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Abstract – The excitable properties of the neural cell membrane is the driving mechanism of
the neural pulses. Coordinated ionic fluxes across Na and K channels are the devices responsible
of this function. Here we present a simple microscopic physical scenario which accounts for this
phenomenology. The main elements are ions and channel doors that obey standard formulation
of statistical physics (overdamped Langevin equations) with appropriate nonlinear interacting
potentials. From these equations we obtain the ionic flux and the dynamics of the membrane
potential. We show that the excitable properties of the membrane are present in a single and
simple Na channel. From this framework, additional microscopic information can be obtained,
such as statistics of single channels dynamics or the energetics of action potential events.

Introduction. – Experimental understanding of bio-1

physical electrical processes in the cell membrane during2

the action potential has much progressed during the last 603

years, mainly fostered by the seminal works by Hodgkin4

and Huxley [1]. They performed extensive experiments5

on the giant squid axon, and constructed a mathematical6

model that has constituted since then the basis for the7

interpretation of the behaviour of nerve and cardiac cells.8

According to the Hodgkin-Huxley [HH] model, action po-9

tential is produced by coordinated ionic fluxes crossing the10

cell membrane, which acts as a capacitor. Then the ex-11

citable characteristics of the membrane action potential is12

the result of a dynamical coupling between the ionic flux,13

the membrane conductance and the electrostatic potential14

[1].15

It is now also well known that ions flow along some bio-16

chemical molecules (channels) embedded in the cell mem-17

brane. These channels present two main structural confor-18

mations (open and closed), with transitions between these19

two states controlled by the membrane potential. Action20

potential is then known to be the result of the synchro-21

nized dynamics of a large number of ionic channels [2].22

Moreover much quantitative physical information is also23

known on the dynamics of the distinct states of single ionic24

channels [3–6]. In particular experiments on single chan-25

nels show very strong fluctuations in the intensity (pA,26

i.e. a few charges in a microsecond) crossing the channel. 27

As a result the observed stochastic behavior has become 28

a active topic in recent studies. 29

Several theoretical scenarios have been used to address 30

this stochastic phenomenology. Most of these approaches 31

incorporate fluctuations in some of the elements of the 32

HH theory, for instance by using Langevin [7–10] or mas- 33

ter equations [11] for the conductance equations or noise 34

terms in the equation for the membrane charge [12]. A 35

more microscopic approach used Langevin equations for 36

the ions with Poisson equation for the potential membrane 37

[13] in order to obtain the effects of fluctuations on the 38

membrane conductivity. 39

A microscopic modeling of the excitable dynamics of 40

the action potential, treating channels and ions as physi- 41

cal objects, merits attention. This approach would allow 42

for studying single channel excitable events, and to ob- 43

tain additional information of some aspects of the action 44

potential dynamics, such as energetic balances. It would 45

also provide the influence of changes of different physi- 46

cal parameters (concentrations, temperature, etc) on the 47

whole process, without the need of additional parameter 48

fittings. Then one could address questions such as the 49

minimum elements necessary to produce the action poten- 50

tial or whether the cooperative coupling of a large number 51

of channels is necessary for excitability. 52
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Our aim in this work is thus to place the action po-53

