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Abstract

We construct some radially symmetric solutions of the constant σk-equation on Rn \Rp, which blow
up exactly at the submanifold Rp ⊂ Rn. These are the basic models to the problem of finding
complete metrics of constant σk–curvature on a general subdomain of the sphere Sn\Λp that blow up
exactly at the singular set Λp and that are conformal to the canonical metric. More precisely, we look
at the case k = 2 and 0 < p < p2 := n−

√
n−2
2

. The main result is the understanding of the precise
asymptotics of our solutions near the singularity and their decay away from the singularity. The first
aspect will insure the completeness of the metric about the singular locus, whereas the second aspect
will guarantee that the model solutions can be locally transplanted to the original metric on Sn, and
hence they can be used to deal with the general problem on Sn\Λp.
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1 Introduction

Let (M, g) be a smooth n–dimensional Riemannian manifold. Denote by Riem, Ric, R, the Riemannian
curvature tensor, the Ricci tensor and the scalar curvature, respectively. Construct the Schouten tensor
as

Ag =
1

n− 2

(
Ricg −

1

2(n− 1)
Rg g

)
.

From the point of view of conformal geometry, we are interested in the study of the Schouten tensor
because it contains all the information about the conformal deformations of a given metric. This can be
seen from the decomposition

Riem = W +A⃝∧ g,
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where ⃝∧ is the Kulkarni-Nomizu product, and W the Weyl tensor, which is a conformal invariant.
Let λ1, . . . , λn be the eigenvalues of the symmetric endomorphism of TM given by g−1Ag. The main

object of study of the present paper will be its k-th elementary symmetric function:

σk(g
−1Ag) :=

∑
i1<...<ik

λi1 . . . λik .

These σk–curvatures, introduced in [37], have received a lot of attention. For instance, σ1(g
−1Ag) is given

by

σ1(g
−1Ag) = λ1 + . . .+ λn =

1

2(n− 1)
R ,

and thus it is a multiple of the scalar curvature. So the study of the σk–curvatures gives a natural
generalization of the Yamabe problem and scalar curvature related questions. Moreover, the sign of the
σk’s has a strong control on the geometry of the manifold. In particular, locally conformally flat metrics
with σ1(g

−1Ag), . . . , σk(g
−1Ag) ≥ 0 for some k > 1 have (see [19])

(1.1) Ricg ≥ (2k − n)(n− 1)

(k − 1)

(
n

k

)−1/k (
σk(g

−1Ag)
)1/k

g

and thus Ricg > 0 when n < 2k. Throughout the paper we will assume 2 ≤ 2k < n. Taking advantage
of this fact, we introduce the following formalism for the conformal change

gu := u
4k

n−2k g,

where the conformal factor u > 0 is a positive smooth function. Then the constant σk–equation for the
conformal factor u can be formulated as

(1.2) σk

(
g−1
u Agu

)
= 2−k

(
n

k

)
.

We recall that the Schouten tensor of gu is related to the one of Ag by the conformal transformation law

Agu = Ag −
2k

n− 2k
u−1∇2u+

2kn

(n− 2k)2
u−2du⊗ du− 2k2

(n− 2k)2
u−2|du|2g,

where ∇2 and | · | are computed with respect to the background metric g. Given a background metric
g, we will consider metrics gu defined as above with the positive smooth conformal factor in the positive
cone

Γ+
k (g) =

{
u ∈ C∞(M) : u > 0 and σ1(g

−1
u Agu), . . . , σk(g

−1
u Agu) > 0

}
.

For a given matrix A, we define the k-th Newton tensor of the matrix A as

(1.3) Tk(A) = σk(a)I − σk−1(A)A+ . . .+ (−1)kAk.

