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Abstract

Significant research effort has been devoted to produce one-sided error
estimates for Finite Element Analyses, in particular to provide upper bounds
of the actual error. Typically, this has been achieved using residual-type
estimates. One of the most popular and simpler (in terms of implementation)
techniques used in commercial codes is the recovery-based error estimator.
This technique produces accurate estimations of the exact error but is not
designed to naturally produce upper bounds of the error in energy norm. Some
attempts to remedy this situation provide bounds depending on unknown
constants. Here, a new step towards obtaining error bounds from the recovery-
based estimates is proposed. The idea is 1) to use a locally equilibrated
recovery technique to obtain an accurate estimation of the exact error, 2) to
add an explicit-type error bound of the lack of equilibrium of the recovered
stresses in order to guarantee a bound of the actual error and 3) to efficiently
and accurately evaluate the constants appearing in the bounding expressions,
thus providing asymptotic bounds. The the numerical tests with h-adaptive
refinement process show that the bounding property holds even for coarse
meshes, providing upper bounds in practical applications.

Error bounding, recovery techniques, explicit residual error estimator

1 Introduction

Although the Finite Element Method (FEM) is a powerful method for a vast type
of engineering problems, it is well known that, in general, it is only able to provide
an approximated solution. Therefore, some error level has to be accounted for to
define the safety factors during the design process of structural components. During
several years various error estimation techniques have been developed. We can
classify the error estimators in three groups based on its convergence through the
global effectivity index θ (ratio of the estimate to the true error):
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• Asymptotically exact : when the richness of the discrete solution space N is
increased, the estimated error gets closer (from above or below, or even oscil-
lating) to the true one, then θ → 1 when dimN → ∞.

• Asymptotically (upper) bounded : when the richness of the discrete solution
space is increased, the estimated error provides higher values than the true
one, therefore θ ≥ 1 when dimN → ∞.

• Asymptotically not bounded : when the richness of the discrete solution space
is increased, the estimated error provides lower values than the true one, then
θ ≤ 1 when dimN → ∞.

Another way to classify the error estimators is according to the procedure used
to obtain the estimates. Traditionally, there are three major branches in the error
estimation field: The first group, the residual-based error estimators, introduced
by Babuška and Rheinboldt [1] is subdivided into implicit [2, 3, 4] and explicit
ones [5]. The explicit ones depend on a constant. Explicit values for the constant
have been obtained by several authors [6, 7]. More recently Prof. Stein and co-
workers [8, 9] have obtained an explicit value which provides highly accurate error
estimations for a certain type of problems and elements. The second branch of error
estimators, related with the concept of dual analysis, makes use of two solutions,
one compatible and one equilibrated. Some of these error estimators solve two
global problems in parallel [10] whereas other post-process the FE solution [11,
12, 13]. Under this group we can also include the error estimators based on the
Constitutive Relation Error (CRE) introduced by Ladevèze and Leguillon [11] and
followed by several contributions for many applications, see for example [14, 15,
16, 17]. This technique compares a kinematically admissible stress field with a
statically admissible solution obtained by solving local problems, built using the
strong prolongation condition. These types of error estimators are asymptotically
(upper) bounded. Finally, the third branch, the recovery-type error estimators are
based on the use of the Zienkiewicz and Zhu (ZZ) error estimator [18]. These
techniques were traditionally unable to provide upper bounds of the error in energy
norm. The error evaluation is obtained by calculating the energy norm associated
with the difference between the FE solution (compatible) and a recovered stress
solution (not necessary equilibrated, but continuous), obtained for example with
the Superconvergent Patch Recovery (SPR) technique [19, 20]. In this case the
recovered stress field is obtained processing the values of the stress field evaluated
at superconvergent points. The process produces a recovered solution with higher
convergence rate than the theoretical optimum convergence rate of the FE solution.
This recovered solution, of a higher accuracy than the FE solution, is introduced
in the ZZ error estimator providing accurate results. An intensive analysis of the
superconvergent property for different recovery procedures can be found in [21].
References [22, 23, 24] showed that under certain assumptions, related with the mesh
type and regularity of the solution, when the recovered field used for the estimation
is obtained with the SPR technique, the error estimator is asymptotically exact.
The recovery-based error estimators are robust, easy to implement and are used in
commercial codes. The publication of the original SPR technique was followed by
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several works aimed to improve its quality, see for example [25, 26, 27]. Ródenas et al.
proposed to add constraints to impose local equilibrium and local compatibility to
the recovered solution in the FEM framework [28] bringing up the SPR-C technique
that was also adapted to the eXtended Finite Element Method (XFEM) framework
[29, 30].

Carstensen and Funken [31, 32] presented an error estimator, based on recovery-
type error estimators, providing upper bounds of the error in energy norm, under
certain assumptions of smoothness of the solution which permit to neglect the lack of
internal equilibrium of the recovered solution. Dı́ez et al. [33] presented a methodol-
ogy to obtain computable upper bounds of the error in the energy norm considering
the stress recovered field provided by the SPR-C technique and taking into account
the lack of internal equilibrium of the recovered stresses. This technique allowed
to obtain one of the firsts procedures to get practical upper bounds for FEM and
XFEM based on recovery techniques [33, 34]. Since the SPR-C technique does not
provide an equilibrated stress field at the global level, the upper bound property
is obtained by adding a correction term to account for equilibrium defaults. So
far, only a computationally expensive estimation, based on projection techniques,
of these correction terms is available.