tential spikes within the framework of statistical physics54

to explain these phenomena at the microscopic level. We55

will propose a minimum model presenting the desired ex-56

citable behavior, and accordingly we will not try to get57

quantitative agreements with any particular cell type. As58

a result we expect our simplified model to be close to a59

very primitive channel, presumably much simpler than in60

modern organisms and containing the minimum set of el-61

ements that permit a bona fide excitability behavior.62

In this paper we proceed first with the description of63

the Na channel and the physical elements that constitute64

our model. Next we present the numerical results for the65

excitable behavior of a single Na channel, and relate the66

excitable properties of the model to the physical mecha-67

nisms implicit in the classical HH theory. We will show68

that the minimum scenario to explain the excitable prop-69

erties is a single gated Na channel in the presence of a70

leakage of K ions. We end with some conclusions and71

perspectives.72

Microscopic physical approach and modeliza-73

tion. – Our approach consists of treating ions as Brown-74

ian particles, and channels as physical pores with mechan-75

ical doors that have two steady states (open and closed).76

All of them are driven by the membrane potential which77

also depends on the ionic flux. We will focus on the dy-78

namics of a Na channel with two doors, whose states are79

defined by the variables Y1 and Y2, that will evolve accord-80

ing their respective dynamics controlled by the membrane81

potential ∆V . Our approach is then closely related with82

that of Ref. [13] but within a more simple scenario. The83

leak of K ions through the membrane will be modeled as84

an additional channel with effective parameters without85

doors.86

Other relevant point for a microscopic description is87

that fluctuations should be relevant locally due to the very88

small number of charges involved and the fact that, al-89

though they move deterministically under the electrostatic90

force, they diffuse also by thermal noise. Following stan-91

dard formulations of nonequilibrium statistical mechan-92

ics, the main variables of the model follow overdamped93

Langevin equations with their corresponding potential en-94

ergies and thermal noises. The system is autonomous, and95

the only source of energy is the Gibbs energy associated96

with the ionic concentrations and the membrane poten-97

tial. In this way the model is also able to give information98

about the energetics of any excitable event. In this for-99

mulation, the model parameters and other characteristics100

can be related to biological experimental information.101

To make explicit our microscopic approach we will for-102

mulate our approach following the following assumptions:103

(i) The first assumption is the use the capacitor equation
for the membrane potential ∆V ,

−CM

d∆V

dt
= INa + IK + I0, (1)

where CM is the membrane capacity assumed to be con-104

stant and adjusted to a single Na channel. The intensities 105

INa, and IK correspond to the flux of Na and the leak of 106

K ions. I0 is a perturbative current pulse that will trigger 107

the spike. This equation will be integrated as 108

∆V (t+∆t) = ∆V (t)−
∆Q(Na+) + ∆Q(K+)

2CM

, (2)

where ∆Q(Na+) and ∆Q(K+) are the balance of charges 109

crossing any of the channel boundaries during the interval 110

of time ∆t which are obtained from the trajectories of ions. 111

The divisor “2” takes into account that charges cross both 112

boundaries of the channel (then being counted twice) when 113

crossing the membrane from one side to the other one. 114

(ii) The second assumption has to do with the calcula-
tion of the ionic flux. Ions inside the channel are described
by point–like particles with electrical charge +q moving
in one dimension. Their positions xi(t) obey overdamped
Langevin equations, γiẋi = −∂xi

U + ξi(t), where γi is the
effective friction and ξi(t) is a thermal noise of zero mean
and intensity γikBT . The interaction potential U is the
addition of the interactions with the doors (see below) and
the electrostatic membrane potential Ve(xi,∆V ),

Ve(xi,∆V ) = q
∆V

L
(xi − L), 0 < xi < L. (3)

This Langevin equation has to be complemented with 115

boundary conditions of concentration values ρ0 = Acin 116

at x = 0 and ρ2 = Acout at x = L, being A the effective 117

section of the channel and cin/out the bulk ion concentra- 118

tion, interior and exterior to the cell respectively (note 119

that any ion affinity of the pore could be accounted for 120

by changing the value of A in these relations). Bound- 121

ary conditions are implemented in the following way: ions 122

disappear when hopping out of the channel due to their 123

Brownian motion, and they appear into the channel ac- 124

cording with a probability depending on the concentration 125

at this boundary. There is no need of any explicit assump- 126

tion about the form of the conductances, but nevertheless 127

the fact that it is formulated consistently with statistical 128

mechanics guaranties that this model evolves towards the 129

correct steady state membrane potential without further 130

parameters or fine tuning. That is, it provides the Nernst 131

potential when a single ion species can cross the mem- 132

brane, and the Goldman–Hodgkin–Katz theoretical pre- 133

diction [14] when different ions compite. Note also that 134

we are explicitly neglecting any ion-ion interaction inside 135

the channel. This is justified by the small number of ions 136

simultaneously present in the system and the screening of 137

the aqueous medium. 138

(iii) The dynamical equations for the channel doors are 139

the kernel of our approach. There is strong experimen- 140

tal evidence that the Na channel has two active doors 141

or barriers [2], and that they open and close stochasti- 142

cally according to the value of the electrostatic membrane 143

potential and thermal fluctuations [6]. This hypothesis 144
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Fig. 1: Na channel model (bottom) with two doors (1,2) and
the K pore (top). Arrows indicate the ion flux when the chan-
nels are open.