Note that if A is such that σ1(A), . . . , σk(A) > 0, then Tk−1 is positive definite.
From the PDE point of view, (1.2) is a fully non-linear elliptic equation of Hessian type, which becomes

elliptic (but not necessarily uniformly) in the positive cone. In the case k = 1 the complete picture is
understood. Indeed, if the background metric g is such that Rg = 0, then the constant scalar curvature
(or constant σ1) equation (1.2) for gu reduces to

−∆gu =
n(n− 2)

4
u

n+2
n−2 .(1.4)

With a slightly different formalism for the conformal change, if we set gv = v−2|dx|2, where |dx|2 repre-
sents the Euclidean metric, we can write down the explicit expression for the σ2-operator

2σ2(v) =
[
(∆v)2 − |D2v|2

]
v2 − (n− 1)∆v|∇v|2v + n(n− 1)

4
|∇v|4 ,
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Keeping the same notation for the conformal change, we observe that these type of non-linear equations
have an underlying divergence structure, namely

mσm(v) = v ∂j
(
vi T

m−1
ij

)
− nTm−1

ij vivj +
n−m+ 1

2
σm−1(v) |∇v|2 ,(1.5)

where Tm−1 = Tm−1(g
−1
v Agv ) is the (m− 1)-th Newton transform of g−1

v Agv . The non-divergence terms
are of lower order and indeed, they can be dealt through an inductive process.

The Yamabe problem for the σk–curvature equation has been considered in [36, 11]. On Rn, a global
positive solution of the constant σk–curvature equation (1.2) must be of the form ([4, 5, 6, 26])

u(x) = c(n, k)

(
a

1 + a2|x− x̄|2

)n−2k
2k

,

for some real number a > 0 and some point x̄ ∈ Rn, and hence it comes from the standard metric on Sn
(or its image under a conformal diffeomorphism).

We concentrate now on singular solutions of equation (1.2). In Section 2 we give a small survey on
removability/non-removability of such singularities. Then we look at the same problem on Sn\Λ, where
Λ is a smooth submanifold of Sn of dimension p ≥ 0. This is so called the singular k-Yamabe problem.
A necessary condition on the dimension of Λ for solvability was shown in [14] and is reviewed in Section
3 here.

In the case where the singular set Λ reduces to a finite number of points (p = 0), solutions to
equation (1.2) have been constructed in [29] and [30]. Here, we deal with the case p > 0. The strategy of
this proof is to first find an approximate solution that can be perturbed in order to produce a suitable
solution. This is the content of the forthcoming paper [18]. The main step in the construction of the
approximate solution is to construct a model solution in Rn\Rp, singular along Rp, and that has a very
precise decay far from the singularity. This decay allows to transplant it to the original Sn\Λ.

The main result in this note is to find radially symmetric solutions of the constant σk-equation that

blow up exactly at Rp ⊂ Rn with this precise asymptotic behavior, for k = 2 and 0 < p < p2 := n−
√
n−2
2

(the reason of this dimension restriction will be explained there). This is the content of Section 4.

2 Local behavior near singularities

First look at an isolated singularity for the constant σk–curvature equation:{
σk(u) = 1 in B1\{0},
u ∈ Γ+

k , u > 0, n > 2k.
(2.1)

In the semilinear case k = 1, Caffarelli-Gidas-Spruck [2] have given a complete local characterization
of isolated singularities. Basically, if u is a positive solution in B\{0}, then either the singularity is
removable or the function has a determined asymptotic behavior

C1

|x|n−2
2

≤ u(x) ≤ C2

|x|n−2
2

when |x| → 0 .(2.2)

In the fully non-linear case (k > 1), the same classification for solutions of problem (2.1) holds similarly
(see [20, 21]), and indeed singular solutions must have an specific asymptotic behavior near the origin.
Note that (2.1) is a critical problem. In the subcritical case this classification result is much easier to
prove and was shown in [15].

The problem of classification of radial solutions of σk(u) = 1 in an annulus was solved by [8], who
gave a precise limiting behavior for the solution near the singularity (completeness vs. incompleteness, for
instance). Here (2.1) reduces to an ordinary differential equation whose phase portrait may be reasonably
well understood (see Proposition 4.1 in Section 4.1 for the explicit calculations).
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Now we consider the problem of understanding the local behavior of non-isolated singularities of the
constant σk-curvature equation, under some capacity conditions on the singular set Λ:{

σk(u) = 1 on B1\Λ,
u > 0, u ∈ Γ+

k , n > 2k,
(2.3)

where Λ ⊂ B1 is a compact subset of the unit ball in Rn.
The classical notion of capacity [1] was introduced to treat singularities of linear and quasilinear PDE.