In this work we use the Cartesian Grid FEM (cgFEM) presented in [35, 36, 37]
to numerically solve the linear elasticity problem, although, we have to remark
that all results presented in this work can be directly extended to the standard
FEM. The cgFEM is an immerse boundary method where the geometry is embedded
into the mesh domain. Nested meshes are used in cgFEM for h-adaptive analysis.
Therefore, projection techniques used in the proposed error estimation are efficient
and easy-to-implement. In any case, the projections imply a low computational cost
as they are only required in the first meshes of the h-refinement analysis. Some
authors claim that the use of the SPR technique with Cartesian Grids, as the one
used in this work, would be problematic. For instance, reference [38] indicates:
”Unfortunately, for an implicit mesh it would be very difficult to implement such
a superconvergent recovery scheme of the stress field for elements that intersect the
boundary”. However in the XFEM framework, where the mesh is independent of the
crack, efficient recovery techniques have been already proposed based on the Moving
Least Squares (MLS) technique [39, 40, 41, 42, 43] and some on the SPR technique
[30, 34], which introduce worthy improvements to the solution, especially along the
boundaries, even in elements trimmed by the crack. In this work we will use the
SPR-C technique to obtain an improved stress field from the FE stress field, being
this last field rather inaccurate in the case of bilinear elements. The error measure
using the ZZ error estimator in combination with the SPR-C technique will guide
the h-adaptive refinement process. The objective of this work is to present a new
technique to evaluate an upper bound of the discretization error in the energy norm
for the linear elasticity problem with smooth solution. The technique presented is
based on the previously mentioned recovery technique whose use is crucial in the
process since the improved field provided by this technique is continuous and fulfils
the boundary equilibrium. The main idea of the proposed technique is to obtain
an upper bound of the error in the energy norm by evaluating an upper bound of
the error correction term introduced in [33] using an explicit-type error evaluation

3



technique, that requires the use of a problem-dependent constant. We will also
propose a procedure to obtain an accurate evaluation of the constant required by the
explicit-type error evaluation technique which allows to obtain error upper bounds
in practical application, even for coarse meshes.

The rest of the paper is organized as follows. In section 2 we will set up the
elasticity problem and its FE approximation. Section 3 will be devoted to explain the
main features of the SPR-C technique. Section 4 will introduce the new bounding
procedure and in section 5 we will test the behavior of the proposed technique
through some numerical results. Final remarks will be presented in section 6.

2 Problem Statement

In this section we briefly present the model for the 2D linear elasticity problem.
We denote the Cauchy stress as σ, the displacement as u, and the strain as ε, all
these fields being defined over the domain Ω ⊂ R

2, with boundary denoted by ∂Ω.
Prescribed tractions denoted by t are imposed over the part ΓN of the boundary,
while displacements denoted by ū are prescribed over the complementary part ΓD

of the boundary. Bony loads are denoted as b.
The elasticity problem takes the following form. We seek (σ,u) satisfying:

• static admissibility:

LT
σ + b = 0 in Ω (1)

Gσ = t on ΓN (2)

where L is the differential operator defined as:

L =





∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x



 (3)

andG is the projection operator that projects the stress field into traction over
the boundary. The operator G is the matrix form of Cauchy’s law considering
the unit normal n = {nx ny}T to ΓN such that:

G =

[
nx 0 ny

0 ny nx

]

(4)

• kinematic admissibility:

u = ū on ΓD (5)

• constitutive relation:

σ = Dε(u), with ε(u) = Lu in Ω (6)

where the matrix D contains the elasticity coefficients of the usual linear
isotropic constitutive law relating stress and strain.
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The problem above takes the primal variational form:

Find u ∈ (V + {w}) : ∀v ∈ V

a(u,v) = l(v) where

a(u,v) =

∫

Ω

ε(u)TDε(v)dΩ

l(v) =

∫

Ω

bTvdΩ +

∫

ΓN

tTvdΓ

(7)

where V = {v | v ∈ [H1(Ω)]
2
,v|ΓD

= 0} and w is a particular displacement field
satisfying the Dirichlet boundary conditions.

2.1 Finite element discretization

Let us introduce a classical finite element discretization scheme for the elasticity
problem. The approximate displacement field uh is searched for in a space of finite
dimension (V h + {w}) ⊂ (V + {w}) such that V h is spanned by locally supported
finite element shape functions.

Using the Galerkin framework, the primal variational formulation (1-6) is recast
in the form:

Find uh ∈
(
V h + {w}

)
: ∀v ∈ V h

a(uh,v) = l(v)
(8)

which can be solved using classical finite element technology [44], or as in our case,
using the Cartesian Grid Finite Element Method, cgFEM [37].

3 The SPR-C technique. The Nearly equilibrated

recovery procedure

Since the introduction of the plain SPR technique [20] we can find several contri-
butions aimed at improving the quality and the robustness of this technique. In
general they couple the stress components in order to be able to add constraints
that improve the quality of the recovered field. Wiberg and Abdulwahab [45, 25]
proposed to take into account the equilibrium of the recovered field by using a
penalty method, Blacker and Belytschko [26] introduced the “Conjoint Polynomial
Enhancement” to improve the recovered field along the boundaries. Other tech-
niques looking for equilibrated recovered solutions for upper bounding purposes can
be found in [46, 47, 48, 49], but always presenting small lacks of equilibrium even
at patch level, thus preventing the strict upper bound property.

More recently, Ródenas and coworkers introduced the so-called SPR-C technique
[28], where the “C” stands for “constraint”, which was later applied in the XFEM
framework by Ródenas et al. [34] and finally adapted to geometry-mesh independent
FE formulations [35], such as the cgFEM. We will here show the main features of
the SPR-C technique. As in the SPR technique, a patch P i is defined as the set
of elements connected to a vertex node i. On each patch, a polynomial expansion
for each one of the components of the recovered stress field is considered. It is
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necessary to simultaneously consider all the components of the stress vector to be
able to include the required constraint equations. Thus, in the SPR-C technique,
the recovered stress field for the 2D case, for each patch, reads:

σ̂
∗

i (x) =







σ̂∗
xx(x)

σ̂∗
yy(x)

σ̂∗
xy(x)






= P(x)a =





p(x) 0 0

0 p(x) 0

0 0 p(x)











axx

ayy

axy






(9)

The polynomial coefficients a for each component of the stress field are obtained by
optimizing the following functional:

Φ(A,λ) :=

∫

Pi

(P(x)a− σ
h(x))2 dΩ+

niee∑

j

λint
j

(
cint(xj)

)
+

nbee∑

j

λbnd
j

(
cbnd(xj)

)
+

nce∑

j

λcmp
j (ccmp(xj)) (10)

where the constraints equations cint (internal equilibrium), cbnd (boundary equilib-
rium) and ccmp (compatibility equation), are imposed via Lagrange multipliers (λ).
For further details on the SPR-C we address the interested reader to [28, 50].