and the use of Langevin equations are the original parts145

of our approach. Then we describe a channel door as a146

physical barrier controlled by the dimensionless variable147

Y which behaves as a nonlinear spring with two steady148

states: Y ∼ 0 (closed) and Y ∼ 1 (open). These door149

states are controlled by the elastic potential Vj(Yj ,∆V )150

(j = 1, 2), given by151

Vj(Yj ,∆V ) = V0

[

−a ln(Yj(1− Yj))− b(Yj − 0.5)2
]

+ Qj(∆V − φref )Yj , (4)

where Qj is the charge of each door sensor and φref is152

a reference potential. Their values are specific of each153

door, Q1 = 12 e , Q2 = −8 e, whereas we take common154

values for the other parameters: V0 = 7kBT , a = 0.2,155

b = 9, and φref = −40 mV. his potential presents two156

minima near Yi ∼ 0, 1 corresponding to the closed and157

open states respectively. These minima interchange their158

relative metastability by changing the value of ∆V . For159

smaller voltages the door 1 (2) is in the closed Y1 ∼ 0 (open160

Y2 ∼ 1) state, and for larger voltages we have the oposite161

behavior. At ∆V = −40mV both states are equally prob-162

able in both doors.163

Since barriers are physical entities, when ions interact
with them they interchange momentum and energy. Thus
variables Y and xi have to obey physical laws expressed
in terms of dynamical (Langevin) equations constructed
from a common potential. With this requirement the po-
tential VI(Y, xi) corresponding to the interaction between
particles and internal barriers is modeled as

VI(Y, xi) = Vdf(Y ) exp

(

−

(xi − xc)
2

2σ2

)

, (5)

where Vd is the barrier height, xc is the position of the164

barrier center inside the channel and σ is its width (see165

Fig. 2). The function f(Y ) modules the aperture of the166

doors according to the Yj variables. The parameter values167
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Fig. 2: Doors’ energy barriers VI(Yi, x) and positions. The
maximum height is controlled by variable Y . Left: Door 1 at
values Y = 1 and Y = 0.05 (small barrier). Right: Door 2 for
the same Y–values. Inset: Envelope function f(Y ) (6).

for the two doors have been taken as Vd(1) = 200meV, 168

Vd(2) = 250meV, xc(1) = 1 nm, xc(2) = 3 nm, and σ = 169

0.283 nm. 170

For the modulated function f(Y ) in Eq. (5) we have
taken the function,

f(Y ) =
1

2
(1 + cosπY ), (6)

which has the values f(0) = 1 for the closed state, and 171

f(1) = 0 for the open state, and has relative extrema at 172

these points. This property reduces the sensitivity against 173

thermal fluctuations of Y around the steady states. 174

Regarding the K leakage through the membrane, we 175

consider the motion of K ions as equivalent to moving in 176

an additional (K-selective) channel without any door, and 177

with effective parameters. This provides a charge leakage 178

that restores the membrane potential at the end of the ac- 179

tion potential. Then we have not considered for K a gated 180

channel in the spirit of the HH-theory (see below), since 181

we are seeking a minimal model and as we will show such 182

a gate is not necessary for excitability. 183

According to the former assumptions our approach has 184

a set of equations that need to be numerically simulated. 185

Our variables are the position xi of the ions (Na and K) 186

inside the channel, the Na channel doors Y1 and Y2 and 187

the membrane electrostatic potential ∆V . 188

The whole system can be characterized by the potential 189

energy, 190

U(xi,∆V, Y1, Y2) = (7)
∑

i

Ve(xi,∆V ) +
∑

i,j

VI(Yj , xi) +
∑

j

V (Yj ,∆V ),

and accordingly the set of Langevin dynamical for our 191

mechanical variables are, 192

γiẋi = −∂xi
U(xi,∆V, Y1, Y2) + ξi(t), (8)