If Λ is a compact subset of Rn, one defines for k ∈ N and q ≥ 1,

ck,q(Λ) := inf
{
∥η∥q

Wk,q : η ∈ C∞
0 , η ≥ 1 on Λ

}
.(2.4)

In particular, for the Laplacian problem (1.4) the Newtonian capacity c1,2 is the suitable one (c.f. [9]).
For fully non-linear Hessian equations of the type σk(D

2u), [24] has considered a related notion of
capacity in terms of potential theory, that is adapted to the new equation. On the other hand, [16]
introduced a new concept of capacity that is adapted to the problem (2.3) with its additional structure,
and in the spirit of the classical notion (2.4). Since this definition is given inductively and its complicated
to write it in general, we just give the σ2 case.

Definition 2.1. Let Λ be a compact subset of Rn. For q ≥ 2k, define

c̃2,q(Λ) = inf

{
∥η∥qLq +

∫
|∇η|qdx+

∫ ∣∣∇|∇η|2
∣∣q/3 dx : η ∈ C∞

0 , η ≥ 1 on Λ

}
.

In the case that Λ ⊂ Rn, one may take only test functions satisfying supp η ⊂ BR and in this case we
write c̃(Λ, R).

Of course, for k = 1 all the three definitions agree. However, it is not clear what the relation between
the different capacities is, and this is a very interesting problem. In any case, we have:

Lemma 2.2. For general k:

1. If ck,p/k(Λ) = ck−1,p/(k−1)(Λ) = . . . = c1,p(Λ) = 0, then c̃k,p(Λ) = 0.

2. If dimH(Λ) < n− p for n > p > 2k, then c̃k,p(Λ) = 0.

Now we are able to show a removability of singularities result:

Theorem 2.1 ([16]). Let Λ ⊂ BR ⊂ Rn be a compact set, R < 1, with capacity

c̃k,q(Λ, BR) = 0

for a given 2k < q ≤ n. Let u ∈ Lr(B1) for some

r ≥ 2kn

n− 2k
and r >

2k2

k + 1

(
q

q − 2k

)
be a solution of (2.3) with

∥u∥
L

2kn
n−2k (B1)

< ε

for some ε > 0 small enough. Then u belongs to Lr̃ for some r̃ > 2kn
n−2k in a smaller ball. Also,

∥u∥L∞(Bρ) ≤
C

Rn/q
∥u∥Lq(B2ρ)

for all q > 2k2

k+1 .
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3 Complete metrics on Sn

We are interested now in studying singular sets of complete metrics on Sn with positive σk–curvature,
and the topological information they may contain. More precisely, let g be a complete metric on a domain
Ω ⊂ Sn, conformal to the standard metric on the sphere gc. In [34] (see also chapter VI in [35] for a
more detailed discussion), Schoen-Yau proved that if g has positive scalar curvature, then the singular
set must be of Hausdorff dimension

dimH(∂Ω) <
n− 2

2
.

If one has some additional information on the positivity of σk for k > 1, then this dimension estimate
may be improved, obtaining the following theorem.

Theorem 3.1 ([14]). Let g be a complete metric on a domain Ω ⊂ Sn, conformal to gc, satisfying

σ1(g
−1Ag) ≥ C0 > 0 and σ2(g

−1Ag), . . . , σk(g
−1Ag) ≥ 0

for some integer 1 ≤ k < n/2. Then

dimH(∂Ω) ≤ n− 2k

2
.

If, in addition, for k > 1 we have |R|+ |∇gR| ≤ c0, then

(3.1) dimH(∂Ω) <
n− 2k

2
.

In the same paper [34] Schoen and Yau showed that any complete locally conformally flat manifold of
positive scalar curvature is conformally equivalent to a subdomain Ω of the sphere. Now, the dimension
estimate of Theorem 3.1 will give restrictions on the homotopy and cohomology groups of the original
manifold, as stated in [14].

The case k = 2 was addressed by Chang-Hang-Yang in [7]. In the general cse, the proof of the theorem
above requires a deep understanding of the ‘almost divergence’ structure (1.5).

We are left to study the case 3 ≤ n ≤ 2k. But, looking at the estimate (1.1) an easy argument gives
that a singular set for g cannot exist.

