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Abstract. The Firefighter Problem was proposed in 1995 [16] as a deter-
ministic discrete-time model for the spread (and containment) of a fire.
Its applications reach from real fires to the spreading of diseases and the
containment of floods. Furthermore, it can be used to model the spread
of computer viruses or viral marketing in communication networks.
In this work, we study the problem from a game-theoretical perspective.
Such a context seems very appropriate when applied to large networks,
where entities may act and make decisions based on their own interests,
without global coordination.
We model the Firefighter Problem as a strategic game where there is one
player for each time step who decides where to place the firefighters. We
show that the Price of Anarchy is linear in the general case, but at most
2 for trees. We prove that the quality of the equilibria improves when
allowing coalitional cooperation among players. In general, we have that
the Price of Anarchy is inΘ(n

k
) where k is the coalition size. Furthermore,

we show that there are topologies which have a constant Price of Anarchy
even when constant sized coalitions are considered.

Keywords: Firefighter Problem; Spreading Models for Networks; Algo-
rithmic Game Theory; Nash Equilibria; Price of Anarchy; Coalitions.

1 Introduction

The Firefighter Problem was introduced by Hartnell [16] as a deterministic
discrete-time model for the spread and containment of fire. Since then, it has been
subject to a wide variety of research for modeling spreading and containment
phenomena like diseases, floods, ideas in social networks and viral marketing.

The Firefighter Problem takes place on an undirected finite graphG = (V,E),
where initially fire breaks out at f nodes. In each subsequent time-step, two
actions occur: A certain number b of firefighters are placed on non-burning nodes,
permanently protecting them from the fire. Then the fire spreads to all non-
defended neighbors of the vertices on fire. Since the graph is finite, at some
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point each vertex is either on fire or saved. Then the process finishes, because
the fire cannot spread any further. There are several different objectives for
the problem. Typically, the goal is to save the maximum possible number of
nodes. Other objectives include minimizing the number of firefighters (or time-
steps) until the spreading stops, or determining whether all vertices in a specified
collection can be prevented from burning.

Most research on the Firefighter Problem (also the work in this paper) consid-
ers the case f = b = 1, which already leads to hard problems. The problem was
proved NP-hard for bipartite graphs [20], graphs with degree three [11], cubic
graphs [19] and unit disk graphs [14]. However, the problem is polynomial-time
solvable for various well-known graph classes, including interval graphs, split
graphs, permutation graphs, caterpillars, and Pk-free graphs for fixed k [12, 15,
20, 14]. Furthermore, the problem is (1− 1/e)-approximable on general trees [6],
1.3997-approximable for trees where vertices have at most three children [18],
and it is NP-hard to approximate within n(1−ε) for any ε > 0 [3]. Later results
on approximability for several variants of the problem can be found in [3, 5, 8].

Recently, the scientific community has focused on the study of the parame-
terized complexity of the problem. It was shown to be fixed parameter-tractable
w.r.t. combined parameter “pathwidth” and “maximum degree” [7]. Other im-
portant results can be found in [9, 4]. For other variants of the Firefighter Prob-
lem see [10, 21, 12].

In this work, we study the Firefighter Problem from a game-theorical per-
spective. Instead of global coordination algorithms, we define a game where the
players decide which nodes to protect. Player i chooses where to place the fire-
fighters at time-step i, independently from the other players (one shot game).
Since we consider the case of b = 1, every player can protect at most one node
in his corresponding turn. We can consider different payoffs for the players, the
most natural seems to save as many nodes as possible. At each time-step, the
fire spreads automatically as described in the original problem.

To the best of our knowledge, the only existing game-theoretical models to
similar problems are those referred to as the vaccination problem [3, 13], the
spreading of rumors [25] and competitive diffusion [1, 24, 22, 23]. Those models
however focus on information spreading on social networks, and thus take into
account other inherent aspects of those scenarios, like preferences, reputation,
popularity and other personal traits of the users, and relevance or truthfulness of
the information. Our proposal is well-suited to model fighting against spreading
phenomena in large networks, where the protection strategy for each time-step
is decided by one player, independently from the others.

