRG, Huffman, In
Rem and N-Body applications process dynamic data structures;
therefore, the MicroBlaze core is used to process these applica-
tions. The CRG and Huffman applications have unpredictable
memory access patterns with long strides and no data locality.
While executing these applications on the PAMS, the system
achieves 1.5x, 1.7x of speedup respectively over the BMS. The
In Rem application has run-time predictable memory access
patterns with no data locality, hence achieves 2.0x of speedup.
The N-Body application includes predictable data patterns with
data locality. While running on the PAMS system, it achieves
2.9x of speedup over the BMS system.



Fig. 6. Application Performance: Static and Dynamic Data Structures

D. Throughput

In this section, we measure the data transfer throughput
of PAMS and BMS for a different number of ASHA cores
by reading and writing data set with two types of transfers.
The X-axis (shown in Figure 7) presents two types of data
transfers and number of cores. Each data transfer reads and
writes a data set of 2MB from/to the SDRAM. The type
Short Window contains data transfers that have a maximum
transfer size of 128B and the type Long Window has a
transfer size of 4KB. Therefore a single ASHA has 32768 and
1024 read-after-write requests of Short Transfers and Long
Transfers respectively. The requests increase with the number
of requesting ASHAs. While using 1, 2, 4 and 8 requesting
ASHAs for Short Transfer type, results show that the PAMS
transfers data 3.80x, 4.338x, 4.48x and 4.65x times faster
respectively than the BMS. While transferring data with the
Long Window type, the PAMS improves throughput 2.79x,
2.90x, 3.08x and 3.10x times. Results show that the PAMS
improves the aggregated throughput for Short Windows when
increasing the number of cores. The BMS uses the CDMA
controller that forces to follow the bus protocol and requires a
processor that provides data transfer instructions. The CDMA
responds as a slave when its registers are being read or written
and acts as a bus master once it initiates data transactions.
For multiple cores, the BMS uses multiple instructions to
initialize CDMA. CDMA can begin a new transfer before the
previous data transfer completes with a delay called pipeline
latency. The pipeline latency increases with the number of
data transfers. Each Data Transfer requires bus arbitration,
address generation and SDRAM bank/row management. The
PAMS Short Window type uses few descriptors that reduce run-
time address generation and address request/grant delay and
improve the throughput by managing addresses at compile-
time and by accessing data from multi-banks in parallel.

E. Power Consumption

On-chip power dissipation in a Xilinx Virtex-7
XC7VX485T device is 2.95 Watts while running the
BMS using 64KB cache and 64KB scratchpad memories.
The PAMS system with 128KB Scratchpad Memory draws
2.36 Watts of on-chip power. The PAMS consumes 20% less

Fig. 7. BMS and PAMS: Memory Throughput

on-chip power than the BMS. The PAMS provides low-power
and simple control characteristics by rearranging data accesses
and utilizing hardware units efficiently.

VI. CONCLUSION

High performance applications suffer from poor perfor-
mance on FPGA architectures due to the memory system. In
this work, we proposed an efficient and intelligent memory
system in hardware called Pattern Aware Memory System
(PAMS). The proposed memory system manages static and
dynamic data structures in hardware and controls their memory
accesses in the form of patterns that improve system data trans-
fer throughput. In order to prove that our memory system is
efficient in a variety of scenarios, we used several benchmarks
with different data structures and memory access patterns. The
benchmarking results show that the PAMS transfers memory
patterns up to 4.65x faster, achieves between 3.3x to 52x and
1.5x to 2.9x of speedup for applications having static and
dynamic data structures respectively and consumes up-to 9
times less program memory.

REFERENCES

[1] Matthias Hartmann et al. Memristor-based (reram) data memory
architecture in asip design. In Digital System Design (DSD), 2013.

[2] Stylianos Perissakis et al. Embedded dram for a reconfigurable array.
In VLSI Circuits, 1999. Digest of Technical Papers.

[3] T. Hussain et al. Advanced pattern based memory controller for fpga
based applications. In International Conference on HPCS, 2014.

[4] Rajeshwari Banakar et al. Scratchpad memory: Design alternative for
cache on-chip memory in embedded systems. In Proceedings of the
tenth international symposium on Hardware/software codesign.

[5] Zhang, Chuanjun et al. Using a victim buffer in an application-specific
memory hierarchy. In DATE2004.

[6] Ken Mai and Paaske et al. Smart memories: A modular reconfigurable
architecture. 2000.

[7] Stefan Steinke et al. Reducing energy consumption by dynamic copying
of instructions onto onchip memory. In 15th International Symposium
on System Synthesis, 2002.

[8] Preeti Ranjan Panda et al. Memory issues in embedded systems-on-chip:
optimizations and exploration. Springer, 1999.

[9] Vivy Suhendra et al. Wcet centric data allocation to scratchpad memory.
In 26th IEEE International Symposium on Real-Time Systems, 2005.

[10] J-F Deverge and Isabelle Puaut. Wcet-directed dynamic scratchpad
memory allocation of data. In Real-Time Systems, 2007. ECRTS’07.
19th Euromicro Conference on.

[11] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dy-
namic allocation for scratch-pad memory using compile-time decisions.
ACM Transactions on Embedded Computing Systems (TECS).

[12] Gabriel Weisz et al. C-to-coram: compiling perfect loop nests to the
portable coram abstraction. In FPGAs, 2013.

[13] Louis-Noël Pouchet et al. Polyhedral-based data reuse optimization for
configurable computing. In International symposium on FPGAs, 2013.

[14] T. Hussain et al. Recongurable Memory Controller with Programmable
Pattern Support. HiPEAC WRC, Jan, 2011.

[15] T. Hussain et al. Memory controller for vector processor. In The 25th
IEEE ASAP 2014 Conference.

[16] T. Hussain et al. Stand-alone memory controller for graphics system.
In The 10th International Symposium on ARC. ACM, 2014.

[17] Tassadaq Hussain and Amna Haider. Pgc: a pattern-based graphics
controller. Int. J. Circuits and Architecture Design, 2014.

[18] T. Hussain et al. PPMC: A Programmable Pattern based Memory
Controller. In ARC 2012.

[19] Embedded Development Kit EDK 10.1i. MicroBlaze Processor Refer-
ence Guide.

[20] Riverside Optimizing Compiler for Configurable Computing (ROCCC
2.0), 3,April 2011.


