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ASYMPTOTIC BEHAVIOR OF PALAIS-SMALE SEQUENCES
ASSOCIATED WITH FRACTIONAL YAMABE TYPE EQUATIONS

YI FANG AND MARIA DEL MAR GONZALEZ

Abstract. In this paper, we analyze the asymptotic behavior of Palais-Smale sequences
associated to fractional Yamabe type equations on an asymptotically hyperbolic Riemannian
manifold. We prove that Palais-Smale sequences can be decomposed into the solution of the
limit equation plus a finite number of bubbles, which are the rescaling of the fundamental
solution for the fractional Yamabe equation on Euclidean space. We also verify the non-
interfering fact for multi-bubbles.

Keywords. Palais-Smale sequence, asymptotically hyperbolic Riemannian manifolds, frac-
tional Yamabe type equations

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Q be a smooth bounded domain in R™, n > 3. Fix a constant A\, and consider the
Dirichlet boundary value problem of the elliptic PDE

—Au — Au = ulul "2 in Q
1.1 ’
(1.1) { u=20 on 0.

The associated variational functional of the equation (1 1) in the Sobolev space WO1 2(Q) is
1
B = [ (Vul* -
Q

Suppose that the sequence {uq }aen C Wol’Q(Q) satisfies the Palals—Smale condition, i.e.
{E(ua)}aen is uniformly bounded and DE(u,) — 0, strongly in (Wy7*(€)),

as o — +oo, where (W;?(Q)) is the dual space of W, >(Q). In an elegant paper [16], M.
Struwe considered the asymptotic behavior of {us }aen. In fact, in the WO1 -2 (©) norm, u, can
be approximated by the solution to (1.1) plus a finite number of bubbles, which are the rescaling
of the non-trivial entire solution of

n— zdm

—Au:u|u|n4f2 in R" and wu(z) =0 as |z| = +oc.

One may pose the analogous problem on a manifold. Let (M™,g) be a smooth compact
Riemannian manifold without boundary. Consider a sequence of elliptic PDEs like
(Es) —Agu+ hg w=us,
where oo € N and A, denotes the Laplace-Beltrami operator of the metric g. Assume that h,
satisfies that there exists C' > 0 with |hy(z)| < C for any « and any x € M; also hy — heo in
L?*(M) as o — +oo. The limit equation is denoted by

(Fo) —Agu+ hoou = n=3
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The related variational functional for (E,) is

2n

. 1 1 n—2
Ej(u) = 3 /M \Vu|§dvg + 3 /M hou*dv, — o /M |u|»=2 dv,.

Suppose that {us > 0}aen C WH2(M) also satisfies the Palais-Smale condition. O. Druet,
E. Hebey and F. Robert [5] proved that, in the W12(M)-sense, u, can be decomposed into
the solution of (E+) plus a finite number of bubbles, which are the rescaling of the non-trivial
solution of

“Au=u"? in R
Next, let (M™,g) be a compact Riemannian manifold with boundary dM. Recently, S.

Almaraz [1] considered the following sequence of equations with nonlinear boundary value
condition

s —Agu=0 in M,
(1.2) —%u—l—hau:uﬁ on OM,

where o € N and 7, is the inward unit normal vector to M. The associated energy functional
for equation (1.2) is

o 1 2 1 2 n—2 2(n-=1)
Eg ('LL) = §/M \Vu\gdvng §/aM hau dUg — 2("1_1)/6M |U| n—2 dO’g,

for u € H' (M) := {u|Vu € L*(M),u € L*(0M)}. Here dv, and do, are the volume forms of
M and OM, respectively. He also showed that a nonnegative Palais-Smale sequence {uq }aen
of {EZ}aen converges, in the H'(M)-sense, to a solution of the limit equation (the equation
replacing hy by hoo in (1.2)) plus a finite number of bubbles.

Motivated by these facts and the original study of the fractional Yamabe problem by M.d.M.
Gonzilez and J. Qing [8], in this paper we shall be interested in the asymptotic behavior of
nonnegative Palais-Smale sequences associated with the fractional Yamabe equation on an
asymptotically hyperbolic Riemannian manifold.

Let (X", g%), n > 3, be a smooth Riemannian manifold with smooth boundary X"t =
M™. A function p, is called a defining function of the boundary M™ in X"*1 if it satisfies

ps >0 in X" p =0 on M", dp,#0 on M".

We say that a metric g7 is conformally compact if there exists a defining function p, such that
(X"+1 g,) is compact for g, = p2g*. This induces a conformal class of metrics h = Golnn
when defining functions vary. The conformal manifold (M™, []) is called the conformal infinity
of (X" gT). A metric g7 is said to be asymptotically hyperbolic if it is conformally compact
and the sectional curvature approaches —1 at infinity. It is easy to check then that |dp. %* =1
on M™.

Using the meromorphic family of scattering operators S(s) introduced by C.R. Graham
and M. Zworski [10], we will define the so-called fractional order scalar curvature. Given
an asymptotically hyperbolic Riemannian manifold (X"*! ¢g¥) and a representative h of the
conformal infinity (M™, [ﬁ]), there is a unique geodesic defining function p, such that, in M™ x
(0,8) in X"+ for small §, g™ has the normal form

9" = p*(dpl + hy.)
where h,, is a one parameter family of metric on M™ such that

hy. =h+hWp, +0(p?).
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It is well-known [10] that, given f € C*(M™), and s € C, Re(s) > n/2 and s(n — s) is not an
L? eigenvalue for —Ay+, then the generalized eigenvalue problem
(1.3) —Agri—s(n—s)i=0 in X"
has a solution of the form
W= Flp.)"™ +G(p.)", F.G€C=(XT), Fly_o=f.
The scattering operator on M™ is then defined as
S(s)f = G|pn.

Now we consider the normalized scattering operators

; n I'()
Pg+,h=ds(—+7), d, = 2% .
Ao =5 ! (=)
Note P,[g", fz} is a pseudo—d}fferential operator whose principal symbol is equal to the one of
(=A;)Y. Moreover, P,[g*,h] is conformally covariant, i.e. for any ¢,w € C>°(X"*!) and
w > 0, it holds

n42y ~

(1.4) Py, wmm h)(p) = w”rm Py fgt, h)(we).

Thus we shall call P,[g", h] the conformal fractional Laplacian for any v € (0,n/2) such that
n?/4 —~* is not an L? eigenvalue for —A .
The fractional scalar curvature associated to the operator P, [g™, ﬁ} is defined as

Q" = P,[g*, h)(1).

The scattering operator has a pole at the integer values v. However, in such cases the residue
may be calculated and, in particular, when g* is Poincaré-Einstein metric, for v = 1 we have

- n—2
PilgT,h] = -A; + ————R;
1[97 } h+4(n_1) h
is exactly the so-called conformal Laplacian, and
i n—2
=—R;.
@ 4n—1)""

Here Rj; is the scalar curvature of the metric h.
For v =2, Py[gT, fz] is precisely the Paneitz operator and its associated curvature is known

as Q-curvature [15]. In general, Py[gt, h] for k € N are precisely the conformal powers of the
Laplacian studied in [9].

We consider the conformal change By = w7 J, for some w > 0, then by (1.4), we have
Plg", h)(w) = QM w5 in (M™,h).
If for this conformal change ijw is a constant C,, on M", this problem reduces to
(1.5) P[g*. hl(w) = Cow™5 in (M", h),

which is the so-called the fractional Yamabe equation or the v-Yamabe equation studied in [8].
From now on, we always suppose that v € (0,1) throughout the paper, and such that
n?/4 —~* is not an L? eigenvalue for —A +.