γY1
Ẏ1 = −∂Y1

U(xi,∆V, Y1, Y2) + ξY1
(t), (9)

γY2
Ẏ2 = −∂Y2

U(xi,∆V, Y1, Y2) + ξY2
(t), (10)
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where thermal noises fulfill,

< ξa(t)ξb(t
′) >= 2γa kBT δa,b δ(t− t′). (11)

Note that the first Langevin equation is for all ions:193

both Na and K. The simulation of these equations deter-194

mines the state of the doors and the trajectories of the195

ions. The numbers of particles entering into and leaving196

the channels through each boundary are used to evaluate197

the potential ∆V through Eq. (2). The final output is198

∆V (t) which has to be compared with the known experi-199

mental results.200

γNa+ particle friction 2 µs meV/nm2

γY1
door 1 friction 1000 µs meV/nm

γY2
door 2 friction 4000 µs meV/nm

KBT 25 meV
L channel length 4 nm
ρNa
0 , ρNa

1 0.01, 1.2 charges/nm
Ceff effective capacity 1.25 charges/mV

Table 1: Physical parameter values used in the simulations for
a single Na channel.

The excitable Na-K system. – We have consid-201

ered a single Na channel and the leak of K ions, and we202

have simulated the whole system of equations (2) and (8)-203

(11). The parameter values of the Na channel in Table204

1 have been selected to fulfill the experimental observa-205

tions [6]. For the K leakage the effective parameter val-206

ues are: γK+ = 200 µs meV/nm2, and ρK0 , ρ
K
1 = 20, 0.36207

charges/nm, respectively.208

More specifically, as in a real experiment, we follow209

the dynamical evolution of the membrane potential when210

small and instantaneous discharges ∆Q of positive ions,211

corresponding to depolarizing voltage perturbations ∆V0212

of +80 or +70 mV, are applied to the membrane with213

a period of 5ms. In Fig. 3 we show a typical time in-214

terval with 10 of these perturbation events. In order to215

show the characteristics of the perturbations, we show, on216

top of this figure, how these pulses are seen when they217

are applied to the membrane without the presence of the218

Na channel, ı.e. with only the K leakage. We see the ex-219

pected response of the system as a sudden increase of ∆V0220

followed by a slow relaxation towards the steady value of221

the membrane potential. We can also appreciate the size222

of the voltage stochastic fluctuations.223

In the middle and bottom figures we show the response224

of the system under these perturbations. The middle225

graph of the figure corresponds to perturbations equiv-226

alent to instantaneous increases of ∆V of +70 mV, and227

the bottom graph to increases of +80 mV. At each pertur-228

bation event the value of the potential membrane ∆V (t)229

presents narrow and larger excursions towards positive val-230

ues. This high increase is due to the fast flux of Na ions231

into the cell when both channel doors are opened. Then232
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Fig. 3: Top: As an example we show the membrane poten-
tial when a set of small periodic depolarizing perturbations
∆V0 = +70 mV are applied on the membrane without the Na
channel, as discussed in the text. Middle and bottom figures:
membrane potential as a function of time, when pulses of +70
mV (middle) and +80 mV (bottom) are applied to the mem-
brane with a single Na channel and the K leakage. Parameters
values in Table I. Magnitude of ∆V0 indicated in the plots.