The natural question now is to find if (3.1) is sharp. In the scalar curvature case, k = 1, [27] constructs
a complete metric on Sn\Λ, conformal to the standard one gc, with constant scalar curvature when Λ is
a smooth submanifold of dimension 0 < p < n−2

2 . See also [10] when Λ is a smooth submanifold with
boundary of the same dimension. In the general 2 < k < n/2 case, estimate (3.1) does not seem to be
optimal. Indeed, in the following we have the explicit calculations for the canonical example Sn \Sp with
the metric constructed as follows.

By stereographic projection, it is equivalent to work with Rn \ Rp, endowed with coordinates Rt ×
SN−1
θ × Rp

z, where N = n− p. In these coordinates the Euclidean metric is written in the following way

|dx|2 = e−2t
(
dt2 + gSN−1

)
+ δαβ dzα ⊗ dzβ ,(3.2)

where α, β = 1, . . . , p. We set now

(3.3) gu = u
4k

n−2k |dx|2, for u(t) = 4k
n−2ke

n−2k
2k tv∞,

for some constant v∞ > 0. This metric is conformal to the product Sn−p−1 × Hp+1 with its standard
metric. The Schouten tensor is diagonal and, modulo a multiplicative constant, it reduces to

Jn,p := − dt⊗ ∂

∂t
+ δji dθ

i ⊗ ∂

∂θi
− δβα dzα ⊗ ∂

∂zβ
,

In particular, we may compute

σk(Jn,p) =

k∑
i=0

(
n− p− 1

i

)(
p+ 1

k − i

)
(−1)k−i =: cn,p,k.(3.4)
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If we choose v∞ to be the only positive solution to

(3.5) cn,p,k(v∞)2k =

(
n

k

)
(v∞)

2kn
n−2k ,

then the metric (3.3) satisfies the constant σk-curvature equation (1.2).
We now set

pk := sup {p ≥ 0 : σ1(Jn,p), . . . , σk(Jn,p) > 0} ,(3.6)

so that this u belongs to the positive cone if and only if p < pk. We unfortunately do not have an explicit
formula for pk, except for k = 1, 2, 3:

p1 :=
n− 2

2
, p2 =

n−
√
n− 2

2
, p3 =

n− 2−
√
3n− 2

2
.

However, it was shown in [14] that, fixed k > 1,

n

2
− C1(k)

√
n ≤ pk <

n

2
− 2 +

√
n

2
,

for some constant C1(k), n ≫ 1.

4 Construction of singular metrics: an ODE approach

We claim that if Λ is a subset of Sn which is a closed submanifold of dimension p satisfying 0 < p < p2,
then there exists a complete metric g, conformal to gc, with positive constant σ2 curvature, that is singular
exactly along Λ. This is the content of the forthcoming paper [18]. We will concentrate in the σ2 case,
but our difficulties for general k > 2 are just computational and we conjecture that the results are true
in general.

A fundamental step in this kind of constructions consists in finding good model solutions which can
then be used to build an accurate approximate solution. The more this ansatz will be accurate, the more
the following perturbation process has chances to be successfull. Since, up to a blow up, the singular
locus will appear as a Rn \ Rp, we are going to investigate the existence of symmetric singular solutions
supported on Rn \ Rp via an ODE analysis.

Let us introduce first some notation. We write Rn\Rp as the product Rt×SN−1
θ ×Rp

z, where N = n−p,
and write the Euclidean metric g in these coordinates as (3.2). In particular, we have that that Ag = 0
and the formula for the Schouten tensor reduces to

Agu = − 2k

n− 2k
u−1∇2u+

2kn

(n− 2k)2
u−2du⊗ du− 2k2

(n− 2k)2
u−2|du|2g .