Once the local field, at each patch, is obtained, a continuous field for the whole
domain is evaluated using a partition of unity procedure (defined in [26] as Conjoint
Polynomial enhancement) that, at any point x, properly weights the stress polyno-
mials σ∗

i obtained from patches corresponding to each one of the vertex nodes i of
the element containing x. Thus, the field σ

∗
σ is constructed as a linear weighting of

the contributions of each patch using linear shape functions Ni associated with the
nv vertex nodes according to the following expression:

σ
∗

σ(x) =
nv∑

i=1

Ni(x)σ̂
∗

i (x) (11)

Subindex σ indicates that the internal equilibrium and boundary equilibrium have
been imposed locally at each patch during the recovery process. For further de-
tails of the SPR-C recovery process see [28, 30]. Note that the difference between
this approach and the one proposed by Zienkiewicz and Zhu [18] is that in this
last case, they only retain the recovered stress value σ̂

∗

i (xi) at the node, but in
our approach, based on the Conjoint Polynomial enhancement, we retain the full
polynomial, σ̂∗

i (x), that defines the stress field at each patch.

3.1 Equilibrium defaults of the recovered field

When the partition of unity is applied to obtain a continuous recovered stress field
(11), we generate lacks of equilibrium in the recovered solution according to the
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following result. For x in the interior of elements:

LT
σ

∗

σ(x) = LT

nv∑

i=1

Ni(x)σ̂
∗

i (x)

=
nv∑

i=1

(LTNi(x))σ̂
∗

i (x)

︸ ︷︷ ︸

−s∗σ

+
nv∑

i=1

Ni(x)L
T
σ̂

∗

i (x)
︸ ︷︷ ︸

L
T
σ̂

∗

i
=−b

= −s∗σ − b

(12)

This expression is a modified version of the internal equilibrium equation where s∗σ
represents the lack of internal equilibrium. Furthermore, we could also consider
a lack of boundary equilibrium of σ

∗
σ over ΓN which can be evaluated as r∗σ =

Gσ
∗
σ − tΓN

, where tΓN
are the exact tractions over the Neumann boundaries. The

recovered field will meet the prescribed traction along straight boundaries if this
traction field is in the basis of the recovered field. Note that, in the case of curved
boundaries, the polynomial traction field, in general, will not be met by the recovered
stress field. It is important to note that, in any case, the lack of equilibrium along
the boundaries is negligible in comparison with the lack of internal equilibrium, then
r∗σ is only formally introduced in equations.

4 Error estimation. A SPR-based upper bound-

ing technique

In this section we will first introduce a general upper bounding technique of the error
in energy norm for general SPR-based recovery procedures. The upper bounding
technique presented in this work consists of two parts. The first one is the classical
ZZ error estimator, providing of accuracy to the error estimator, and the second part
is an explicit-type residual-based error estimator to bound the lack of equilibrium
of the recovered stress field, providing the required bounding properties. Then, we
will show an alternative procedure based on the residual of the recovered solution
to obtain this bound. We will apply the results to the particular case in which the
recovered solution is obtained with the SPR-C recovery technique. Finally, we will
show a procedure to obtain a numerical value for the constant required for bounding
the correction terms when the SPR-C recovery technique is used.

The exact error in the energy norm of the FE solution, which is generally not
available for real-life problems, can be written as:

|||e|||2Ω =

∫

Ω

(σ − σ
h)TD−1(σ − σ

h) dΩ (13)

where e = u − uh. Zienkiewicz and Zhu [18] introduced the so-called Zienkiewicz
and Zhu (ZZ) error estimator (14) which consists of substituting the unknown field
σ by the recovered stress field σ

∗, evaluated with a recovery procedure, in expression
(13).

E
2 :=

∫

Ω

(σ∗ − σ
h)TD−1(σ∗ − σ

h) dΩ (14)
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Thanks to the accuracy of the recovered field evaluated with SPR-type techniques,
this asymptotically exact error estimator produces very accurate estimations of the
exact error, especially with enhanced versions of the original SPR like the SPR-C
technique, where information about the exact solution (equilibrium and compatibil-
ity) is considered in the evaluation of σ∗.

However, under this framework, we need a statically admissible stress field in
order to obtain an upper bound of the error in the energy norm. This means that
this stress field has to be in equilibrium with the body loads and the Neumann trac-
tions. One example of the use of this idea is the Constitutive Relation Error (CRE)
introduced by Prof. Ladevèze [11]. In the CRE technique the authors evaluate a
stress field σCRE which is statically admissible. Then, by using an expression similar
to (14) they evaluate an upper bound of the error in the energy norm.

The basic SPR-type techniques produce continuous fields σ
∗ but they fail to

obtain a statically admissible stress field. The SPR-based techniques, in general,
introduce a lack of internal equilibrium s∗ and boundary equilibrium r∗. Dı́ez et.
al. [33] introduced an expression to evaluate an upper bound of the error in the
energy norm with a correction term to account for the lack of internal equilibrium.
A generalization of that expression is introduced in (15), which does not only include
the lack of internal equilibrium but also the lack of boundary equilibrium making
use of the two correction terms shown in (16):

E
2
UB := E

2 + Eint + Ebnd (15)

Eint := −2

∫

Ω

(s∗)Te dΩ

Ebnd := −2

∫

ΓN

(r∗)Te dΓ
(16)

These correction terms require the exact displacement solution, e, to be evaluated.
In this section we are interested in bounding them in order to obtain guaranteed
upper bounds of the error in the energy norm. These correction terms are first
bounded with the Cauchy-Schwarz inequality:

∣
∣
∣
∣

∫

Ω

(s∗)Te dΩ

∣
∣
∣
∣
≤ ‖s∗‖L2(Ω) ‖e‖L2(Ω)

∣
∣
∣
∣

∫

ΓN

(r∗)Te dΓ

∣
∣
∣
∣
≤ ‖r∗‖L2(ΓN ) ‖e‖L2(ΓN )