It is well known that the above fractional Yamabe equation may be rewritten as a degenerate
elliptic Dirichlet-to-Neumann boundary problem. For that, we first recall some results obtained
by S.A. Chang and M.d.M. Gonzélez in [3]. Suppose that u* solves

—Agut —s(n—s)u* =0 in X"

lirno Py "u* =1 on M™.
Px—

(1.6)

Proposition 1.1. [3, 8] Let f € C®°(M). Assume that @,u* are solutions to (1.3) and (1.6),
respectively. Then p = (u*)l/("_s) is a geodesic defining function. Moreover, u = a/u* = p*~"u
solves

(1.7)

—div(p'"*'Vu) =0 in X"
u=f onM",

with respect to the metric g = p>g™ and u is the unique minimizer of the energy functional

I(v) = / P2 Tf2du,
X1

among all the extensions v € WL2(X"H pl=27) (see Definition 2.1) satisfying v|ym = f.
Moreover,

Qh
P = px (1 + mpfv + 0(93))
Y

near the conformal infinity and

~ . d
P + _ * 1: 1—2 h « o
'Y[g 7h’Kf) 7d,y glng)p Wapu + Q’Yf’ d'Y = *% > O,

provided that Trj, () =0 when v € (1/2,1). Here g|pm = h, and has asymptotic expansion
g9 =dp*[1+0(p™")] + A1+ O(p>)].

We fix v € (0,1). By Proposition 1.1, one can rewrite the Yamabe equation (1.5) into the
following problem:

—div(p'"?'Vu) =0 in (X", g),
(1.8) u=w on (M",h),

—d; ;ii% P 210,u + Q@w = C’,sztz‘z on (M",h).

In this paper we consider the positive curvature case Cy > 0. Without loss of generality, we
assume Cy = dJ.

In the particular case v = 1/2, one may check that (1.8) reduces to (1.2), which was consid-
ered in [1]. The main difficulty we encounter here is the presence of the weight that makes the
extension equation only degenerate elliptic.

Next, we introduce the so-called v-Yamabe constant (c.f. [8]). For the defining function p
mentioned above, we set

_ A [ PP Vufgdvg + [y Qu? doy,

L, [u, g]
! (o luf? doy))




then the y-Yamabe constant is defined as

(1.9) AL (M, [1]) = inf{Z, [u, g] s w € WH2(X, o' =20}

It was shown in [8] that in the positive curvature case C, > 0 we must have A, (M, [h]) > 0.

Now we take a perturbation of the linear term ng to a general —d;Qlw, where Q7 €
C>®(M™), a € N. Suppose that for any @ € N and any = € M™, there exists a constant C' > 0
such that |QY(z)| < C. And we also assume that QY — QX in L*(M™ h) as @ — +oo. We
will consider a family of equations

—div(p'™PVu) =0 in (X" g),

(1.10) w=w on (M"h),
- ;1_% P 0,u+ Qlw = wi P on (M™, h).

The associated variational functional to (1.10) is

o 1 1-2 2 1 2 n—2y 2
(1.11) I)%(u) = B /Xn+1 p | Vul; dvg + 3 )i Qludoj, — 5 ) |u| =27 do,.

Hyperbolic space (H"*!, gi) is the first example of a conformally compact Einstein manifold.
As (H"*! gg) can be characterized as the upper half-space Riﬂ endowed with metric g7 =
y~2(|dz|? + dy?), where z € R™, y € R, then the Dirichlet-to-Neumann problem (1.8) reduces
to

—div(y"™Vu) =0 in (RTM, |dz|? + dy?),

(1.12) uw=w on (R",|dz|?),
- ?}iirbyl_}*@yu —w"  on (R™, |dz|?).

And the variational functional to (1.12) is defined as

- 1 —2 n
E(u) = /Rn+1 y1_27|Vu(x,y)|2dxdy _n ’y/ |u(x,0)|ni2w dx.
+

2 2n

Up to multiplicative constants, the only solution to problem (1.12) is given by the standard

v = = (—vga)

2y

for some a € R™ and A > 0 (c.f. [8],[11]). By L. Caffarelli and L. Silvestre’s Poisson formula
[2], the corresponding extension can be expressed as

2y
(1.13) ) = | g O de

Here U} is called a “bubble”. Note that all of them have constant energy. Indeed:

Remark 1.2. For any a € R™ and A > 0, we have

~ ~ 84 _2n
B2 = B =2 [ 103001 do.



Now we give some notations which will be used in the following. In the half space RTFI =
{(z,y) = (2',--- 2", y) € R"L : y > 0} we define, for r > 0,
Bl (20) = {z € RT" 1 |2 — | < 1,20 € RTHY,
D, (o) ={z e R" : |x — z¢| < r,xzg € R"},
9' B} (20) = B} (20) NR", 0T B (20) = 0B, (20) N R
Fix v € (0,1). Suppose that (X, g") is an asymptotically hyperbolic manifold with boundary
M satisfying, in addition, Tr;, h() = 0 when v € (1/2,1). Let p be the special defining function
given in Proposition 1.1 and set g = p?g™, h= glar. We also define
Bt (20) = {2 € X :dy(z,20) <71,20 € X},
Dr(xo) ={x € M : d;(x,20) < 7,00 € M},
Now, modulo the definitions of the weighted Sobolev space W12(X, p!=27) and of a Palais-

Smale sequence (see section 2), the main result of this paper is the following fractional type
blow up analysis theorem:

Theorem 1.3. Let {uq > 0}aen € WH3(X, p'=27) be a Palais-Smale sequence for {17} oen.
Then there exist an integer m > 1, sequences {p, > 0}aen and {z? }oen C M forj=1,---,m,
also a nonnegative solution u® € W12(X, p'=27) to equation (2.4) and nontrivial nonnegative
functions UaAjj € leQ(RiH,yl_Q'y) for some \; >0 and a; € R™ as given in (1.13), satisfying,
up to a subsequence,

(1) ,ugé'—> 0asa— +oo, forj=1,--- ,m;

(2) {2 }aen converges on M as o — +oo, for j=1,--+ ,m;

(3) As a — +oo,

m
||Ua — uo — Z’r}éujanwla(x’pl—}y) — 0,
j=1

where

. . n—2y ) . _
ul(2) = ()™= Uy ((1d) ') (2)
for z € ¢ ; (B (0)), and @i are Fermi coordinates centered at 2, € M with ro > 0
small, and nJ, are cutoff functions such that
=1 ing, (B} (0) and 1), =0 in M\ ¢, (B, (0));

(4) The energies
,Q oo (,,0 n Aj
I (ua) = 1°(u”) = mE(UZ7) = 0
as o — +00;

(5) Forany1<i,j<m,i#j,
ph o mh o, dy(@h,7h)?
o TS
Remark 1.4. (i) We call niul, a bubble for j =1,--- ,m.
(i) If uo — u® strongly in WH2(X, p'=27) as a — +o0, then we must have m = 0 here.

— +00, asa — +00.

Although the local case v = 1 is well known ([5, 16]), the most interesting point in the
fractional case is the fact that one still has an energy decomposition into bubbles, and that
these bubbles are non-interfering, which is surprising since our operator is non-local.



This paper is organized as follows: In section 2, we will first recall the definition of weighted
Sobolev spaces and Palais-Smale sequences. Then we shall derive a criterion for the strong
convergence of a given Palais-Smale sequence. At last, e-regularity estimates will be established.
In section 3, we shall extract the first bubble from the Palais-Smale sequence which is not
strongly convergent. In section 4, we will give the proof of Theorem 1.3. Finally, some regularity
estimates of the degenerate elliptic PDE are given as Appendix in Section 5.

2. PRELIMINARY RESULTS

Most of the arguments in this section are analogous to the results in [5] (Chapter 3). For
the convenience of reader, we also prove these lemmas with the necessary modifications.

From now on we use 2* = 2n/(n — 2v),v € (0,1) for simplicity and always assume that
Palais-Smale sequences are all nonnegative. Moreover, the notation o(1) will be taken with
respect to to the limit o — 4o0.

Definition 2.1. The weighted Sobolev space W'2(X, p*=27) is defined as the closure of C*°(X)
with norm

1
3
(2.1) lullwiz(x,pr-2v) = </ P 2| Vul? dvg—|—/ u2dah)
p's M

where dvg is the volume form of the asymptotically hyperbolic Riemannian manifold (X, g) and
doj, is the volume form of the conformal infinity (M, [h)).

Proposition 2.2. The norm defined above is equivalent to the following traditional norm

22) ol oo = ([ 21090 + 02y, )

On one hand, || - || can be controlled by || - ||*. This is a easy consequence of the following
two propositions. The first one is a trace Sobolev embedding on Euclidean space.