(As anticipated, we will specialize this formulæ to the case k = 2, in the following). For technical reasons,
it is convenient to set

Bgu := n−2k
2k u

2n
n−2k g−1

u Agu .(4.1)

The rotational symmetry of the solutions, will be obtained by imposing u = u(t) in the above formulæ.
A straightforward computation gives that the modified tensor (4.1) can be simply written with respect
to the background metric (3.2) as(

Bgu

)β
α

=

(
− k

n− 2k
u̇2

)
e2t δβα,(

Bgu

)t
t

=

(
n− k

n− 2k
u̇2 − üu− u̇u

)
e2t,

(
Bgu

)j
i

=

(
u̇u− k

n− 2k
u̇2

)
e2t δij ,
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the other components of Bgu being zero. In particular one can see that if the blow up rate is of the type

u(t) ∼ e
n−2k
2k t, as t → +∞, then the corresponding solution on Rn \ Rp is complete about the singular

locus. Thus, it is natural to set

v(t) :=
n− 2k

4k
e−

n−2k
2k tu(t)

and to look for bounded solutions of the equation

M(v) := σk (Cv)−
(
n

k

)
v

2kn
n−2k = 0 ,(4.2)

where, after some simplification,

(4.3) Cv := λ dt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ ν δβα dzα ⊗ ∂

∂zβ
,

with

λ = −
(
v2 + 2av̈v − n− k

k
a2v̇2

)
,

µ = (v2 − a2v̇2),

ν = −(v + av̇)2,

(4.4)

for

a =
2k

n− 2k
.(4.5)

In other words, Cv has eigenvalues λ, µ and ν with multiplicities 1, N − 1 and p, respectively.
The case of radial solutions with an isolated singularity at the origin (p = 0) was completely described

in [7] (see also [29] for a summary of the relevant results). In this case, (4.2) is an integrable ODE and
there exists a Hamiltonian function. Although the proof is well known, we repeat it here because it will
be useful for the general case p > 0.

Proposition 4.1. Fix p = 0. The trajectories of the ODE (4.2) are precisely the level sets of the following
Hamiltonian:

H(v, v̇) :=

(
n

k

)
n− 2k

2kn

[
(v2 − a2v̇2)k − v

2kn
n−2k

]
= cst .(4.6)

Proof. Let

Dv := λ dt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ µ δβα dzα ⊗ ∂

∂zβ
,

for λ and µ as given in (4.4) (note that p = 0 here). We can easily calculate

σk(Dv) =

(
n

k

)
n− 2k

2kn
(v2 − a2v̇2)k−1

[
v2 − a2vv̇

]
.

In this case, equation (4.2) is a completely integrable ODE. Indeed, multiply the equation

σk(Dv)−
(
n

k

)
v

2kn
n−2k = 0

by v̇/v and integrate. The result follows immediately.

Now we go to the general case p > 0, and we construct solutions to the ODE (4.2) with the right
behavior at t → +∞ and t → −∞. On one hand, the corresponding metric should be complete about
the singular locus, say Rp, and non complete far away from the singular locus, which allows this solution
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to be transplanted into any other manifold. Precisely, this this particular solution is the basic building
block that is required to construct a complete singular metric on Sn \ Sp or, more generally, Sn\Λp, thus
a solution to the σk-Yamabe problem.

As we have seen in the previous section, the first solution one finds of the ODE (4.2) is the constant
one v∞ found in (3.5) but this is not the one we are seeking since it does not have the right asymptotics
when t → −∞. The main result of the present note is contained in the following theorem.

Theorem 4.1. For each 0 < p < p2 and n > 4, there exists a solution u1 for equation (1.2) of the form

u1(t) =
8

n− 4
e

n−4
4 t v1(t) ,

where v1 satisfies

• v1 > 0, if t ∈ (0,∞).

• When t → +∞,
v1(t) → v∞ > 0 .

• When t → −∞,
v1(t)e

−α0t → cst ,

for some α0 ∈ (0, (n− 4)/4).

• v1 is uniformly bounded for all t ∈ (0,∞).

We conclude the first part of this section with a formula that can be used to compute the σk curvature
in the symmetric situation described above. The proof is very simple and it is left to the reader.

Lemma 4.2. Setting Dv := λ dt⊗ ∂
∂t + µ δji dθ

i ⊗ ∂
∂θi , one has that

σk (Cv) =

q∑
r=0

(
p

r

)
νr σk−r

(
Dv

)
,

where q = min{k, p}.

4.1 ODE analysis

In the following, we present the proof of Theorem 4.1. We fix p > 0. The restriction p < pk appears
precisely in the next basic lemma, at the calculation of the equilibrium points. Outside this range, we
loose all information about the ODE.