(17)

As s∗ and r∗ can be evaluated, the correction terms in (17) will be bounded if we
obtain a bound of the L2-norm of the error in the displacement field. With the
Aubin-Nitsche lemma ([51] p. 136), the L2-norm of the error in the displacement
field can be bounded with the respective error in the energy norm, then:

‖e‖L2(Ω) ≤ CΩh |||e|||Ω (18)

Additionally, making use of the trace inequality [5] we can also bound the error
evaluated in L2-norm over the boundary with the error in energy norm according to
the following expression:

‖e‖L2(ΓN ) ≤ CΓh
1

2 |||e|||Ω (19)
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where CΩ and CΓ are constants dependent on the problem but independent on
the mesh size, and h is a relative representative size of the mesh (in an h-uniform
refinement process h is the element size). It is important to remark that standard
residual-based error estimators are usually derived using Clément-type inequalities
[5, 6] thanks to the orthogonality between the FE solution and the error. However,
in our case the recovered stress field does not satisfy the Galerkin orthogonality.
The inequalities in (18) and (19) were developed for h-uniform refinement processes.
However they can be extended for constant-pattern h-adaptive refinement processes,
since for a defined mesh pattern it is possible to find a geometrical mapping that
converts the h-adapted mesh to an uniform one. The constant-pattern meshes can
be found in standard h-adaptive refinement processes when the asymptotic range
is achieved. The refinement processes start from a mesh of elements of uniform
size. During the process, in the pre-asymptotic range, the h-adaptive technique will
adequately refine the zones which need a smaller element size in order to obtain an
equidistribution of the discretization error. Once the equidistribution of the error
is achieved, in the asymptotic range, the refinement process essentially consists of a
uniform refinement of the h-adapted mesh. That can be defined as constant-pattern
h-adaptive refinement processes. Under this situation, h can be related with the

Number of Degrees of Freedom (NDoF). Therefore we define h :=
(

1
NDoF

) 1

d , where
d is the dimension of the problem. Then, we can bound the correction terms as
follows:

Eint ≤ 2

∣
∣
∣
∣

∫

Ω

(s∗)Te dΩ

∣
∣
∣
∣
≤ 2 ‖s∗‖L2(Ω) ‖e‖L2(Ω) ≤ CΩh ‖s∗‖L2(Ω) |||e|||Ω

Ebnd ≤ 2

∣
∣
∣
∣

∫

ΓN

(r∗)Te dΓ

∣
∣
∣
∣
≤ 2 ‖r∗‖L2(ΓN ) ‖e‖L2(ΓN ) ≤ CΓh

1

2 ‖r∗‖L2(ΓN ) |||e|||Ω
(20)

4.1 Alternative interpretation of the correction terms

Let us evaluate the bounds in (17) from the perspective of the residual of the recov-
ered solution whose error is not orthogonal to the exact solution, thus preventing
the use of the Galerkin orthogonality. We define the residual associated with the
recovered stress field σ

∗ as:

R∗(v) := l(v)− ā(σ∗,σ(v)) ∀v ∈ V (21)

where ā(·, ·) represents the weak form of the elasticity problem in terms of the stress
field. This expression can be rewritten as follows:

R∗(v) =
∑

K∈T

(∫

ΩK

bTv dΩ +

∫

ΓN∩∂ΩK

t Tv dΓ

)

−
∑

K∈T

∫

ΩK

(σ∗)Tε(v) dΩ ∀v ∈ V (22)
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where K is each of the elements of the partition T . Integrating by parts:

R∗(v) =
∑

K∈T

(∫

ΩK

bTv dΩ +

∫

∂ΩK∩ΓN

t Tv dΓ

)

+
∑

K∈T

(∫

ΩK

(LT
σ

∗)Tv dΩ−
∫

∂ΩK

(Gσ
∗)Tv dΓ

)

∀v ∈ V (23)

grouping terms and using the definition of −s∗ = LT
σ

∗+b in K and, −r∗ = t−Gσ
∗

only over ΓN , we end up with the following expression:

R∗(v) = −
∑

K∈T

(∫

ΩK

(s∗) Tv dΩ +

∫

∂ΩK∩ΓN

(r∗)Tv dΓ

)

∀v ∈ V (24)

Applying the Cauchy-Schwarz inequality we obtain:

|R∗(v)| ≤ ‖s∗‖L2(Ω) ‖v‖L2(Ω) + ‖r∗‖L2(ΓN ) ‖v‖L2(ΓN ) ∀v ∈ V (25)

Now, particularizing (25) for v = e we obtain we obtain (26) that contains the terms
in (17):

|R∗(e)| ≤ ‖s∗‖L2(Ω) ‖e‖L2(Ω) + ‖r∗‖L2(ΓN ) ‖e‖L2(ΓN ) (26)

Finally, the upper bounds are obtained applying the inequality defined in (20):

|R∗(e)| ≤ CΩh ‖s∗‖L2(Ω) |||e|||Ω + CΓh
1

2 ‖r∗‖L2(ΓN ) |||e|||Ω (27)

4.2 Particular case using the SPR-C recovery technique

Let us now consider the evaluation of the upper bound of the discretization error
in the energy norm when the SPR-C technique is used instead of a standard SPR-
based procedure: σ

∗ = σ
∗
σ. Because of the use of the SPR-C technique, the lack

of equilibrium along the boundary is either null or negligible, thus we can neglect
the terms related to the lack of equilibrium along the boundaries ‖r∗σ‖L2(ΓN ). Then,
with minimal loss in accuracy:

|R∗(e)| ≤ Ch |||e|||Ω ‖s∗σ‖L2(Ω) (28)

where C = CΩ. Now, we rewrite expression (15) composed by the ZZ error estimator
(14) and the correction terms (16) as follows:

|||e|||2Ω ≤
∫

Ω

(
σ

∗

σ − σ
h
)T

D−1
(
σ

∗

σ − σ
h
)
dΩ + 2R∗(e) = E

2 + 2R∗(e) (29)

substituting (28) in (29) we obtain:

|||e|||2Ω ≤ E
2 + Ch |||e|||Ω ‖s∗σ‖L2(Ω) = E

2 + Ξ |||e|||Ω (30)

Expression (30) is a second order degree polynomial in |||e|||Ω. The most conserva-
tive root provides the upper bound in the energy norm up to the constant C, see
[33],

|||e|||Ω ≤ Ξ +
√
Ξ2 + 4E 2

2
(31)

Now we have to investigate the convergence rate of each term in (30). Assuming
that p is the order of the FE interpolation:
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• E : this term is considered asymptotically exact because the recovery technique
has a higher convergence rate than the FE solution [22]. Thus its convergence
rate could be considered the same as that of the error in the energy norm, p.