Proposition 2.3. [12] For any u € Cg°(R":™") we have

([ 0P ) <sm [ vt Pdady
+

where

S(n, ) = —— L) F(";“)(r(n) )

277 T(1 — ) T(2£22) \T'(n/2)

Using a standard partition of unity argument one obtains a weighted trace Sobolev inequality
on an asymptotically hyperbolic manifold:

Proposition 2.4. [12] For any € > 0, there exists a constant C. > 0 such that

(/ u|? daﬁ> < (S(n,v)+ 6)/ p 2| Vul? dog + CE/ P2 dv,.
M p's ' p's

On the other hand, || - ||* can be controlled by || - ||, which is implied by the following
proposition.

Proposition 2.5. For any u € WY2(X, p'=27), there exists a constant C > 0 such that

/ PP dvy, < C (/ p1_2'y|Vu|3 dvg —l—/ u? dU;l> .
X X ) M
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Proof. We use a contradiction argument. Thus, assume that for any a > 1 there exists u,

satisfying
/ p1—2’yui dvg > (/ pl—Q'Y‘Vua@ dvg —‘r/ ui dO'ﬁ) .
X X M

Without loss of generality, we can assume that | ¥ P22 dvg = 1. Then we have
1
/ P1_2’Y(|Vua|g +uj) dvg <1+ —.
X ’ a

Then there exists a weakly convergent subsequence, also denoted by {u,}, such that u, — ug
in W172(Xﬂ p1_2’Yv ” : H*)
Since

lim p1*27|Vua|§dvg =0 and lim uldo; =0,

then we get that ug = 0. On the other hand, via the following Proposition 2.6, the embeddig
WE2(X, pr =27 || - ||*) = L?(X, p'=27) is compact. So we have

/ Pl dv, =1,
X

which contradicts the fact that ug = 0. Then the proof is completed. O

Proposition 2.6. [12, 13, 4] Let 1 < p < g < oo with n%_l > ]lj — %,

(i) Suppose 2—2vy < p. Then WHP(X, pt=27 ||-||*) is compactly embedded in LI(X, pt=27)

if
2 — 2y 1

1
. S— > —_ -
pin+2-27) " p ¢
(ii) Suppose 2—2vy > p. Then WHP(X, pr=27 || ||*) is compactly embedded in LI(X, p*~27)
if and only if

b

1 Lot
n+2-2y) " p q

We will always use the norm in W12(X, p!=27) in the following unless otherwise stated.

Definition 2.7. WLQ(X7 pt=27) is the closure of C§°(X) in W2(X, p=27) with the norm

fullgrs ey = ([ #2190l v,

Now we define Palais-Smale sequences for the functional (1.11) precisely.
Definition 2.8. {uy}aen C W12(X, pt=27) is called a Palais-Smale sequence for {17 }aen

(i) {1%(ua)}aen is uniformly bounded; and
(ii) as @ — 400,
DIJ*(uq) — 0 strongly in WH2(X, p'=27),
where we have defined W12(X, p1=27)" as the dual space of WH2(X,p*'~1), i.e. for
any ¢ € WH2(X, pt=27), then

DI)*(uqa) - ¢ :/ p' T (Vg V) g dvg + / Qauaddoy,
x M

2.3 -
(2.3) 7/ uZ "¢ do;,
M

:0(||¢||W1’2(X,p1—2w)) as o — +00.



The main properties of Palais-Smale sequences are contained in the next several lemmas:

Lemma 2.9. Let {uy}aen € WH2(X, p!'=27) be a Palais-Smale sequence for the functionals
{17 Yaen, then {ua}aen is uniformly bounded in W'2(X, p'=27).

Proof. We can take ¢ = u, € WH2(X, p1=27) as a test function in (ii) of Definition 2.8, then
we get
/ pl_QW\VuaE duy +/ Qlu? doj, = / uijda;l + o(||ua w2 (x,pr-27)),
X M M

which yields that

1 1 1 .
Ig%a(u@) — 5/ p1*27‘Vua|§ dvg + 5/ Qlui doj, — 2—*/ ui doj,
X M M

y

:—/ ui* da}}+0(||uoc||W1v2(X,p1*27))'
nJm

Since {1)"*(ua)}aen is uniformly bounded by (i) of Definition 2.8, there exists a constant C' > 0
such that

/ Ug:d(f;t S C+ O(||UQHW1,2(X’p1—2'y)),
M

which by Hélder’s inequality yields

2/2° )
/ u? doj, < C (/ u? da;l> < C’+o(HuaH%iQ(X’pl,h)).
M M

Note that since |@Q7| < C for some constant C' > 0, we can choose sufficiently large C; > 0
such that C; + Q) > 1 on M. It follows

||ua||%/[/1,2(x7p172—y) :/ p1*27|Vua|3dvg+/ uidah
X M
S/ p1—27|Vua|3dvg+/ Qluidoh—&—C’l/ u? doj,
X M M
* 2/2*
S/M“i dUiL"‘O(HUa”le?(X,pl—‘“))+C+0(H“aHVél,2(X7p1—2w))

2/2%
< Ct of|[uallwr2(x p-21)) + ol[uallff a2 x pr-2)):

which concludes that {u,}aen is uniformly bounded in Wh2(X, p'=27) since 2/2* < 1. The
proof is finished. O

Remark 2.10. From Lemma 2.9, it is easy to see that there exists a function u® in W12 (X, pt=27)
such that ug, — u® weakly in WH2(X, p'=27) as a — +o0.

Proposition 2.11. w? >0 in X.

Proof. Using Proposition 2.4, we can easily get that u, — u® in L?(M, iL) as a — +00, so
furthermore we have u, — u° almost everywhere on M. Noting that u, > 0 on M, then we
obtain that u® > 0 on M. On the other hand, by Proposition 2.6, and the equivalence of the
norms || - || and || - ||*, we have u, — u° in L2(X, p'=27) as a — +oc. For any z € X, take d, <
dist(z, M), then we also have u, — u° in L2(%j{z (2), p*=27). Since p*~27 is bounded below by
a positive constant in ‘Bdt (2), we get u, — u’ almost everywhere in ‘Bdt (2) up to passing to a
subsequence. Noting that uq >0 in X, we obtain u® > 0 in B7 (z). Since z is arbitrary in X,
then u® > 0 in X. Combining the above arguments, we conclude that u > 0 in X. ]
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Next we define the two limit functionals

1 1-2 2 1 2*

and
7500 — 1 1-2y 2 1 T uldos — i
I)%(u) = p |Vul; dvg + Qlu” doj, |u
2 Jx 2 S 2" Jm

We have the following lemma:

2 dO’ﬁ.

Lemma 2.12. Let {uy}aen C WH2(X,p'=27) be a Palais-Smale sequence for {17 Yaens
and uo, — u® weakly in W12(X,p'=27) as a — +oo. We also denote iy, = uy — u’ €
WL2(X, pl=27). Then

(i) u® is a nonnegative weak solution to the limit equation
—div(p'™'Vu) =0 in X,

2.4 .
(2:4) — lim p1*278pu +QLu=u*"1 on M;
p—0

(il) I*(ua) = I) (i) + 17°°(u?) + o(1) as a@ = 400;
(iii) {ta}aen is a Palais-Smale sequence for I .

Proof. (i) As C*(X) is dense in W2(X, p!=27), we only consider the proof in C*°(X). Let
¢ € C®(X). Since Q) — QXL in L%(M,h) as a — +oo and u, — u® weakly in W2(X, p=27)
as a — 400, then

/ Qlua¢ do;, :/ nguo(bdaﬁ—ko(l).
M M
Passing to the limit in (2.3), we get easily that
[ o w Vo), du,+ [ Quitsdo, = [ WP od,
X M M

0

i.e. u” is a weak solution to the limit equation (2.4).