The paper is organized as follows. In Section 2 we define some basic game-
theoretical concepts extensively used along the paper. In Section 3 we introduce
the game and analyze the quality of its equilibria. Then we explore the behavior
on trees. In Section 4 we introduce a solution concept which allows coalitions
of players. We show that this improves the Price of Anarchy, explore the com-
putational complexity of finding equilibria and look at graphs with constant
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cut-width. Finally, conclusions and directions for future work can found in Sec-
tion 5. The omitted proofs can be found in an extended version of the paper [2].

2 Game-Theoretical Definitions

A strategic game G = (N ,S〉i∈N , (ui)i∈N ) is defined by a set of players N , action
sets Si for each player i ∈ N and utilities ui : S → R, where S = S1× . . .×S|N |.

Each player i plays an action si ∈ Si and his payoff is ui(s), where s =
(s1, . . . , s|N |) is the strategy vector or strategy profile of all players. The qual-
ity of the outcome of the game when strategy vector s is played is measured
by a so-called social welfare function W (s). Furthermore we denote (s−i, s

′
i) =

(s1, . . . , s
′
i, . . . , s|N |), i.e. strategy vector s, where player i changed his strategy

from si to s′i.

Nash Equilibrium. A strategy profile s is a Nash equilibrium, if no player can
improve his payoff by changing the strategy he played. Let E ⊆ S denote the set
of all Nash equilibrium strategies. We say that s ∈ E if it holds that:

∀i ∈ N ,∀s′i ∈ Si : ui(s) ≥ ui(s−i, s′i).

Price of Anarchy. The Price of Anarchy (PoA) of a game G with respect to
a social welfare function W is defined as the ratio between the optimal solution
and the worst equilibrium.

PoA(G,W ) =
maxs∈SW (s)

mins∈EW (s)
.

Price of Stability. The Price of Stability (PoS) of a game G with respect to
a social welfare function W is defined as the ratio between the optimal solution
and the best equilibrium.

PoS(G,W ) =
maxs∈SW (s)

maxs∈EW (s)
.

3 The Firefighting Game

The Firefighting Problem takes place on an undirected graph G = (V,E), where
fire breaks out at one node, namely v0 ∈ V , and incinerates all neighboring
nodes at every time-step. We call those nodes burning. A fixed number b, called
the budget, of firefighters can be placed on nodes to permanently protect them
from burning. These nodes are called defended. If a node never burns because it
is defended or cut off from the fire it is called saved. All other nodes are called
vulnerable. We just consider the case of a b = 1.
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In order to define a firefighting game, we have to define a set of players N ,
with N = {1, . . . , n− 1} where n = |V |, and for every Player i ∈ N , his strategy
set Si and his utility function ui.

Player i decides which nodes to protect at time-step i. His strategy si is the
subset of nodes he wants to place firefighters, Si denotes the set of all possible
strategies for player i. Since we only deal with the case of b = 1 we overload
notation and instead of subsets of size one, we set the strategies to the vertices
themselves or the empty set, i.e. Si = V ∪ {∅}. This means that players can
choose one node or the empty set as a strategy. Let s = (s1, . . . , s|N |) denote the
strategy profile of all players.

The outcome of the game is a partition of the vertex set into saved and burned
nodes. It is defined in the following way. At time-step 0 the only burning node is
v0. At time-step i > 0, two events occur: First, player i’s node is protected if his
action is valid w.r.t. to strategy profile s, i.e. it is neither burning nor already
defended at the end of time-step i− 1. Second, each node burning at time-step
i− 1 incinerates all its non-defended neighbors. The process stops when the fire
cannot spread any further. Let Safe(s) ⊂ V be the set of all nodes that are saved
when strategy vector s is played. Furthermore, let Safei(s) = Safe(s)\Safe(s−i, ∅)
be the set of nodes that would burn if player i switched his action to the empty
set and let invalid(s, i) denote the event that player i’s action is not valid with
respect to strategy profile s.