Lemma 4.3. The ODE (4.2) has two equilibria in the halfplane {v ≥ 0} of the phase space with coordi-
nates v and v̇ given by

(0, 0) and (v∞, 0)

if and only if the relation between p and n and k is such that p < pk. Moreover, the equilibrium (v∞, 0) is
stable for trajectories that stay in the positive cone. More precisely, the linearization at this equilibrium
has, either two negative real eigenvalues, or two complex conjugate eigenvalues with negative real part.

Proof. The first assertion of the lemma is straightforward, since the equilibria are precisely the non-
negative constant solutions of the equation M(v) = 0, this is, v0 = 0 and v0 = v∞.

For the second assertion, compute the linearization at the point (v∞, 0). Then

L(w) := d

dϵ

∣∣∣∣
ϵ=0

M(v∞ + ϵw) =
d

dϵ

∣∣∣∣
ϵ=0

σk(Cv∞+ϵw)−
(
n

k

)
2kn

n− 2k
v

2kn
n−2k−1
∞ w.(4.7)
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On the other hand, it is well known that

d

dϵ

∣∣∣∣
ϵ=0

σk(Cv∞+ϵw) = trace

(
Tk−1(Cv∞)

d

dϵ

∣∣∣∣
ϵ=0

Cv∞+ϵw

)
,(4.8)

where Tk(C) is the k-th Newton tensor of the matrix C, defined in (1.3). Note that if C belongs to the
positive k-cone, then Tk−1 is positive definite. Next, we explicitly compute

d

dϵ

∣∣∣∣
ϵ=0

λ(v∞ + ϵw) = −2v∞w − 2av∞ẅ,

d

dϵ

∣∣∣∣
ϵ=0

µ(v∞ + ϵw) = 2v∞w,

d

dϵ

∣∣∣∣
ϵ=0

ν(v∞ + ϵw) = −2w∞ − 2av∞ẇ,

so from (4.8) we obtain

d

dϵ

∣∣∣∣
ϵ=0

σk(Cv∞+ϵw) = 2v∞wtrace (Tk−1(Cv∞)Jn,p)− 2av∞trace
(
Tk−1(Cv∞)J̄(w)

)
,(4.9)

where we have defined

J̄(w) := ẅ dt⊗ ∂

∂t
+ 0 δji dθ

i ⊗ ∂

∂θi
+ ẇ δβα dzα ⊗ ∂

∂zβ
.

Next, if we substitute

σk(Cv∞) =
1

k
trace (Tk−1(Cv∞)Cv∞) =

1

k
(v∞)2trace (Tk−1(Cv∞)Jn,p)

into the first term in the right hand side of (4.9) and setting

Tk−1(Cv∞) =: T
(1)
k−1 dt⊗

∂

∂t
+ T

(2)
k−1 δ

j
i dθ

i ⊗ ∂

∂θi
T

(3)
k−1 δ

β
α dzα ⊗ ∂

∂zβ
(4.10)

into the last term of (4.9), we obtain

d

dϵ

∣∣∣∣
ϵ=0

σk(Cv∞+ϵw) = 2kv−1
∞ wσk(Cv∞)− 2av∞

(
T

(1)
k−1ẅ + pT

(3)
k−1ẇ

)
,

Using that v∞ is a solution we arrive at

d

dϵ

∣∣∣∣
ϵ=0

σk(Cv∞+ϵw) = 2k

(
n

k

)
v

2kn
n−2k−1
∞ w − 2av∞

(
T

(1)
k−1ẅ + pT

(3)
k−1ẇ

)
.

Finally, we can give an explicit expression for the linearization (4.7):

L(w) = −2av∞T
(1)
k−1ẅ − 2av∞pT

(3)
k−1ẇ − (2k)2

n− 2k

(
n

k

)
v

2kn
n−2k−1
∞ w.(4.11)

Now, since we know that the metric given by v∞ belongs to the positive cone, the coefficients T (1), T (3)

as defined in (4.10) are strictly positive. This implies that the coefficients accompanying w, ẇ, ẅ in (4.11)
are strictly negative, which completes the linear study at the equilibrium (v∞, 0).