For the proof of (ii), recall that
/ QUuZ doj = / QL (u)? doj + o(1),
M M
and

o - 1 1
I (ua):,/xpl 2V|Vua|§dvg+§/MQ;uidaﬁ—— Mua doj,

1 _ 1 1 .
= 5/ p' QVIVUOf}dvg+§/ Qlo(uo)zdog*;/ (u°)* doy,,
X M M

. 1 1-2v|wn |2 1 .
Ig(ua):i/Xp “/|Vua|gdvgf2—*/M|ua

where G, = tq — u’. Then

: 159 (4,0 ;
17%(ua) = I (u7) = 1] (da)

1
:/ p T2V Vi), dvg——/ ®, doj +o(1),
X 2" Jm
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2" — |u%?". Note that @, — 0 weakly in W12(X, p'=27) as

where ®, = |iq 4+ u|* — |tq

a — +o0o, thus

/ p (VU Vi), dvy — 0,  as a — oo.
p's

On the other hand, it is easy to check that there exists a constant C' > 0, independent of «,
such that
2 —1‘110[‘) .

As a consequence, since @, — 0 weakly in L?" (M, B) by Proposition 2.4, we have

0|2* 02" 2*—1‘u0|_~_|u0

2*_‘u

— |aa

120+ u < C (Jita

/ |®o|doj, — 0, as o — +oo.
M

The proof of (ii) is completed.

(iii) For any ¢ € C*°(X), by (i) we have
) 0 —
DI} (u) - ¢ = 0.
Since, in addition,
[ @uuavdo; = [ Qa6+ oll6llwrace,nn).
M M
then
(2.5) DI} (o) 6 = DI(in) -6~ [ Wabdoy + of[6lwrcx,):
M

where Wo = [+ 00|22 +u°) — e[ 2 — [u[ ~2u0

exits a constant C' > 0 independent of « such that

, and it is easy to check that there

[Wal < C (Jaal 721" + Jita[u’2 ) .

By Holder’s inequality and the fact @, — 0 weakly in W2(X, p'=27) as a — +00, we have

/ U, ¢doj,
M

< (H|ﬂa|2*72|uo|||L2*/<2*71>(M) + || lu

:0<1)||¢HL2*(M)-
Thus from (2.5),

0

’ 72”1:2*/(2*—1)(1\4)) ||¢||L2*(M)

DI (ua) - ¢ = DIj(ia) - ¢+ oD@l L2 (1),
which implies that DIJ(i,) — 0 in WH2(X, p'=*7)" as a — 400, since {uq }aen is a Palais-
Smale sequence for {I)°“},en.
Finally, from (ii), we know that {4 }aen is a Palais-Smale sequence for I). This completes
the proof of the lemma. O

Now we give a criterion for strong convergence of Palais-Smale sequences. First,

Lemma 2.13. Let {lq}aen be a Palais-Smale sequence for Ig and such that 4, — 0 weakly
in WH2(X,p' ™) as a — +oo. If I)(ie) = B and

(2.6) B < Bo=2(d3)"F A (M, [R)F,
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then G, — 0 in WH2(X, p1=27) as a — +00.

Proof. By Lemma 2.9 (here Q7, = 0), there exists a constant C' > 0 such that ||t |12 (x p1-2v) <
C for all @ € N, so

ng(aa).aa:/ p1727|Vﬁa|§dvg—/ |ii|* do,
X M

= 0(”/&/a||Wl,2(X7p172’y)) = 0(1).

Then note that I](i,) — B as o — 400, we have

B+ o0(1) = I} (i1a)
1 1-2 L2 1 .
:§/Xp W|Vua|gdvgf2—*/M [Ty

=2 | 2Tl oy + o)

=2 [ Yol der + 001,

On the other hand, it was shown in [8] that in the positive curvature case, then the v-Yamabe
constant (1.9) must be positive: A, (M, [h]) > 0. Moreover, by definition,

o*

dcr;l

(2.7)

2
%

(2.8) (/ |t | dah> gd;/Xpl—%Naa\gdvﬁ/M gﬁidoh.

where d* > 0. We also know that |Q" < C on M". Note that iiq — 0in L2 (M, h) as @ — +o0
by Proposition 2.4, then [,, 42 doj, — 0 as a — +oc since the embedding L?* (M, h) C L*(M, h)
is compact. So we get from (2.7) and (2.8) that

n 0 - iy -1l 0
(7”8+ <1>) < @A, 1) 25+ o).

Taking @ — 400, we must have § = 0 because of our initial condition (2.6). The Lemma is
proved. O

Note that the Palais-Smale condition (ii) is the weak form of a Dirichlet-to-Neumann problem
for a degenerate elliptic PDE. In fact, as DI (1,) — 0 in W2(X, pt=27) it follows that, for
any ¢ € WH2(X, p'=27),

@9 [ PV dvy — [ (0P dog = o) 6w,
In particular, for any v € wh (X, p=27), then

[ 9  Va Vi) vy = oDl

which is is precisely the weak formulation for the asymptotic equation

(2.10) —div(p "' Vi) = o(1) in X.

Multiplying both sides of (2.10) by ¢ € W12(X, p!=27) and integrating by parts, we obtain
that

lim 91210, 10 doy + [ 0 (Vi V) dvy = o(1) 621,

M P—0



13

which combined with (2.9) yields that

/M lim o120, 0 o, + /M 10?20 dory, = o(1) [¥llwrz (x g1,

p—0

and this is precisely the boundary equation in the weak sense

(2.11) ~ lim P20l = |ia|? "4 + o(1) on M.

For the above equations (2.10) and (2.11) for {4 }aen, we have the following energy estimate,
which will plays an important role in the proof of the strong convergence in the next section.
We use the notation B instead of 9B, (0) for convenience.

Lemma 2.14. (e-regularity estimates) Suppose that {v, }aen satisfies the following asymptotic
boundary value problem

—div(p'"?'Vu,) = o(1) in X,

— li_r%pl_z”apva = va)? 200 +0(1) on M.
p

(2.12)

If there exists small € > 0 depending on n,~y such that fa,%+ |va|2*daﬁ < e uniformly in o for
2r
some small r > 0, then

C
/ p1—2fy|vva|§ dv, < 72/ p' 22 dv, + C v2 doj, + 0(1)/ [va| dvg,
B " Jeg, 5

0'B3, B3,
where C = C(n,e,v) independent of «.

Proof. Let n be a smooth cutoff function in X such that 0 <7 <1,n=1in B} (0) and n=0
in X \ B3 (0). Multiplying both sides of the first equation in (2.12) by n?v,, integrating by
parts and substituting the second equation in (2.12), we get

[ 7 0 V) do

= / lim p'~27(9,v0)0*va doj, + o(1) / N*Va dvg
) B

2, 70

/ n2|va|2*daﬂ +o(1)/ n°va dvg,
B3 BT

2r

27r

so we have

~/B+ P1727772|Vva|g2; dvg = — / + p172’y277vo< (Vva, Vi) g dug

2r %27‘

+ / 72 [va[? oy, + o1) / 72 [va] du,
o'BF By

2r

1
<5 [ e el vz [V do,
gB+ +

2r %27‘

[ Pl doy o) [Pl v,
'B3, 3,

2r
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which implies that

/ P 2P Vg |2 dog §4/ p 2 Vnl2vE dug + 2/ n?|va|? doj
+ %+ 8/%+

2r 2r 27r

+oV) [ ifualdv,
%+

2r

pl—Q’Yvi d’l)g + 2/ . (nva)2|va|2*_2 dO'jZ
8/

)
N
r %27‘ 2r

+0(1)/ 7%V dv,.
%4’

2r

By Hoélder’s inequality and our initial hypothesis we have

2
PR
/ . (777}&)2|va|2 -2 dg}} < (/ N |77Ua|2 dU}}) </ . [Va
8,‘327" a/‘B27‘ a/‘B27‘

2
2% 2 o 2
<g [nve|® doj, .
B3
Then it follows from above that

/+ PPV (nua) [ dvg S2/ L P (Vnlgvg 4 0P [Vvalg) dug
B

27

C .
<= p 02 dvoy + Ce T /
B

— 2
T D &

2r
+0(1) / N°Va dvg.
B3,

2% —2

5F
2 dO'}*L

2r

The trace Sobolev inequality on our manifold setting (Proposition 2.4) gives that

2

2
[ o) <o [ Ny +C [ ) doy,
0'%B3, B, o' B,

Therefore we obtain

c 2
/ P2V (va) 2 dug §—2/ p””vidvg+0€22*2/ PV (nva) 5 dug
Bt e Jsf B3,

27 2r

2% 2
+0527*/8 Jr(771;&)2d0;1—l-0(1)/Jr 772\11@|dvg.
187 B

27

27

Now we fix » > 0 small such that € small enough satisfying CceH < 1/2. Then we get

C
/ P2V, |2 dvy < = / p' 202 dv, + C v2 doj, + 0(1)/ [va| dvg.
DIk ‘ r '8, B,
T 2r 2r

+
B,

This completes the proof of the lemma.
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3. THE FIRST BUBBLE ARGUMENT

In this section, we focus on the blow up analysis of a Palais-Smale sequence which is not
strongly convergent. In particular, using the e-regularity estimates (Lemma 2.14), we can figure
out the first bubble. We will also show that the Palais-Smale sequence obtained by subtracting
a bubble is also Palais-Smale sequence and that the energy is splitting.