• |||e|||Ω: obviously the convergence rate of this term is p for regular solutions.

• Ξ: the convergence rate of this term is not totally straightforward. In our
case, it will depend on the convergence rate of ‖s∗σ‖L2(Ω). Assuming that the
recovered field has a convergence rate p + q, q > 0, higher than that for the
FE solution, p, the convergence rate of ‖s∗σ‖L2(Ω) would be p + q − 1. Then,
under this situation, the convergence rate of Ξ could be considered as p+ q.

Although we cannot guarantee superconvergence (q = 1) we know that the re-
covered field converges faster than the FE solution, q > 0 [52]. This means that the
correction terms tend to vanish along the refinement process. Therefore, the plain
ZZ error estimator with the SPR-C technique will provide asymptotically guaranteed
upper bounds of the error in energy norm.

Finally, we can conclude that provided the recovered field converges faster than
the FE solution, we obtain a stable upper bound. With regards to the constant C,
some authors take the value C = 1 for convergence purposes [5]. However, for error
estimation purposes, this approach could be inaccurate in some cases and in others
it would provide under estimations of the true error. In the following section we will
propose a methodology to numerically compute this constant for each problem.

4.3 Numerical evaluation of the constant CΩ

Expression (31) is an upper bound of the error in the energy norm, but requires
the evaluation of a constant CΩ which is specific for each problem and also for each
discretization type. This constant relates the L2-norm of the error in displacements
with the respective error in the energy norm, as shown in (18).

Prof. Stein’s group at Leibniz University is actively working in explicit residual-
type error estimators for the elasticity problem [5, 53]. These error estimators also
require the evaluation of a constant with similar characteristics to the constant used
in (18), but arising from the Korn inequality. Recently, Prof. Stein and coworkers
presented a value for the constant used in their explicit residual-type error estimator
[8, 9], valid for linear triangular elements.

In this work we propose a methodology to numerically estimate the value of the
constant CΩ to be used in (31) for each problem. We assume that we are under
an h-refinement process which is required to evaluate the solution with the level of
accuracy defined by the user. Therefore, a set of h-adapted meshes will be available.
Let H and h be the representative sizes of two meshes such that H << h being uH

the FE solution of the finer mesh. We can consider that uH is a good approximation
to u in comparison with uh. Considering the Richardson extrapolation the following
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relations will hold:

∥
∥u− uh

∥
∥
2

L2(Ω)
≈

∥
∥uH − uh

∥
∥
2

L2(Ω)

1 +
(
H
h

)2p+2

∣
∣
∣
∣
∣
∣u− uh

∣
∣
∣
∣
∣
∣
2

Ω
≈

∣
∣
∣
∣
∣
∣uH − uh

∣
∣
∣
∣
∣
∣
2

Ω

1 +
(
H
h

)2p

(32)

where p is the degree of the FE solution. In order to keep the information of the
solution in the finer mesh, the integration will be performed in the finer mesh. Under
these assumptions, it easily follows the evaluation of the numerical approximation
C∗

Ω to CΩ for the mesh H.

CΩ ≈ C∗

Ω =

√
√
√
√
√

‖uH − uh‖2L2(Ω)

(

1 +
(
H
h

)2p
)

h2 |||uH − uh|||2Ω
(

1 +
(
H
h

)2p+2
) (33)

Then the constant C will be also approximated by C∗ = C∗
Ω. For other recovery

processes, where the boundary equilibrium is not fulfilled, such as in the case of
the plain SPR, this cannot be assumed. The numerical evaluation of C can be
performed during the refinement process for each mesh n, using information from
previous meshes. For the first one, since no previous information is available, it will
be considered that C = 1. For the second mesh, the constant will be evaluated
comparing the solutions of the first u1 and second u2 meshes. Therefore, uH = u2

and uh = u1. From the third mesh, n > 2, we take, in general, uH = un and
uh = un−2. Note that this process will only be required for the initial meshes of
the h-adaptive process until a stable value of the constant is achieved. The use of
the cgFEM code is important in this point due to the fact that as it is based on the
use of nested meshes, the projection process here described required to evaluate the
constant is considerably simplified.

Finally the upper bound of the error in the energy norm reads:

|||e|||2Ω . ÊUB :=
Ξ∗ +

√

(Ξ∗)2 + 4E 2

2
(34)

where:
Ξ∗ = 2C∗h ‖s∗σ‖2L2(Ω) (35)

5 Numerical Results

In this Section we will show some numerical evidences of the behavior of this new
error bounding technique. We will compare it with the Zienkiewicz and Zhu error
estimator (14) based on the use of the SPR-C technique, which presents a high
accuracy but does not have bounding properties. We have used two benchmark
problems with analytical solution and a problem where only overkilled solution will
be available in order to study the behavior of Q1 (bilinear) and Q2 (biquadratic)
elements.

12



In order to evaluate the accuracy of the estimates we use the global effectivity
index as indicator for the different techniques according to the following expression:

θ =
E

|||e|||Ω

θ̂UB =
ÊUB

|||e|||Ω
θUB =

EUB

|||e|||Ω

(36)

As pointed out above, the SPR-C technique does not have bounding properties,
hence in some situations it will underestimate (θ < 1) the exact error. Despite
of that, it usually overestimates of the exact error in the energy norm because of
the equilibrating techniques used during the recovery process. The results of the
new proposed technique are represented by θ̂UB. θUB represents the effectivity index
provided by (15), in which the exact displacement solution has been used. The value
of θUB is used for comparison purposes.