In the following, we try to understand the asymptotic behavior at the equilibrium (0, 0). We seek
solutions for (4.2) that behave like vα(t) = eαt when t → −∞, for some α > 0. First write out the
eigenvalues of the matrix Cvα as written in (4.3):

λ(vα) =
(
−1 + a2α2

)
e2αt,

µ(vα) = (1− a2α2)e2αt,

ν(vα) = −(1 + aα)2e2αt.
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We set β := aα > 0 above,

λβ := −1 + β2,

µβ := (1− β2),

νβ := −(1 + β)2,

(4.12)

and

Eβ := λβ dt⊗
∂

∂t
+ µβ δ

j
i dθ

i ⊗ ∂

∂θi
+ νβ δ

β
α dzα ⊗ ∂

∂zβ
.

Then, when t → −∞, equation (4.2) is equivalent to

F (β) := σk(Eβ) = 0.(4.13)

But F (β) is a polynomial of degree 2k in the variable β that could be ‘explicitly’ computed. Indeed,
taking out a factor β + 1 from the eigenvalues in (4.12), and expanding on the νβ part as explained in
Lemma 4.2:

F (β) = (β + 1)kσk

(
(β − 1)dt⊗ ∂

∂t
− (β − 1)δji dθ

i ⊗ ∂

∂θi
− (1 + β)δβα dzα ⊗ ∂

∂zβ

)

= (β + 1)k
min{p,k}∑

l=0

(
p

l

)
(β + 1)l(−1)lσk−l

(
(β − 1)dt⊗ ∂

∂t
− (β − 1)δji dθ

i ⊗ ∂

∂θi

)

= (β + 1)k
min{p,k}∑

l=0

(β + 1)l(β − 1)k−l(−1)k
(
p

l

)
N − 2k + 2l

N

(
N

k − l

)
,

where, for the last equality, we have used that

σk−l

(
dt⊗ ∂

∂t
− δji dθ

i ⊗ ∂

∂θi

)
= (−1)k−l

(
N

k − l

)
N − 2k + 2l

N
.

It is not straightforward to find the roots of the polynomial F (β), that is one of our computational
difficulties in order to handle this ODE. We can explicitly compute F (0) = cn,p,k > 0 for the constant
defined in (3.4) because it corresponds to the model example, while F (1) ≥ 0. We would need to check
that there exists at least one root in the interval (0, 1]. Note that this is immediately true when p < k
because F (1) = 0. However, in the general case this is complicated. Due to this and other computational
difficulties, we particularize to the case k = 2.

4.2 A closer look at σ2

First we remark that, by a straightforward calculation,

σ2(Cv) ≤ cn[σ1(Cv)]
2.

Then if σ2 stays strictly positive along a trajectory, then σ1 cannot vanish. As a consequence, we must
have that either σ1 > 0 or σ1 < 0 everywhere along that trajectory. Consequently, trajectories that end
at the equilibrium point (v∞, 0) must lie in the positive cone Γ+

2 everywhere.
Next, we try to precisely understand the asymptotic behavior of the solution, when it tends to the

equilibrium (0, 0), for t → −∞.

Lemma 4.4. We let k = 2 and 0 < p < p2 = n−
√
n−2
2 . Then, there exists a trajectory tending to (0, 0),

as t → −∞ with the following asymptotic behavior

v(t) ∼ eα0t, t → −∞,

for some 0 < α0 < n−4
4 .
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Proof. We try to find the roots of the polynomial F (β) that is defined in (4.13). But after some long
computation,

F (β) = (β + 1)2
[(

p

2

)
(β + 1)2 + p(N − 2)(β − 1)(β + 1) +

N − 4

2
(β − 1)2

]
,

that has roots at

β = −1, β = 1 + 2
−np+ 3p±

√
4p+ 5p2 − 5pn+ pn2 − p2n

(n− 4)(n− 1)
.

In the range 0 < p < p2 = n−
√
n−2
2 that we are looking at, there exists (at least) one real root β0 ∈ (0, 1).

Choosing α0 := β0/a, where a was defined in (4.5), completes the proof of the lemma.