Lemma 3.1. Let {Gq}aen be a Palais-Smale sequence for I7 such that i, — 0 weakly in
WL2(X, pt=27), but not strongly as a — +o0o. Then there exist a sequence of real numbers
{tta. > O0}aen, ta — 0 as o — 400, a converging sequence of points {xotaen C M and a
nontrivial solution u to the equation

—div(y'""Vu) =0 in R},

3.1 . _ *_
(3.1) —lim y*9,u = [ul* 2u  on R,
y—0

such that, up to a subsequence, if we take

n—2vy
2

u(pis' 5, (2), 2 € ¢, (B3, (0)

where ro, No(2) and @, (z) are as same as in the Theorem 1.3, then we have the following
three conclusions

V0 (2) = Ua(2) = Na(2)pa

(i) Do — 0 weakly in WH2(X, p'=27) as a — +o0;
(ii) {Da}aen is also a Palais-Smale sequence for 1] ;

(iil) I)(9a) = I](tia) — E(u) 4+ o(1) as o = +o0.
Proof. Without loss of generality, we assume that i, € C*(X). By the proof of Lemma 2.13,
N Y — N i ~o2%
i) =2 [ 919 oy +01) = 1 [ il do + o(1),

Note that {4 }aen is uniformly bounded in W12(X, p!=27) by Lemma 2.9, so there exist a
subsequence, also denoted by {4 }aen and a nonnegative constant /3, such that

I) (i) = B+0(1), asa— +o0.

Since 1, — 0 weakly in W2(X, p!=27) but not strongly as a — +00, by Lemma 2.13 again

we get
lim |tie
a——+00 M

We will decompose the rest of the proof into several steps:

* n n
> doj, = =B > —pho.
Y Y

Step 1. Pick up the likely blow up points. First we show the following claim.

Claim 1. For any tg > 0 small, there exist xg € M and €y > 0 such that, up to a subsequence

/ lii|*" doj, > &o.
Qto(wo)

Proof. If the Claim is not true, there exists ¢ > 0 small, such that for any = € M it holds

/ MR doj =0, a— 4o0.
Dy (x)
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On the other hand, since (M,h) is compact and M C Uz ®q(z), there exists an integer
N(> 1) such that M C UY,D;(z;). Thus

N
/ [N doj, < Z/ [N doj, =+ 0, a— +oo,
M i—1 Y D(x:)

which is a contradiction. O

For t > 0, we set

t) = Io|? do; .
walt) =mux | [l 7

Then by Claim 1, there exists z, € M such that
wa(to) = / |ﬁa|2*daﬁ > €p-
gtg (za)

Note that
/ |ﬁa|2*daﬁ —0, ast—0.
Di(za)

Hence for any € € (0, &), there exists t, € (0,%p) such that

(3.2) €= / |iia|? doj.
D1 (@a)

Step 2. At each likely blow up point, we will establish weak convergence of a Palais-Smale
sequence after properly rescaling.

For ro > 0 small, consider the Fermi coordinates at the likely blow up point x, € M,
¢e, : B3, (0) = X. Here we restrict o to ro < iy(X)/2, where iy(X) is the injectivity radius
of X. Then for any 0 < p, < 1, we define

n—2y N ~ * *
Ua(2) = pa® la(Pe, (Ha?), Ja(2) = (05, 9)(Ha?), halr) = (£7, h)(Hat),
3 + ' R+
if z € Buglm (0) and z € 9 Buglm (0).
Given zp € R and r > 0 such that |20 +7 < pg 7o, we have
12y |2 _ 1-2v|vs (2
P Vi3, dvg, = / P |Viig |2 dv
/B,f(zo) 7 ! Pz (l"aB'j»(ZO)) ! !
where
pa(2) = p1g' p(Pz, (a?))

and |dpalz, =1 on 0'B;t () since |dp|, = 1 on M.
On the other hand, if 29 € R", and |z0| + 7 < pg 7o, then

o
DT(ZO)

2% do.;la :/ |ua
‘PIQ(HQDT(ZU))

< / |iia|?* do;.
@2“,(“—(&,0:”, (e 20))

Here we have used that ¢, (oD (20)) = @o. (Dyuor(faz0)), and that for |z| < ro,|y| < ro,
z,y € R", we have 1/2|z — y| < dg(pq, (2), 0, (y)) < 2|z —yl.

2 dO’ﬁ
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Next, take r € (0,7r9) and choose ¢y in Claim 1 such that 0 < tg < 2r. For any ¢ € (0, &),
¢ to be determined later, and t, € (0,tp), let 0 < po = %r’lta < %r*1t0 < 1, then by the
definition of € from (3.2), if |z0| + r < u; o, we have

(3.3) / |iia|* do;, <e.
&' B (20) °
Note that @, (9'Bj,, (0)) =Dy, (£a), we have

5:/ M daﬁz/ liia|* doj,
D14 (2a) oo (0B, (0)

2rpe

_ / lia|?" do; = / ]2 o
o (100 BE(0) & B3,.(0)

This r9 > 0 can be chosen smaller again, such that for any 0 < p < 1 and any =g € M, we
can assume that

ta

1 _ 1o

5 /n+1 y1 27|Vu|2 dxdy = /'n+1 pal”o’i’y‘vugzov# d’l)gwo’“

(3 4) R+ R+

§2/ y' 72| Vul? dedy,
Ry

=12 g . _ -
where u € W (R++1a flr(),?L’y)? supp(u) C B;—M_lTO (0); Pag,u(z) = p 1/7(%010 (12)) and Guo,u(2) =
(¢%,9)(uz). And for u € L'(R™) such that supp(u) C 8'B;u_17,0 (0), we can also assume that

1
3 / lu| dx < / \u|dU;L$01M < 2/ |u| de,

where ZLIO’M(SC) = (gajcoiz)(/w)
Let 7 € C(?O(erfl) be a cutoff function satisfying 0 <7 <1, 7= 11in B}

R\ B;,FM(O), and we set 7, (2) = (g  fta?)-

(0) and 7 =0 in

Claim 2. {7404 }aen is uniformly bounded in Wl’Q(RT'l,yl_z'y).

Proof. Note that
Lo P ) [P i)
RY R
< /}Rw+1 po” 22|V ial3, + i) dvg, + 2/Rn+1 PLHRE | Vi 2, dug,
* +

SC/ p 242 du, +C/ p1*2”|Vﬁa|§ dvg < C,
X X

since {fiy }aen is uniformly bounded in W12(X, p1=27). Combining this with (3.4), we obtain
that {fatia faen is uniformly bounded in WH2(RH y1727), as desired. O

Due to the weak compactness of W12 (Riﬂ, y*~27), there exists some u in Wl’z(RﬁH, yt27)
such that fata — u in WH2(R}T 41727 as a — +oo.

Step 3. The weak convergence is in fact strong via e-regularity estimates.