3.1 Utility Functions

We look at two different functions, one modelling a selfish behavior and the other
one modelling a non-profitable behavior. As it turns out, the respective games
are equivalent.

a) Selfish Firefighters. In this model, firefighters get paid for the nodes they
save. We call this game G(Selfish). Intuitively, if player i makes a valid move other
than the empty set, he gets one unit of currency from each node he helped to
save. In other words, he gets paid by all nodes that are safe with respect to the
played strategy vector, but would not be safe if he would change his strategy to
the empty set. Additionally, he will get charged a penalty if he makes an invalid
move. Now let us define the utility function formally.

u
(Selfish)
i (s) =

−c if invalid(s, i),
0 if si = ∅,
|Safei(s)| − ε otherwise,

with 0 < ε < 1 and c > 0. We can see that the definition follows the intuition
very closely. Subtracting an ε cost for placing a firefighter makes sure that players
always prefer to play the empty set over placing a firefighter on a node that is
already safe (which would not be an invalid move).
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b) Non-Profit Firefighters. Here we assume that the goal of every firefighter is to
save as many total nodes as possible, independently of which firefighters actually
save more nodes. We call this game G(Non-Profit). Formally, we define

u
(Non-Profit)
i (s) =

−c if invalid(s, i),
|Safe(s)| if si = ∅,
|Safe(s)| − ε otherwise,

with 0 < ε < 1 and c > 0.

Notice that in an equilibrium, no player plays an invalid move or puts a
firefighter on an already safe node. Also, since we have that 0 < ε < 1, the cost
of placing a firefighter is less than the benefit of saving one node. Because of
that, given that a player does not play the empty set, the ε-value does not affect
his preferences. Therefore, we will ignore it in the proofs.

Equivalence of Games. Surprisingly, the behavior of selfish firefighters leads
to the same equilibria than the behavior of the non-profit firefighters. It can be
shown that the games G(Selfish) and G(Non-Profit) have the same sets of equilibria.
This also implies that

PoS(G(Selfish),W ) = PoS(G(Non-Profit),W )

PoA(G(Selfish),W ) = PoA(G(Non-Profit),W ).

Therefore we will use the utility function which is more convenient for the proof.
Also, we will for now on refer to the game with G, whenever the respective result
holds for both versions of the game.

3.2 Quality of Equilibria

Once we have established a game, we can analyze the quality of the equilibria. In
order to do this, we have to define a measure of the social benefit. We look at the
simple case of the social welfare being the number of the nodes that are saved,
i.e. W (s) = |Safe(s)|. It is easy to argue that equilibria always exist, because
every optimal solution that does not contain invalid moves is an equilibrium for
non-profit firefighter since it maximizes their utility function.

Price of Stability. In the case of non-profit firefighters, every strategy that
maximizes the social welfare also maximizes the utility of every player given
that he cannot improve his payoff by switching to the empty set. All optimal
solution that are valid and do not protect nodes that are already saved are Nash
equilibria. Therefore, we have the PoS is 1. This is independent of the class of
graphs we are considering and holds for every solution concept where players
maximize their utility function.

Lemma 1. PoS(G,W ) = 1. ut

5



v0

v1

u0

v2

v3

v4

u1

u2

complete graph

Fig. 1. Family of graphs GPoA(n) = (VPoA(n), EPoA(n)). Note that (v1, v4) ∈ EPoA(n)
and (v2, v3) ∈ EPoA(n). For better visibility these edges are not drawn in the picture.
Further note that |VPoA(n)| = n, hence the size of the complete graph is n− 8 and the
nodes of this graph together with nodes v1, v2, v3 and v4 form a clique of GPoA(n).

Price of Anarchy. In contrast to the PoS, the PoA is very high in this model.
We first lower bound the PoA and then show that the bound is tight. For the
proofs we use the utility functions of the selfish firefighters.

Theorem 1. PoA(G,W ) ∈ Θ(n).

Proof. We first prove a lower bound on the PoA, i.e. PoA(G,W ) ∈ Ω(n), and
then show that this bound is tight. We look at an instance which has a very bad
equilibrium relative to the optimal strategy with respect to the social welfare.
Consider the family of graphs GPoA(n) shown in Figure 1.

Recall that the fire starts at v0. It is easy to see that s = ({v1}, {v2}, ∅n−3)
is the optimal strategy. Only nodes v0 and u0 burn, hence the social welfare is
W (s) = n−2. Furthermore we have that s′ = ({v3}, {v4}, ∅n−3) is an equilibrium.
Note that the complete graph is burning after two time-steps, therefore at time-
step 3 only u1 and u2 are neither burning nor defended. But these nodes are
already safe, hence players i with i > 2 will not place firefighters on them.
Furthermore, players 1 and 2 cannot improve their payoff, since if one of them
changes strategy, that player will save at most one node. The social welfare of
s′ is W (s′) = 4.