There are two main objectives in the following numerical tests. The first one is
to check the quality of the estimate provided by the proposed technique and also its
stability and convergence along the refinement process. The second objective is to
check the quality in the evaluation of the constant that characterizes equation (18),
the key ingredient of the proposed technique for its use in practical applications.

5.1 Problem 1: 3rd order polynomial displacements in a 2×2
square

The first benchmark problem considers an infinite domain problem where we have
extracted a 2 × 2 square domain, centered at the origin of coordinates. The exact
displacement solution is a 3rd order polynomial, with linear body loads over the
domain. A model of the problem and the analytical solution considering plane strain
conditions is shown in Figure 1. We have imposed the corresponding Neumann
boundary conditions.

Figure 2 shows an example of the h-adaptive refinement process for linear el-
ements. We observe that the refinement process tends to generate an h-uniform
refinement form the previous h-adapted mesh.

Tables 1 and 2 present the results for this academic problem for different number
of degrees of freedom (DoF). In both tables the second, third and fourth columns
are the effectivity indices for the techniques as indicated in (36). The last column
corresponds to the constant C∗

Ω evaluated using (33). An analytical value of the
constant is also evaluated, for comparison purposes, from (18) since the analytical
solution is known. In order to have a better understanding of the results, they are
plotted in Figures 3 and 4, where we can easily check the stability of the constant.
In these tables we observe both, the high accuracy of the SPR-C technique and
the ability of the proposed techniques to provide accurate upper bound of the error
in energy norm. Table 2 shows an example where the plain SPR-C technique was
unable to provide upper bounds of the error for most meshes whereas the proposed
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ux(x) = x+ x2 − 2xy + x3 − 3xy2 + x2y

uy(x) = −y − 2xy + y2 − 3x2y + y3 − xy2

σxx(x) =
E

1 + ν
(1 + 2x− 2y + 3x2 − 3y2 + 2xy)

σyy(x) =
−E

1 + ν
(1 + 2x− 2y + 3x2 − 3y2 + 2xy) (37)

σxy(x) =
E

1 + ν
(−x− y +

x2

2
− y2

2
− 6xy)

bx(x) =
−E

1 + ν
(1 + y) by(x) =

−E

1 + ν
(1− x)

E = 1000 ν = 0.3

Figure 1: Problem 1. Problem model and analytical solution.

Figure 2: Problem 1. Example of the 2nd, 3rd and 4th meshes of the h-adaptive
refinement process for Q1 elements.

technique successfully did. Additionally we also observe that the value of the con-
stant stabilizes in a few iterations. In practice, once this constant is stable we do
not need to evaluate it again. However, for this work we have evaluated it for all
iterations.

Table 1: Problem 1: Q1 uniform refinement. Values of the global effectivity index
and values of C∗

Ω. CΩ = 0.0262472.

DoF θ θ̂UB θUB C∗

Ω

162 1.0146049 6.7673407 1.0189364 1.0000000
450 1.0102534 1.0991150 1.0114409 0.0316774

1,458 1.0045389 1.0793213 1.0046972 0.0365380
5,202 1.0027961 1.0504319 1.0023176 0.0306169
20,402 1.0015622 1.0312226 1.0017645 0.0275589
79,202 1.0006664 1.0203929 1.0005893 0.0258256
312,050 1.0006870 1.0176077 1.0007558 0.0256162

Table 3 and Figure 5 show the stability and the accuracy of the results for
Q2 elements. Note that, the proposed technique just requires to run a smoothing
process, as in the case of the SPR-C technique. Once C∗

Ω has taken stable values,
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Figure 3: Problem 1. Q1 uniform refinement. Global effectivity index and evolution
of C∗

Ω. CΩ = 0.0262472 is represented by a black horizontal line.

Table 2: Problem 1: Q1 adaptive refinement. Values of the global effectivity index
and values of C∗

Ω. CΩ = 0.0468082.

DoF θ θ̂UB θUB C∗

Ω

162 1.0146049 6.7673407 1.0189364 1.0000000
402 0.9895298 1.0908281 1.0098239 0.0274138

1,306 0.9973276 1.1084523 1.0059776 0.0347587
4,572 1.0011230 1.1569191 1.0046648 0.0548123
17,028 1.0031465 1.1271955 1.0069948 0.0559684
66,898 0.9992628 1.0705486 1.0017352 0.0557396
263,818 0.9999673 1.0521117 1.0011189 0.0512197

the additional computational cost to evaluate the bound of the correction terms is
negligible as it only requires the evaluation of some integrals not requiring to solve
any additional system of equations.

Table 3: Problem 1: Q2 adaptive refinement. Values of the global effectivity index
and values of C∗

Ω. CΩ = 0.0324041.

DoF θ θ̂UB θUB C∗

Ω

450 1.0649543 4.1466626 1.0573583 1.0000000
1,146 1.0341480 1.0844627 1.0382445 0.0298479
2,274 1.0877080 1.1273511 1.0813172 0.0299108
3,994 1.0563165 1.1196416 1.0520827 0.0424869
14,842 1.0672356 1.1079471 1.0607144 0.0329398
57,274 1.0680699 1.1024754 1.0625109 0.0360767
227,386 1.0688648 1.1039230 1.0615595 0.0329120

Figure 6 shows a convergence analysis of the FE solution evaluated with the
upper bound proposed in this contribution and compares it with the exact error.
The same figure also represents the convergence rate of the term Ξ and of the FE
solution. In section 4 we assumed that as a consequence of the use of an SPR-type
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Figure 4: Problem 1. Q1 adaptive refinement. Global effectivity index and evolution
of C∗

Ω. CΩ = 0.0468082 is represented by a black horizontal line.
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Figure 5: Problem 1. Q2 adaptive refinement. Global effectivity index and evolution
of C∗

Ω. CΩ = 0.0324041 is represented by a black horizontal line.

technique, the convergence rate of Ξ is p + q, q > 0, where p is the order of the
FE interpolation that would lead to convergence rates of the discretization error in
energy norm of values 0.5 for Q1 and 1 for Q2 in terms of the number of degrees of
freedom. In the figure we observe that this assumption holds, ensuring the stability
of the method for this problem.
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Figure 6: Problem 1. Uniform refinement. Convergence rate of the FE solution and
the term Ξ.
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5.2 Problem 2. Thick wall cylinder under internal pressure

The geometrical model for this problem is represented in Figure 7. Due to symmetry,
only 1/4 of the section is modeled. The internal and external surfaces are of radius
a and b. Young’s modulus is E = 1000, Poisson’s ratio is ν = 0.3, a = 5, b = 20 and
the internal pressure P = 1.