Claim 3. Let 1 = r¢/8, then there exists &1 = e1(y,n) such that for any 0 < r < ry,
0 < & < min{eg, €1}, we have fiaiia — u in WH2(BS (0),y'727) as a — +oo.
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Proof. Given r sufficiently small, to be determined later, for any zy € R, let ¢ € C§°(B; (20))N

WA2(RI, y1=27). Let () = a9z 95 (2)) for 2 € oy, (B (z0). Since {ia} satis-
fies the asymptotic equation (2.10), then we have

( )Hw||W12R"+1 1-27) :O( >||¢a||wl2 pl—27
( )

p' T (Vila, Vzﬁo»g dvg
Pxq (l"aBj»(zO))

- / (1 0) 2 (V (afia), Vi), dug,.
B (z0)

since 7 is supported in B;'/4(0) and 7 =1 in B1/4( ). Also note that 7, (2) = 7i(arg *2), 0

flo = 1in BT and thus we need |2o| + 7 < 1/4u; 7o

1
It is easyl/t40 chgck that uy'p — y as @ — —+oo since |d(pg'p)lz, = 1 on R™ and §, —

(|dz|? + dy?). Then we have the asymptotic equation

(3.5) —div(y' "'V (flatia)) = o(1) in B ().

Since 7y t, — u weakly in Wl’Q(R’}LH, y1727), we simultaneously get that

(3.6) —div(y"™?'Vu) =0 in B (2).

Now let 1 € W2(B;*(2),y'~27). Then multiplying both sides of equation (3.5) by v and
integrating by parts, we get

0(1)H?,ZJ”Wl,z(B:r(ZO)‘ylfzw) /3/3'*'( )7}1;11 yl 279 (naua)il)d()'h

(3.7)
+ / Y2 (Y (i), Vi), dvg,
B (z0)

On the other hand, using (2.10) and (2.11), and the definition of ¢, we have
[ V). Vo), dus,
B/ (20)
= / P (Vi Vija) g dug
o (Ha Bl (20))
(3.8) =— / lim p'=27(8ia) e doj, + o(1)[|[$allwrz(x pr-2v)
M PO

:/M | 21080 oy, + o(1)][ Dl (xpt-2r)

[ Vel )b dag, + oDl
&' B (20)
Since [[Y]ly12 (g (20) y1-20) = = [[Yallw. 2(x,p1-27), combining expressions (3.7) and (3.8) then we
have
=279 (711 _
Ol (a0 120y = /3 o B 0 G o,
+/ ‘f]aaa|2*_2(ﬁaﬂa)w daﬁa7
8" Bt (20)
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i.e.

= Tim y' 20, (flaiia) = liadal* ~2(aia) +0(1) on 0'B;f(z).
y—

Meanwhile, since 7o, — u weakly in W12 (R’}fl, y'=27), the same argument as above gives
that
—!}ii% Yy P 0,u = |[u* "2u on & B} ().

If we denote by

‘2*—2 |2*_2(~ ~

Fa = |ﬁaaa‘2*_2(ﬁada) - |u u— |f]aaa —u Naa — u)7
then
- div(yl_zfyv(ﬁaﬂa - u)) = 0(1) in B:_(ZO)7

— liIr%) Y 0, (latie — 1) = |fatia — u|? ~2(fatia —u) + To +0(1) on 8B (z).
Yy—r

(3.9)

We have proved in (3.3) that for any » > 0 and €; > 0, there exists a sequence {jio }aen such
that, if [2o| + 7 < 79 < pg 7o, it holds that

/ liig|? dz < e;.
8’B;f-(2’(])

Therefore we can also choose r small enough such that, if |z9| + 3r < 7o,

/ N [Tt — u|2*d:ﬂ <eq.
8/37- (Zo)

We claim that I',, = o(1) in the sense that for any ¢ € WH2(RH y1=27), we have

/a/m(za) ICadldoy, = o(VlIdllzr (o (o)) 88 @ = F00.

We can use the same arguments as in the proof of Lemma 2.12 to show this claim.

Then by the e-regularity estimates and the compact embedding of the weighted Sobolev
space, we can prove that 7, — u in WH2(BF(29),y1=27), then by the finite covering we can
prove that 7, — u in WH2(BF (0),y*~27).

]
Applying Claim 3, noting that 7otia — u in WH2(Bj,.(0),y'~>7), and that 7, = 1 in
8/32”/4“_1 , since 0 < o <1 and 2r < r9/4, we have
a To

5:/ |2 do, :/ iaia|?” do,_
9’ B3, (0) 9’ B3, (0)

2
< 2/ u|?” dx + o(1),
&'BJ,(0)

where we used 7, 0o — u in L (0'Bj,.(0), |dz|?) as o — +oc by Proposition 2.4. So u # 0.
Claim 4. lim,_, oo tto = 0.

In fact, if 1o, — pro > 0, then 7y, — 0in WH2(B5,(0),y'~27) since G, — 0in WH2(X, pt=27).
But u # 0, which is a contradiction.
Claim 5. For any 0 < pp < 1, @i — u strongly in Wl’Q(B:,l(O),yl_QW) as o — 400, and u

0
is a weak solution of equation (3.1).
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Proof. Let 0 < po < 1, by Claim 4, we know 0 < pq < po for a large. Then (3.3) holds for
|z0| +7 < ,uglro. By the same arguments, it is easy to check that

flatlla = u in WH(BE _(0),y"7%7).
Ho
For « large, we have 7, =1 in B;";fl (0), so we have
0

o —u in WH2(BX _(0),y'™%)

27‘”51

strongly as o — +o0.

We finally claim that u solves the following boundary problem.

—div(y' ™ Vu) =0 in R},
(310) — lim y1—2'yayu — |u|2*—2u on R™.
y—0
Since 0 < g < 1 is arbitrary, we have i, — u strongly in W12(B}(0),y'=27) for any large
R > 0. Without loss of generality, let ¥ € CSO(RT'I) and suppy C By (Rp) for some Ry > 0.
Set

—2v

Ya(2) = pa 7 iy ozl (2))-
For «a large enough, we have

/ P2 (Vilg, Via)gdug = /  Pa (Y (ilatia), ViP5, dvg,,,
X

RYF
and
/ |ﬁa|2*_2ﬁa¢advg:/ |ﬁaﬂa|2*_2(ﬁaﬂa)¢dv§a'
M R~

Note that go — |dz|? + dy? in C*(B}(0)) as & — +00, {il} is a Palais-Smale sequence for I]
and 7o tla — u in WH2(Bf£(0)) for any R > 0. Then we have

/RM y = (Vu, Vi) dady — / Ju? ~2utp dady = 0,
+

which yields our desired result.
d

Step 4. The Palais-Smale sequence subtracted by a bubble is still a Palais-Smale sequence.
Define

(3.11) Wa(2) = fa(2)pa " Pu(p s H(2)), 2 € g (B, (0)),
Wa(2) =0, otherwise,

where 7}, is a cut-off function satisfying 7j, = 1 in ¢, (B} (0)) and 7, = 0 in M\ ¢y, (B;;O (0)).
Here we have %;no (To) = Va, (B;;,O(O)). Let 0g = g — We. We claim:
(i) 9o — 0 in WH2(X, p1=27) as a — +o0;
(ii) DIJ(9a) — 0 in Wh2(X, pt=27) as a — +o0;
(iii) ) (9a) = I} (iia) — E(u) 4+ o(1) as o — +o0;
(iv) {?a}aen is also a Palais-Smale sequence for 7.
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The proof of these claims follows from: (i) Since @, — 0 in W12(X, p'=27) as a — +o0, it
suffices to prove o — 0in W2(X, p'=27) as o« — 4-00. First, we prove that [}, watpdo;j, = o(1)

as a — +oo for any ¢ € C*°(X). Given R > 0, then

(3.12) / w(xd)do'}}:/ U}alﬁd()’ﬁ-ﬁ-/ UA}al/JdO';L.
M D, r(Ta) M\D ., r(Ta)

Note that hy(z) = (go;‘aﬁ)(uax). Using (3.11) we have

n—2vy

/ o) oy — / Ma(@)pa 7 u(us s (@) ) do,
Do r(@a) Dypar(za)

nt2y

e / o (102)) () (s, (1)) oy
Dr(0)

nt2y
< Ol e ary i ? / ()] da.

Dr(0)

Similarly, we can deal with the second term in the right hand side of (3.12):

/ ’Lboﬂﬁd(T;L:/ ’Lf)cﬂ/}daﬁ
M\DuaR(Ia) ®27'[) (xa)\guaR(Ia)

n+2~y
< CllYl[ Lo (arytia ® / |u(z)| dx
D, ..~ (O\Dx(0)

n+42y

1
n+t2y - 2% 2n
< ClYllLos (aryfra ® / lu(x)|* dx / dz
Dyouzt (ONPR(0) Dy, =1 (0\Dr(0)

lu(z))? da:) .