the door 2 of this channel closes suddenly and the out- 233

ward K-flux starts to restore the initial steady state of the 234

membrane potential but in a larger time scale. Although 235

most of the peaks are real excitable events (their height 236

are around two times larger than the perturbation), a few 237

of them have some imperfections. In the middle figure we 238

see some failed (f) or missing events when the Na channel 239

door Y1 does not open, and double peaks (d) when door 240

2 opens again before the closing of door 1. Also at the 241

bottom graph we see small (s) pulses, in which the door 242

2 closes very fast and the channel has been active a very 243

short time. One appreciate that for pulses of +70 mV 244

(middle graph) the number of errors is larger. 245

To describe more explicitly the dynamics of the model 246

during the action potential, we show in Fig. 4 a detailed 247

view of a single pulse (the 9th pulse in Fig. 3-bottom) with 248

numerical results for other observables. The top frame in 249

this figure is an amplification of the membrane potential, 250

the middle frame is the plot of the ionic intensities dur- 251

ing the same pulse, and in the bottom part we find the 252

evolution of the two Na channel doors, Y1 and Y2. In 253

these frames we have marked five different times: t0 is the 254

perturbative trigger time, where the potential is instan- 255

taneously increased in an amount ∆V0 = 80 mV. This is 256

followed by the opening of door Y1 at t1. Then at t2 the 257

door Y2 closes. In the interval (t1, t2) both Na channel 258
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Fig. 4: Top: Detailed view of the 9th pulse of Fig. 3-bottom.
Middle: Intensities across the membrane for Na and K chan-
nels. Bottom: Time evolution of the two doors Y1 and Y2 of
the Na channel.

doors are open and Na ions enter into the cell producing259

the rise of the ∆V pulse. This is manifest in the middle260

figure where we see the corresponding inward (negative)261

Na intensity. This interval corresponds to the so-called262

open state [2]. After t2 the Na flux is stopped, due to the263

closing of Y2, which corresponds to what is known as the264

inactivated state of the channel. Here an eventual addi-265

tional perturbation would not induce any channel opening.266

Now K leak starts to dominate tending to restore the ini-267

tial or standby state by an outward (positive) K intensity,268

as seen in the middle frame. Then at t3 the Y1 closes269

and at t4 the Y2 opens. The refractory time corresponds270

to the interval (t2, t4) when Y2 remains closed. After t4271

the channel recovers the steady (excitable) closed state.272

In this figure we can also see the fluctuations of the door273

variables and their almost instantaneous transitions fol-274

lowing the membrane potential. In the middle frame data275

of ion intensities have been filtered by using an averaging276

filter with a window of 62.5 µs to improve the signal from277

the sea of statistical fluctuations.278

Thus our model exhibits some of the fluctuations and279

imperfections observed in experiments. These figures280

could be refined by further adjustment of the system pa-281

rameters to a specific experiment, or by introducing a sec-282

ond kind of K–channel with a door, but the excitability283

properties of the model are clearly manifest.284

It is interesting to relate the assumptions of this model
to the main elements of the classical Hodgkin-Huxley the-
ory. In this theory the crossing of ions through the mem-
brane is described by time-dependent currents, represent-
ing the total of a large number of channels. These currents
produce changes in the membrane potential according to

the capacitor equation. Our first assumption Eq. 1 is ex-
actly this, but applied to discrete charges (ions) instead
to currents. Moreover, according to HH, the charge inten-
sity crossing many Na channels depends on the membrane
potential according to a generic law,

INa = gNa(t)(∆V − VNa), (12)

where VNa is the Na Nernst potential and gNa(t) is the 285

ionic conductance. Membrane conductances represent 286

thus the average of the states of a large number of chan- 287

nels, each of them either open or closed. We have substi- 288

tuted this Ohm-type law by the Langevin dynamics of ions 289

along a single channel. Nernst potential is not a parameter 290

of our model, but instead it is reached automatically (in 291

a single ion species situation) since it corresponds to the 292

equilibrium state of our model. Analogously Goldman– 293

Hodgkin–Katz law is verified in the steady state corre- 294

sponding to more general situations. 295

Moreover in Eq. (12) the membrane conductance de-
pends on other variables subjected to dynamical equations
[1]. Namely this conductance depends on so called activa-
tion and deactivation functions m and h,

gNa(t) = ḡNam
3(t)h(t), (13)