Finally, equation (4.2) is not completely integrable. However, we are able to relate to the Hamiltonian
quantity introduced in (4.6) for the case p = 0. As a consequence:

Lemma 4.5. The trajectories emanating from (0, 0) found in the previous lemma must tend to the
equilibrium point (v∞, 0) when t → +∞, and are uniformly bounded.

Proof. We go back to the ODE (4.2) and try to find a suitable Hamiltonian quantity. We remind the
reader that the matrix Cv from formula (4.3) is written as

Cv := λ dt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ ν δβα dzα ⊗ ∂

∂zβ
,

and the eigenvalues λ, µ, ν, with multiplicities 1, N − 1, p respectively, are given by (4.4). Our aim is to
relate σ2(Cv) to σ2(Dv) for the matrix

Dv := λ dt⊗ ∂

∂t
+ µ δji dθ

i ⊗ ∂

∂θi
+ µ δβα dzα ⊗ ∂

∂zβ
,

that corresponds to the case p = 0 understood in Proposition 4.1. First we split along the third coordinate
and replace ν by µ:

σ2(Cv) = σ2

(
λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi
+ 0δβαdz

α ⊗ ∂

∂zβ

)
+ pνσ1

(
λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi

)
+

(
p

2

)
ν2

= σ2

(
λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi
+ µδβαdz

α ⊗ ∂

∂zβ

)
+ p(ν − µ)σ1

(
λdt⊗ ∂

∂t
+ µδji dθ

i ⊗ ∂

∂θi

)
+

(
p

2

)
(ν2 − µ2).

Summarizing,
σ2(Cv) = σ2(Dv) + pF (v),

where we have defined

F (v) := (ν − µ)

[
σ1

(
λdt⊗ ∂

∂t
+ µδji dz

i ⊗ ∂

∂θi

)
+

p− 1

2
(ν + µ)

]
.

Substitute this expression into equation (4.2)

0 = σ2(Cv)−
(
n

2

)
v

4n
n−4 = σ2(Dv) + (ν − µ)pF (v)−

(
n

2

)
v

4n
n−4 .
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As in the proof of Proposition 4.1, we multiply the previous equation by v̇/v and integrate by parts. The
first part has an exact Hamiltonian H. We look for trajectories that tend to (0, 0) in the phase space,
when t → −∞ (in this case, H(v(t), v̇(t)) = limt→−∞ H(v(t), v̇(t)) = H(0, 0) = 0). Then we obtain

0 = H(v(t), v̇(t)) + p

∫ t

−∞
(ν − µ)F (v)v̇/v dt = H(v(t), v̇(t))− 2pF1(t)− 2p

∫ t

−∞
F2(t) dt ,(4.14)

for

F1(t) =
n− p− 2

4
v4 − av2v̇2 − 2

3
a2vv̇3 ,

and

F2(t) = −pa2vv̇3 + (n− 2p− 1)av2v̇2 − n− 1

3
a3v̇4 .

Denote, for simplicity, x = v, y = v̇, z = av̇. Then we can consider the new Hamiltonian quantity:

H̃(x, z) := H − 2pF1 = (n− 4)

[
bx4 − (n− 2p− 2)

4
x2z2 +

p

3
xz3 +

(n− 1)

8
z4 − n− 1

8
x

4n
n−4

]
,

for

b = 1
n−4

[
(n− 1)(n− 4)

8
− p(n− p− 2)

2

]
=

cn,p,2
4(n− 4)

.

Note that b > 0 exactly when p < p2. The level sets of H̃ are closed bounded curves. The maximum is
reached precisely at the point (v∞, 0). On the other hand, there is a branch of the set H̃ = 0 which stays
in the region z > 0, tends the origin and it always stays inside the region {x ≥ |z|}.

From (4.14) we can extract some conclusions. We have seen in Lemma 4.4 that there is a trajectory
emanating from (0, 0) that stays inside {x > 0, 0 < z < x} for a while. We can also check that F2(t) ≥ 0
as long as the trajectory stays in the region {x ≥ |z|}. Then (4.14) immediately shows that the energy
along that trajectory is strictly increasing and must never touch the set {H̃ = 0}.

Figure 1: Case n = 200, p = 2, v∞ = 0.4723...
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