< Ol any ( /

2rg 1 (O\DR(0)

Since u € L? (R™, |dz|?) and o — 0 as o — +o0, taking R large enough we get fM Wepdo; =
o(1) as a — +o0.

Next, we will show that [, p' =27 (Vid,, Vip)gdvg = o(1) as o — +oo for any ¢ € C®(X).

Let 7a(2) = Na (P, (Ha?)); Pal2) = ﬂglp@%a (az)). Noting that W, = 0 in X \ %3—7’0 (Ta),
then for any R > 0 and « large, we have

[ o Fia Vo, = [ 9V, V0, do,
b'e Bt

2'r'0(mll)
3.13 _ N _ N
(3.13) =/ Pt (Vg V), dvg+/ p' 2 (Vidy, Vib) 4 du,
‘BLO(%)\‘BEM(%) %;“a(ma)

:le—i-lg.
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By Hélder’s inequality and that u € WL2(R} T, y1=27), we have

%
I < (/ P Vi |2 dvg> (/ P VY2 d”g)
B @)\ B, (za) B (@a)\BF,. (7a)

1
2
~1—2+ ~ 2 1-2y 2
po |V ()3, dvg, / p Vg dv
/B (O\BE(©O) S B, (a)\ B, (2a) o

2+To m 270 Rpo
=: B(R),
where

(3.14) lim lim supfB(R)=0.

R—4o00 a—+00

2

[N

—1
o

The previous limit is estimated because u € Wl’Q(RT'l y1=27), so we have for any «, R

Ve -

12y |/~ 2
LBV (a2, dvg, | < Cllullygns e 1oy
~/B: L (O\B}:(0) 9o 70 PRIy
Ol

and for any € > 0 and any « large, there exists Ry > 0 such that for R > Ry, we have

1

2

(/ P 2|V |2 dvg> <e.
B, (@ \BL, (2a)

Meanwhile we have

I < ( / pl-%vwalzdvg> ( / p1—2”|vw|§dvg>
Bl (Ta) Bl (@)
1 1
2 2
_ 127 2 1-2+ 2
- PPNl dus, | ([ e
(/B+(o) “ @9 B, (2a) 97

=o(1),

uniformly in R as a — +o00. To see this, for any R > 0,

W=
N

2

(/ ) ﬁwwmun;advga) < Ollullyr 2zt -2y,
BR(0)

also in Claim 4 we have proved that

lim p, =0

a——+00

and note that ¥ € WH2(X, p1=27). Since R > 0 is arbitrary, (3.13) implies that

[ 9 (T, T0)ydvy = ol1)
X

as o — +oo.
(i) For any ¢ € WH2(X, p'=27), the proof of (i), and Propositions 2.4 and 2.6 imply that

DI} (tbq) - :/ p' 2 Vi, Vib) g dvy —/ ig|? “Hbatp doy, — 0, as a — +oo.
X M
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On the other hand, we have
DI)(bq) -t = /Xpl—zwwa,vwgdvg - /M |0|? 2000 do;,
= DI (i) = DI}(0) 4= [ Poidey,

where

2 72&0"

fig — Wa) + [Wa|? 2y — |fia
( )+ [dal* 72 |

Following the same argument of [5] (pp. 39-40), we can prove that
/ O, do; — 0 as a— +oo.
M

Then we get that DI) (0,) — 0in W2(X, p'=27)" as ar — +00, since {iiq }aen is a Palais-Smale
sequence for I7.

(iii) Note that 0, = @y — W, and W, = 0 in X\%;O (z4). Given R > 0, for « large, we have
[ o,
X

_ 1-2v 95 |2 1-2v o |2
- PV o, + [ P12 Vg 2 du,
/%;0 (20) ! X\B,, (wa) !

B 1-2y |74 |2 TVl
3.15 */ p! 2|V | d’”ﬂ*/ PV Ealy
(315) S P g s o) g
+/ P Vi du,
X\‘B;TO(IQ)

= Il +12 +/ p1_2'7|Vﬂa|3 d’Ug.
X\%Jr (Ia) ’

27

Since flafia — u in WH2(RT y1727) as a — +0o because of Claim 5, then

L= / L PNVl — )| dvg = / P 2|V (@ — )3, dvg,
B p(a) B} (0)

HPa

< 2/ y' 7|V (g — u)|? dedy = o(1), as a — +oo,
B3 (0)

where we have used that 7, = 1 in B (0) for « large.
On the other hand, direct computations give that

PV 2 duy = / P2, dug,

/%;»0 (@ \B} p(@a) B} _(0\Bf(0)

0

<2 / ) Y|Vl dedy = B(R),

arguzt O\BR(0)
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since u € WL2(RTT y1727) and p, — 0 as o — +o0, where B(R) is defined as in (3.14).
Hence we get that

b=/ P2 (Va2 + (Vi |2 — 2(Vila, Viia)y) dv,
pre (‘Ea)\%“aR("La)

:/ P2 Vi [2 v, + B(R).
B @\ B, p(za)

Here we have used Holder’s inequality and the fact that {i,} is uniformly in W2(X, p1=27)
to get

/ P Vil Vilia)g dvg = B(R).
%;7~0 (wu)\%:aR(wa)

Therefore, noting that @i, — u in WH2(RTH 41727 as a — +o0, we have from (3.15) that
[ oW,
b's

:/ P2 Viig |} dvg — / p' | Vila|; dvg + B(R) + o(1)
X

Po R(xo‘

- / PNVaaly g [ VL, d, 4 B() + o)
X

B

?J+

:/pl—zwvaa\f]dvg / y' | Vul? dzdy + B(R) + o(1)
X B

?U+

= [ oIVl dn, - | yl‘Q”IVUI2dxdy+ﬁ(R)+0(1)-
X Ry

In a similar way, we can get that

/\@aﬁ*d%:/ |ﬁa|2*dah—/ 2" dz + B(R) + o(1).
M M R™

These imply that
(6a) = I (a) — E(u) + B(R) + o(1).

Since R > 0 is arbitrary, we get conclusion (iii).

(iv) It is a direct consequence of (ii) and (iii).

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.3. From Remark 2.10, we have u, — u" in WH2(X, p1=27) as
a — +o0o. And u, — u® a.e. on M as @ — 4+00. Then u® > 0 on M since u, > 0. Also
Glo = uq — u satisfies the Palais-Smale condition and

I (i) = 17 (ua) — I (u®) + o(1).

If 4q — 0 in WH2(X,p'=27) as a — 400, then the theorem is proved. If 4, — 0 but not
strongly in W12(X, p1=27) as a — 400, using Lemma 3.1, we can obtain a new Palais-Smale
sequence {4} },en satisfying

I3 (ag) = I (@a) — E(u) + o(1).
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Now again, either 4}, — 0 in W12(X, p!=27) as @ — 400, in which case the theorem holds, or
@}, — 0 but not strongly in W2(X, p!=27) as @ — 400, in which case we again use Lemma 3.1.
Since {I;’a(ua)}aeN is uniformly bounded, after a finite number of induction steps, we get the
last Palais-Smale sequence {ig}aen (m > 1) with I7(dy') — 8 < fo. Then by Lemma 2.13,
we can get that 47 — 0 in WH2(X, p??~!) as a — +o00. Applying Lemma 3.1 in the process,
we can get {u’ }7L, are solutions to (3.1). We will prove the positivity of w,j=1,---,m,in
Lemma 4.2, and the relation (5) of Theorem 1.3 in Lemma 4.1.

For the regularity of v/ we can use Lemma 5.2 in the Appendix. Then the proof of the
theorem is finished.

Lemma 4.1. For any integer k in [1,m], and any integer | in [0,k — 1], there exist an integer
s and sequences {yl}aen C M and {N, > 0}aen, j = 1,---,s, such that d; (zk,yd)/pk is
bounded and N,/ — 0 as o — 400, and for any R, R’ >0,

l
(4.1) il — Y ul, — uli|* doy, = o(1) + €(R'),
i=1

/@R (@S, D g (0h)

where

lim  lim supe(R') =0,
R/ —400 a—+00

and {u®} is derived from the rescaling of u® we obtained in the above proof of Theorem 1.3, and
{2} is the i-th likely blow up points sequence.