Hence, we have that PoA(G,W ) ≥ n−2
4 . It follows that PoA(G,W ) ∈ Ω(n).

This means that we can only guarantee to save at most constant number of
nodes. To argue that this bound is tight, we show that it is always possible to
save a constant number of nodes.

By definition Player 1 can always place a firefighter on a node before the
fire starts spreading. Also any strategy vector s where player 1 plays the empty
set is not an equilibrium since he can always save at least one node which can-
not be saved by any other player by placing a firefighter to a node adjacent
to the original fire. This yields a upper bound of PoA(G,W ) ≤ n, and hence
PoA(G,W ) ∈ O(n). ut
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3.3 Price of Anarchy for Trees

Since the PoA is very high in general, let us study the quality of equilibria for
particular topologies. Our aim is to prove that there are cases where the quality
of the equilibria is close to the quality of an optimal solution. In this section, we
look at the PoA on trees. Let GTree denote the Firefighting Game on trees. We
show that in contrast to our general result, the PoA is constant for trees. We
assume that v0, the initial fire, is the root of the tree.

Theorem 2. PoA(GTree,W ) ≤ 2.

Proof. In this proof, we use similar ideas as in the proof of the approximation
ratio of a greedy algorithm in a paper by Hartnell and Li [17].

We use the utility functions of the selfish firefighters. This implies that the
utility of a player equals the size of the subtree he saves.

Let opt = (opt1, . . . , opt|N |) be an optimal solution w.r.t to the social welfare,
i.e. the optimal action opti is the node that is saved at time-step i. Let s =
(s1, . . . , s|N |) be an equilibrium strategy profile of the players. Recall that the
optimal actions as well as the player actions are defined as the nodes in the tree
that are saved. Let optA be the set of optimal actions opti, such that there is no
player who plays the same action and no player action is an ancestor of opti, i.e.
∀j ∈ N : sj 6= opti ∧ sj is not ancestor of opti. Let optB denote the remaining
optimal actions. Let P (opti) denote the set of action sj that are successors of
opti. Let sA denote the actions of players, that do not have an optimal action as
an ancestor, i.e. ∀j ∈ N : optj is not ancestor of si. Let sB denote the remaining
player actions. Let save(a) denote the numbers of nodes saved by action a.

Note that in optB there are optimal actions where a player plays the same
action or a player action is an ancestor. Those corresponding player actions are
the ones in sA. Therefore we have that∑

opti∈optB

save(opti) ≤
∑

si∈sA

save(si). (1)

Because of the equilibrium property, we have that for every opti ∈ optA

save(si) ≥ save(opti)−
∑

sj∈P (opti)

save(sj),

because otherwise player i would have an incentive to switch his strategy to opti.
If we now sum this up over all optimal actions in optA, we get

∑
opti∈optA

save(opti) ≤
∑

opti∈optA

save(si) +
∑

sj∈P (opti)

save(sj)

 .

We can split up the sum on the left hand side and get
∑

opti∈optA
save(si) +∑

opti∈optA

∑
sj∈P (opti)

save(sj). Note that in the double sum, we sum up exactly
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over the player actions that have an optimal action as an ancestor i.e. sB . So we
can rewrite this to∑

opti∈optA

save(opti) ≤
∑

opti∈optA

save(si) +
∑

si∈sB

save(si).

Now we can use Inequality 1 to get∑
opti∈opt

save(opti) ≤
∑

opti∈optA

save(si) +
∑
si∈s

save(si).

Furthermore, we have that
∑

opti∈optA
save(si) ≤

∑
si∈s save(si) which yields∑

opti∈opt

save(opti) ≤ 2
∑
si∈s

save(si).

This shows that an equilibrium strategy saves at least half of the nodes saved
by an optimal solution, yielding a PoA of at most 2. ut

4 Coalitions

In this section let us consider that players may form coalitions. A coalition is
willing to deviate from their strategy as long as no player in the coalition loses
payoff and at least one player increases his utility. We show that this affects the
PoA. First, we need to introduce a suitable solution concept for coalitions.