where ḡNa, is a constant. Activation and deactivation 296

functions are interpreted in the context of our model as 297

the average state of each of the two channel doors, i.e. of 298

our variables Y1 and Y2, for a large number of channels. 299

The way these functions m and h are built is the kernel of 300

the HH theory. They obey deterministic linear differential 301

equations, chosen in such a way that each variables m, h 302

have a single steady state that, depending on the value 303

of ∆V , ranges continuously from 1 (all doors open) to 0 304

(all doors closed). On the contrary our variables Yi, rep- 305

resenting the doors of a single channel, present two steady 306

state (open and closed) in such a way that a stochastic 307

dynamics permits transitions between both states 308

The HH–theory includes K-channels with a different 309

conductance (with a single door) and a ionic leakage. In 310

our model we have only implemented the leak. The K- 311

channel with door could be implemented in our model 312

straightforwardly, but it has not been necessary for ob- 313

taining excitability. 314

As a result, both in the HH–theory and in our model, 315

the coupling between potential and the channels state trig- 316

ger a well synchronized temporal sequence of events, re- 317

sulting in a sudden discharge of Na ions, the appearance 318

of the spike and the K flux restoring the potential. 319

Conclusions and perspectives. – We have pre- 320

sented a microscopic physical approach to the excitable 321

properties seen in neuronal cell membranes. The main 322

points of our approach are: ions obey classical sta- 323

tistical equations of motion, channels are pores with 324

doors whose dynamics are controlled by elastic nonlin- 325

ear potentials, and the electrostatic potential of the cell 326
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membrane follows the capacitor equation. Moreover,327

since it is constructed incorporating fluctuations accord-328

ing to fundamental statistical physics (namely according329

to fluctuation-dissipation theorem), it provides the correct330

statistical fluctuations of the diverse variables. This model331

can then be used to study the dynamics of a small num-332

ber of channels, and in particular it appears as specially333

suitable for analyzing single channel experiments. Note334

that in global measurements of real neural spikes a large335

number of channels are involved, and fluctuations will be336

smoothed out.337

We have shown that a single Na channel in the presence338

of K leakage constitute an excitable system producing the339

characteristic spikes in the action potential. Our objective340

here was not to reproduce the exact form of the action341

potential for some specific channels or neurons but rather342

to formulate in terms of fundamental statistical mechanic343

laws the underlined physical mechanisms in this biomolec-344

ular process.345

It is worth to comment about the model parameters346

and their specific values. All of them have a clear physical347

meaning. Ionic concentrations per length are fixed by the348

experimental densities and the estimated channel areas.349

Friction parameters are estimated from experimental time350

scales, and barrier heights are of order of a few kBT as351

it is expected in the biomolecular scale. Parameters of352

the doors and the function in Eq. (6) have been chosen353

to fix the door’s steady states (open and closed) and their354

location inside the channel. Other parameters such Qj355

and φref are adjusted to enter in the experimental scale.356

Since their physical meaning is clear and they are used in357

physical dynamical equations the whole model lies within358

the framework of well founded physics.359

This approach presents several perspectives worth to be360

explored:361

- All model elements are described by standard phys-
ical equations based on a single energy functional, and
accordingly it is possible to address the energetics of an
excitable event. Before and after a pulse the system is in
the same thermodynamic state but several (few) charges
have changed of reservoir: ∆qNa influx of Na and ∆qK
outflow of K. Thus it is easy to estimate their loss of Gibbs
energy,

∆G = ∆qNa g(Na) + ∆qK g(K), (14)

where g(Na), g(K) are the Gibbs energy per particle of362

Na and K ions.363

- The approach allows for other channels and doors mod-364

elizations which could be related to different biochemical365

structures of the channel proteins. Each door would have366

specific effective parameters that can be estimated from367

appropriate experiments.368

- The role of the ionic concentrations on the channel369

states has not been receiving so far enough experimental370

attention, but we have observed, in our simulations, im-371

portant sensitivity due to the ion–door collisions (in this372

regard see for instance Fig. 5 in Ref. [15]).373

- Our approach allows to a new view, from statistical 374

physics, of the well established Hodgkin-Huxley theory 375

and other models based in it. 376

Finally, it is worth to remark that we have employed 377

the minimum set of elements that results in the excitable 378

dynamics observed in biological membranes. In this re- 379

gard, it could also be seen as a modelization of hypothet- 380

ical primitive channels, which presumably would be much 381

simpler than present biological structures, which are the 382

result of a long evolution and likely much more sophis- 383

ticated. Thus our approach opens a complementary sce- 384

nario to study ionic channel phenomenology from funda- 385

mental physics. 386
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