Proof. We prove this lemma by iteration on I. For any integer k (1 < k < m), ifl =k — 1,
combining the above proof of Theorem 1.3 with Lemma 3.1 and Proposition 2.4, we have

k—1

/ |te — E Ug, — u];
QRMg(ﬂﬂ]&)

=1

z doj = o(1),

so (4.1) holds for s = 0.
Suppose that (4.1) holds for some I, 1 <1 < k—1, we need to show that (4.1) holds for { — 1.

Case 1 d; (2%, %) - 0 as @ — +oc. Then for any R > 0, up to a subsequence, D g (zL) N
D gy (k) = 0, so we have

b o < [ P dor
(yd) M

Rut, (&)

/SRQ @)\, ©

R/,
<C ut)?” doj, <C [u')? da.

R™\Dg(0) R™\D g (0)

Since R > 0 is arbitrary and u! € L?’ (R™), we get

(4.2) / | doj = o(1), as a— +oo.
Dk (TE)\U3_, D

=1 R/)\& (y{x)
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So by the induction hypothesis for I and (4.2) we obtain

-1
/ [T, — E ul, —uk|? doj,
Dy ( ENUSZ i=1

R’ AJ (ya
l

< 22 _1/ e —z:ufl k2 doj,
D 5k (TE\U3, D

o, W) P

+ 22*71/ |ul,
QR;LI& (x )\U R/)\J (ya)

=o(1) + e(R').
Thus we have proven that (4.1) holds for [ — 1.

2 dO’ﬁ

Case 2 d; (2%, 2%) — 0 as o — 400. Let ro be sufficiently small such that for any P € M,
2,y € R" and [o], 3] < ro,
1/2|z — y| < dj(ep(z),0p(y) < 20z —y.
Let &, = ()", (ah), 54 = (1) ™', (42), then

 (#0) € (10) 7" Dy (20)) € D, oy, (3)

uk

(Ngz) C (/12)7190;51(@}{)\& (yé)) - DzRi (g(jl) .

"

vl
= ";
Seh~

D
(4.3) 5

vl
*
QZ“Q“

a

Given R > 0, from Lemma 3.1, Proposition 2.4 and proof of Theorem 1.3 we have

l
(4.4) / i — w2 doy, = (1),
D aul, (76) i=1

By the assumption for 1 < <k —1, i.e.

1
A i = 3 ul — b doy, = of1) + e(R),
Dr, k (zk NUsZ Rl)\J () i=1
combined with (4.4) then we get that
/ k7 dory = 0(1) + (),
[ sk AU D g W) 0 (1)

so using (4.3) we arrive at

(4.5) / _ (k|2 do;, = o(1) + €(R)).
[DR(0)\U;_, D °

2R’>\j/ k(gfw)]le/gﬁul /“k (dm)

Next, we consider two scenarios: first, assume d; (z!,, z%)/pk — 400 as @ — +00. We claim
that dj (zl,,28)/ul, = 400 as @ — +oo. If not, then (4.5) with R large enough yields that
pl /uk — 0 as a — +o00. Moreover,

dh(xlmxlé) B dh(xla,xa) Na
i pt 1,

so we can choose R > 0 such that D (k)N Diu (#1,) = (), which reduces to the previous
case 1 and, as a consequence, (4.1) holds for [ — 1.
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Second, if dj (z!,,z%)/pk -+ 400 as @ — +oo, then up to a subsequence, d; (z,2%)/pk
converges. Then (4.5) implies that !, /u® — +o0o. Set y5*! = 2! and A\3*t! = | then

l
/ i Yk, kP doy = o(1) + e(R)
QR;L)& (mg)\ujzlgR/)\é (ya) i=1
and

/ kP ,
D puk (xg)\UFl@R’/\'Z; () M\D gy 1 (24,)

<C [ul|?" da < e(R),
R\ D/ (0)

2 dU;l

which yield that

J

In particular, 4.1 holds for [ — 1, as desired. The iteration process is thus completed.
Moreover, we have also shown that for any i # j

-1
|t — Zu; —uk ¥ doj, = o(1) + €(R').
i=1

» E 1 J
ok GENUSEED L, ()

Ho | #h d(%6, 70)°
J @ i)
Mo He Mo
as o — +oo (c.f. [1],[5],[16]). Note that this convergence contains two kinds of bubbles: one
case is that when p!, = O(p?,) when a@ — +oo, then the two blow up points are far away from
each other. The other case is that pf, = o(u?,) or ul, = o(p)) when av — +o00, then the distance
of the two blow up point cannot be determined. Also we get that A, /uf — 0 as a — 4+o00. O

— +00

Lemma 4.2. The u® (i =0,1,---,m) we get in the Theorem 1.3 are all nonnegative.

Proof. First of all, note that u® > 0 in X by Proposition 2.11. So we just need to prove the
positivity of u® for i > 1. For any k € [1,m], taking [ = 0 in Lemma 4.1, we have

/ _ 2 do; = o(1) + ¢(R)
ZDRMQ (Ig)\U;:lQR/)\‘é (yé)

where B
Us(@) = (uh) "7 u"((na) "oy (2)), for @ € Dy ()
is called a bubble. Since uq = tiq +u’, then for z € D, /. (0) C R™, where the 7q is the same

as the one mentioned in Theorem1.3, we have

ug (2) = tg (z) + ag"(x),

where
n—2
u(k):c(x) = (Mi) 2 W“a(@x’g‘ (Mix))a
- n—22 N
b (@) = (uh) "7 ia(par (uha)),
k n 22’y 0

Then (4.6) implies that

(4.7) / ik — w2 de = o(1) + (R,
Dr(0)\U

s ) ~J
j:1D2R/>\g¥/u1§ (ycx)
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where 7, = (uf) "¢ ' (y2). Noting that {d; (z¥, y%)/uk }aen is uniformly bounded by Lemma
4.1, therefore {7/ }4en is bounded and there exists a subsequence, also denoted by {7}, such
that 4/, — ¢’/ as a — +oo for j = 1,...,s. Combining (4.7) with M, /uk — 0 as a — +oo, we
get

dg —u®, in Li, (Dr(0)\Y)

(03

as a — 400 for Y = {77 }5_,, so

since R > 0 is arbitrary.
Also note that

9%
dO'}*L(k),

/ 02 do;, :/ mgk
D puk (@8) Dr(0)

where hE (z) = (ks R)(pEx). Then pF — 0 as a — +oo and u® € L2 (M, h) yield that

A% 50, in L2 (Dr(0), |dz]?)

as a — +00, so
%% -0 ae. in R"

since R > 0 is arbitrary.
In particular, we have shown that u® — u* almost everywhere on R™ as a — +o00. Note
that u, is nonnegative by definition, so u* > 0 on R”. We conclude that u* > 0 on R™. (|

5. APPENDIX

We would prove the C* estimates from the L estimates by Harnack inequality. The two
important lemmas are given here.

Lemma 5.1. [8] Let R > 0 and u be a weak solution of
—div(y'"Vu) =0 in Bjz(0),

— lim y " 0u = f(z)u+ g(@)|ul* "*u on Dsr(0).
y—

(5.1)

Here f and g are smooth functions on Dag(0). Assume that A = ngR(O) |ul? dz < co. Then
for any p > 1, there exists a constant C, = C(p, \) such that

_nt2—2y _n
sup [ul + sup ful < Cp { R Jull sy, o)) + B P lullooanion | -
B}(0) Dr(0)

Lemma 5.2. [11] Let a(z),b(x) € C*(D2(0)) for some 0 < a ¢ N and u € W12(0' By, y'=27)
be a weak solution of

—div(y'™?"Vu) =0 in BJ(0),

—lim ¥ "?79,u = a(z)u + b(z) on Ds(0).
y—0 :

(5.2)

If 2y + a ¢ N, then u(-,0) is of C*7T%(D1(0)), and
[u(, 0)[[c2r+a (D1 (0)) < CUlull oo (55 (o) + 10llco (D (0)))

where C' > 0 depends only on n,v,a and ||a||ce(p, (o)) -
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