We call a strategy vector s an equilibrium strategy with respect to coalition
size k, if no set of at most k players can simultaneously change their strategies in
such a way that at least one player increases his payoff and no player decreases his
payoff. Let K ⊆ N denote the coalition and sK a strategy profile of the members
of the coalition. We say that coalition K has an attractive joint deviation if there
is a strategy vector s′K , such that ui(s) ≤ ui(s−K , s

′
K) for all i ∈ K, and for at

least one player in K this inequality is strict.
Let Ek ⊆ S denote the set of all equilibrium strategies with respect to coali-

tion size k. We say that s ∈ Ek, if there is no coalition K of size at most k that
has an attractive joint deviation. Formally, we say that s ∈ Ek if it holds that:

∀K ⊆ N with |K| ≤ k and ∀s′K 6= sK : s′K is not an attractive joint deviation.

Let Gk denote a firefighting game with coalitions of size at most k. In this
case we do not have an equivalence between selfish and non-profit firefighters
like in the Nash case. It can be shown that the sets of equilibria of the respective
games are different. From now on we will only consider non-profit firefighters
since they resemble the usual objective to save as many nodes as possible.

4.1 Price of Anarchy

Now we analyze the PoA for coalitions and its relation with the coalition size.
We can show the following relationship.
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v0
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v1v2vkvk+1

u′
2 u′

k

v′1 v′2 v′k

w

complete graph

Fig. 2. Family of graphs GPoA(n, k) = (VPoA(n, k), EPoA(n, k)), with |VPoA(n, k)| = n.
Note that the complete subgraph together with nodes v1 to vk+1 form a clique. The
nodes v′1 to v′k together with w form a clique as well. For every vi and uj and for every
v′i and u′

j there are edges (vi, uj) and (v′i, u
′
j), respectively, if i ≤ j. Furthermore, for

every ui and u′
i there is an edge to ui+1 and u′

i+1, respectively.

Theorem 3. PoA(Gk,W ) ∈ Θ(n
k ).

Proof. To prove this, we first give an upper bound on the PoA for coalition
size k. Later we show that this bound is tight. The upper bound we show is
PoA(Gk,W ) ≤ n

k − 1. We upper bound the welfare of the optimal solution and
lower bound the welfare of the worst equilibrium. Note that if the optimal solu-
tion uses k or less time-steps, it can be found by a coalition of size k. Therefore,
we assume that in the optimal solution at least in the first k + 1 time-steps a
firefighter is placed on a node. This means that at most n − k − 1 nodes are
saved. We can lower bound the number of nodes saved by the players by k, i.e.
the nodes they place firefighters on. This yields a bound of the PoA of at most
n−k−1

k ≤ n
k − 1.

Now we show PoA(Gk,W ) ≥ n
k+1 − 3 for coalitions of size k ≤ n−3

4 .
We construct a family of graphs where the optimal solution saves at least

all but 3k + 2 nodes, whereas the worst equilibrium saves at most k + 1 nodes.
Figure 2 shows the construction.

Note that any solution is a lower bound for the optimal solution and every
equilibrium is an upper bound for the worst equilibrium in terms of quality.

The solution s∗ = (v1, v2, . . . , vk+1, , ∅|N |−k−1) saves all but 3k + 2 nodes.
This yields a lower bound for the welfare of an optimal solution.

Furthermore, we have that s = (v′1, v
′
2, v
′
3, . . . , v

′
k, ∅|N |−k) is an equilibrium,

since for every joint deviation the players can only save at most k nodes. In
this equilibrium they save k + 1. Now we have a lower bound of the PoA of
n−3k−2

k+1 ≥ n
k+1 − 3.

Note that this construction uses at least 4k + 3 nodes, hence it is only ap-
plicable for coalition sizes up to k ≤ n−3

4 . Since the Price of Anarchy for size
k = n−3

4 is constant this is no problem for the asymptotic bound.
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We have bound the PoA from both sides and it follows that we have the
claimed asymptotic behavior. ut

It is interesting to see that for linear sized coalitions, we get a constant PoA.
For constant coalition sizes however, the PoA is still linear. We can improve this
result by fixing a special class of graphs, as we show in the next subsection.

4.2 Graphs with constant Cut-width

In this section we explore the impact of the cut-width of a graph on the Price
of Anarchy for certain coalition sizes. We make use of results and ideas from
Chleb́ıková and Chopin [7]. In particular, we show that for every family of graphs
with constant cut-width there is a constant k, such that the PoA approaches one
for coalitions of size k.