The exact solution for the radial displacement assuming plane strain conditions
is given by

ur(r) =
P (1 + ν)

E(c2 − 1)

(

r (1− 2ν) +
b2

r

)

(38)

where c = b/a, r =
√

x2 + y2 and φ = arctan(y/x). Stresses in cylindrical coordi-
nates are

σr(r) =
P

c2 − 1

(

1− b2

r2

)

σφ(r) =
P

c2 − 1

(

1 +
b2

r2

)

σz(r, φ) = 2ν
P

c2 − 1
(39)

a

b

P
L1

L2L3

L4

Figure 7: Problem 2. Thick-wall cylinder under internal pressure.

Figure 8 shows an example of the h-adaptive refinement process for linear ele-
ments. We also observe in this case that the refinement process tends to produce a
constant-pattern h-refinement.

Figure 8: Problem 2. Example of the 2nd, 3rd and 4th meshes of the h-adaptive
refinement process for Q1 elements.

Tables 4 and 5 present the results for Q1 elements with uniform and h-adaptive
refinements. The tables show the value of the effectivity indices shown in (36).
The values of C∗

Ω and CΩ have also been presented. As in the previous example,
the bounding techniques provide upper bounds of the error in energy norm. Note
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that the proposed technique is providing very accurate results once the constant has
been stabilized. Note also that the effectivity index θ̂UB asymptotically tends to 1
form above due to the higher convergence rate of Ξ as explained before. For further
clarity we have also plotted the results of the tables in graphs. Figures 9 and 10
show that the value of C∗

Ω tends to stabilize very fast.

Table 4: Problem 2: Q1 uniform refinement. Values of the global effectivity index
and values of C∗

Ω. CΩ = 0.4115025.

DoF θ θ̂UB θUB C∗

Ω

136 1.0674127 2.3178582 1.1000722 1.0000000
448 0.9967545 1.2063663 1.0026439 0.3322428

1,488 0.9989255 1.1737539 1.0053102 0.4023211
5,542 1.0015690 1.1311651 1.0045074 0.4345484

21,016 1.0013818 1.0855412 1.0026123 0.4133005
81,752 1.0008699 1.0593801 1.0012975 0.4086471
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Figure 9: Problem 2. Q1 uniform refinement. Global effectivity index and evolution
of C∗

Ω. CΩ = 0.4115025 is represented by a black horizontal line.

Table 5: Problem 2: Q1 adaptive refinement. Values of the global effectivity index
and values of C∗

Ω. CΩ = 0.3261038.

DoF θ θ̂UB θUB C∗

Ω

144 1.0505044 2.2643341 1.0879356 1.0000000
240 0.9849224 1.2969408 1.0069175 0.3305752
728 0.9924221 1.3102539 1.0062315 0.4077924

2,506 0.9966148 1.2115761 1.0060951 0.3510156
9,268 0.9946859 1.1931996 1.0034969 0.3730436
35,386 0.9969832 1.1615246 1.0022641 0.3569402
136,892 0.9984190 1.1236628 1.0020865 0.3492249
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Figure 10: Problem 2. Q1 adaptive refinement. Global effectivity index and evolu-
tion of C∗

Ω. CΩ = 0.3261038 is represented by a black horizontal line.

Additionally we also present the results for Q2 elements under an h-adaptive
refinement process. We observe that the bounding properties of the proposed tech-
nique hold. The method proposed to evaluate the constant C∗

Ω provides results very
close to the exact value CΩ.

Table 6: Problem 2: Q2 adaptive refinement. Values of the global effectivity index
and values of C∗

Ω. CΩ = 0.3550251.

DoF θ θ̂UB θUB C∗

Ω

392 1.7245828 4.2013712 1.7481814 1.0000000
632 1.4077187 4.0277798 1.3449469 0.7163547

1,122 1.2116244 3.1025755 1.1543018 0.7316535
2,436 1.0981045 1.6949636 1.0753485 0.3645869
4,912 1.0692987 1.5418848 1.0638670 0.4168756
7,760 1.0740657 1.2972085 1.0570493 0.3096464
12,720 1.0618721 1.3549504 1.0522574 0.4470141
28,676 1.0630779 1.2030182 1.0540084 0.3445621
49,208 1.0656931 1.1816800 1.0581345 0.3352375
109,754 1.0578616 1.1765046 1.0534827 0.3541659
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Figure 11: Problem 2. Q2 adaptive refinement. Global effectivity index and evolu-
tion of C∗

Ω. CΩ = 0.4115025 is represented by a black horizontal line.
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5.3 Problem 3. Gravity dam

In this case, we have chosen a more complex geometry in order to check the behavior
of the proposed technique in a more realistic environment. For this problem we do
not have an analytical solution, thus we will take an overkill solution of 1.933.038
degrees of freedom with biquadractic interpolation as the exact solution in order to
evaluate the global effectivity index.

This problem represents a cross section of a gravity dam. The dam is under
hydrostatic pressure on the left side. The normal displacement on the three inferior
boundaries is constrained, as represented in Figure 12. The material of the dam
is concrete with density ρconcrete = 2300 kg

m3 . The density of the water is considered

as ρwater = 1000 kg

m3 . The Young’s modulus of the concrete is taken as 27.5 · 109Pa
and the Poisson’s ratio ν = 0.3. The volume load due to gravity g = 9.81m

s2
is also

considered. We assume plane strain behavior.

32.5m

Figure 12: Problem 3. Gravity dam: Model of the problem, loads and constrains.

Figure 13 shows an example of the h-adaptive refinement process for linear ele-
ments. We observe again a behavior similar to the behavior shown in the previous
examples. The h-adaptive refinement algorithm tends to produce the constant-
pattern h-refinement process.

Figure 13: Problem 2. Example of the 2nd, 3rd and 4th meshes of the h-adaptive
refinement process for Q1 elements.

Table 7 presents the results obtained with the SPR-C technique and the proposed
bounding technique. In the first place we observe the value of the estimated error in
the energy norm. For the SPR-C technique we obtain a good behavior however for
the proposed technique, the first value is extremely high due to the initialization to
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1 of the constant C∗
Ω. In the second mesh, once the constant has been numerically

evaluated, the error measure rapidly decreases to more reasonable values. As indi-
cated above, we have used an overkill solution (Q2 uniform mesh with 1, 933, 038
degrees of freedom) to be able to evaluate the global effectivity indices. Note that ′

indicates that the effectivity index is evaluated with respect to the overkill solution.
The results indicate that the SPR-C technique, provides accurate results, but fails
to provide upper bounds of the error in the energy norm. However, the proposed
technique, once the constant C∗

Ω takes stable values, is providing upper bounds that
are smoothly converging to 1, confirming again the asymptotic exactness of the
method. The last column shows the results related with the evaluation of C∗

Ω, that
are stable and smoothly convergent to a constant value.

Table 7: Problem 3: Q1 adaptive refinement. Values of relative error in the energy
norm E and ÊUB, the global effectivity index and values of C∗

Ω.

DoF ESPR−C EFUBSPR−C
θ′
SPR−C

θ′
FUBSPR−C

C∗

Ω

396 0.2121758 2,552.6188000 1.2621835 15,184.9271000 1.0000000
1,114 0.0881817 0.2999209 1.0412340 3.5414139 0.0002799
3,362 0.0445110 0.1316917 1.0125846 2.9958632 0.0003394

11,070 0.0225501 0.0453444 0.9918757 1.9944961 0.0003154
39,176 0.0115666 0.0194594 0.9943358 1.6728504 0.0002871
138,942 0.0060140 0.0089267 0.9964700 1.4790768 0.0002635
496,328 0.0031396 0.0043132 0.9971845 1.3699404 0.0002481

Table 8 shows the results of the same analysis for Q2 elements. We observe
the same problem for the first mesh related with the initialization of the constant
C∗

Ω, hence the importance of its numerical evaluation. As shown in the table, both
techniques provide upper bounds of the error in energy norm in this case. Regarding
the value of the constant C∗

Ω, in this case it is also stable and convergent along the
refinement process.

Table 8: Problem 3: Q2 adaptive refinement. Values of relative error in the energy
norm E and ÊUB, the global effectivity index and values of C∗

Ω.

DoF ESPR−C EFUBSPR−C
θ′
SPR−C

θ′
FUBSPR−C

C∗

Ω

1,050 0.1600000 1,490.0000000 4.6420880 43,453.9979900 1.0000000
1,660 0.0691000 0.2470000 3.4497701 12.3470740 0.0002120
2,420 0.0369000 0.1630000 2.9581056 13.0168171 0.0002370
3,700 0.0191000 0.0862000 2.9451810 13.2774772 0.0002220
5,620 0.0084200 0.0622000 1.7989380 13.3058002 0.0003450
9,160 0.0041400 0.0402000 1.4372523 13.9554529 0.0004570

14,600 0.0020700 0.0085500 1.3763781 5.6981664 0.0001840
23,600 0.0010700 0.0045700 1.2049707 5.1223167 0.0001730
39,400 0.0005610 0.0022600 1.1430562 4.5964216 0.0002070
66,600 0.0003000 0.0006920 1.1180716 2.5819564 0.0001210
119,000 0.0001600 0.0003580 1.1006355 2.4612852 0.0001090
255,000 0.0000727 0.0001950 1.1221196 3.0056961 0.0001050

Additionally to these tables, Figure 14 shows the convergence analysis for this
problem. We observe that the asymptotic convergence rate is being achieved for
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both, Q1 and Q2 elements. The upper bound ÊUB tends to approximate from above
to the error indicator E which uses the SPR-C technique that is considered asymp-
totically exact in this situation.
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102
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Relative error in the energy norm

Q1 E Q2 E

Q1 ÊUB Q2 ÊUB

103 104 105 106

0.5
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Convergence rate

Q1 E Q2 E

Figure 14: Problem 3. h-adaptive refinement. Convergence analysisof the FE solu-
tion for bilienar and biquadratic elements.
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6 Conclusions

Traditionally, the upper bounding techniques for the error in energy norm were dom-
inated by residual-based error estimation and dual formulations, while the standard
recovery-based techniques were unable to provide upper bounds. We have pre-
sented a hybrid SPR-based upper bounding method for the linear elasticity prob-
lem. This method is a two-step process. In the first step a very accurate and
nearly-equilibrated recovery process, the SPR-C technique, is used to provide a
non-guaranteed upper bound. In order to guarantee the upper bound property the
correction terms introduced in [33] that take into account the equilibrium defaults
of the recovered solution have to be taken into consideration. Thus, the second step,
which represents the main contribution of the paper, consists of evaluating upper
bounds of the correction terms. To bound these terms we use a constant depen-
dent residual explicit-type error estimator. Additionally we also propose an efficient
method to numerically evaluate the constant. We have shown that the convergence
rate of the bound of the correction terms is higher than that of the error estimator
provided by the SPR-C technique, thus concluding that the error estimator, even
without the correction terms, would asymptotically tend to the exact error from
above. The numerical results presented in section 5 show the accuracy of the pro-
posed upper bounding technique, and also its convergence from above to the exact
error. The results presented in this work show this technique as an alternative to
traditional bounding methods for practical applications. However the application of
the proposed technique, as well as the technique presented in [33], to the problems
with singular solutions does not provide accurate results and this is a subject in
which we are working in.
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