The cut-width of a graph G is defined as follows. The Cut-width cw(G) of a
graph G is the smallest integer k such that the vertices of G can be arranged in a
linear layout L = (v0, . . . , vn−1) in such a way that, for every i ∈ {0, . . . , n− 1},
there are at most k edges with one endpoint in {v0, . . . , vi} and the other in
{vi+1, . . . , vn−1}. Let dL(vi, vj) = |j − i| denote the distance between two nodes
in the linear layout L.

Lemma 2. If there is one initially burning node, then there exists a protection
strategy such that the number of total burned nodes is at most f(cw(G)) for some
function f : N→ N. ut

The proof of a more general version of this claim in contained in the proof of
Theorem 2 of [7] and brings us into the position of showing the following lemma.

Lemma 3. For every family of graphs G(n) = (V (n), E(n)) with constant cut-
width there is a constant k, such that

lim
n→∞

PoA(Gk,W ) = 1.

Proof. Let G(n) be a family of graphs with constant cut-width. By Lemma 2
there is a protection strategy s, such that at most f(cw(G)) nodes burn. Now we
make use of the fact that the number of time-steps before the spreading of the
fire stops is less or equal to the total number of burned vertices. This is because
in each time-step at least one node has to burn, otherwise the spreading of the
fire would be stopped. Hence we get that with protection strategy s, the fire is
contained in at most f(cw(G)) time-steps. Note that we can place at most one
firefighter per time-step, therefore a coalition of size k = f(cw(G)) can apply
this protection strategy. Furthermore, only a constant number of nodes burn.
Hence, asymptotically, we have a PoA of 1. ut

However, we cannot achieve this without coalitions as the following instance
shows. Figure 3 shows a family of graphs. A linear layout is given by the hor-
izontal position of the nodes in the figure. It shows that the cut-width of the
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v0

v1 v2 v3 vm

Fig. 3. Family of graphs with constant cut-width.

graph is at most 6, since every vertical line through the graph crosses at most
6 edges. Without coalitions, saving the nodes v1 to vm is an equilibrium, since
each player saves one extra node and cannot do better by switching to another
node. Note that only a constant fraction of the nodes are saved, whereas in the
case of coalition all nodes except a constant number can be saved. This also
yields a constant PoA, but one that is asymptotically strictly larger than one.

This shows that for this class of graphs, constant sized coalitions can improve
the PoA.

5 Conclusions

We have defined a new strategic game that models the Firefighter Problem. We
have shown that in general PoA ∈ Θ(n). For trees however, we get a PoA of at
most 2. Furthermore, we have shown that the coalition size has a direct effect on
the quality of the equilibria. In general we have that PoA ∈ Θ(n

k ), where k is the
coalition size. We have shown that there are topologies where PoA approaches
1 for constant sized coalitions, e.g. graphs with constant cut-width.

Note that it is possible to find equilibria in polynomial time for constant
sized coalitions. This can be done by best response dynamics. Computing a best
response is polynomial since we can try out all possible joint deviations for all
possible coalitions of size at most k. With each best response the players impove
the total number of saved nodes, hence we converge to an equilibrium in a linear
number of iterations. This yields a polynomial time approximation algorithm
for the firefighting problem and its approximation ratio equals the PoA of the
corresponding game.

We think that the most promising area to explore is the quality of equilibria
for other restricted sets of graphs. It is especially interesting to find sets of graphs
that have a low PoA for constant sized coalitions.
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3. E. Anshelevich, D. Chakrabarty, A. Hate, and C. Swamy. Approximability of the
firefighter problem. Algorithmica, 62:520–536, 2012.

11



4. C. Bazgan, M. Chopin, M. Cygan, M. R. Fellows, F. Fomin, and E. Jan van
Leeuwen. Parameterized complexity of firefighting. Journal of Computer and
System Sciences, 80:1285–1297, 2014.

5. C. Bazgan, M. Chopin, and B. Ries. The firefighter problem with more than one
firefighter on trees. Discrete Applied Mathematics, 161:899–908, 2013.

6. L. Cai, E. Verbin, and L. Yang. Firefighting on Trees: (1 - 1/e)-Approximation,
Fixed Parameter Tractability and a Subexponential Algorithm. Lecture Notes in
Computer Science, 5369:258–269, 2008.
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