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ABSTRACT  

A major issue in modelling the electrical load of residential building is reproducing the variability between 

dwellings due to the stochastic use of different electrical equipment. In that sense and with the objective to 

reproduce this variability, a stochastic model to obtain load profiles of household electricity is developed. The 

model is based on a probabilistic approach and is developed using data from the Mediterranean region of 

Spain. A detailed validation of the model has been done, analysing and comparing the results with Spanish 

and European data. The results of the validation show that the model is able to reproduce the most important 

features of the residential electrical consumption, especially the particularities of the Mediterranean countries. 

The final part of the paper is focused on the potential applications of the models, and some examples are 

proposed. The model is useful to simulate a cluster of buildings or individual households. The model allows 

obtaining synthetic profiles representing the most important characteristics of the mean dwelling, by means of 

a stochastic approach. The inputs of the proposed model are adapted to energy labelling information of the 

electric devices. An example case is presented considering a dwelling with high performance equipment.  
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1. Introduction 

The detailed modelling of a household’s energy consumption is a complex task that involves different issues 

and requires different skills. In detail, the main energy consumption sources in a household are: space 

heating/cooling [1, 2], domestic hot water, appliances and lighting. A major issue in modelling is to estimate 

the uncertainties implicit in the building model. There are many unknown and uncertain parameters that affect 

directly the results, especially when the model reproduces existing buildings. The uncertainties can be related 

to the quality of building works, real properties of materials and their performance degradation, real 

performance of heating and cooling systems and their efficiency reduction, quantification of air infiltrations, 

subjectivity in comfort condition, and an important group of uncertainties related to the user behaviour 

(appliances, lighting, set points...). In particular, for modelling the consumption of appliances, a difficult aspect 

is the quantification of purely stochastic variables, namely the simulation of electrical consumption profiles for 

appliances and plug loads. In practice, electricity consumption caused by appliances has been often based on 

fixed profiles derived from statistical data. Although this kind of approach has some strong points (e.g., simple 

calculations, perfect for first stage analysis), it is not useful when a detailed characterization of the household 

consumption is needed, as for example in models for studies on the energy interactions of a “prosumer” 

(producer and consumer) building [3-7]. From this perspective, a good and solid modelling approach should 

comprise both average and peak value estimation: the first being useful for an early design of the systems, 

the latter for grid interaction, storage sizing issues and optimization of demand side management strategies. 

For such applications, transient modelling approaches are used worldwide to represent both building physics 

and energy generation systems, but it is important to make progress also in the field of user-related energy 

consumption modelling with models with the same level of detail. In other words, at least hourly time-steps 

should be adopted to obtain meaningful results and to make comparisons to energy generation data. The 

modelling of user-related energy consumption is crucial when the focus of the study is the residential sector. 

Residential energy consumption profiles are much more difficult to predict than for e.g., offices, for several 

reasons: occupant behaviour can vary widely and therefore have notable impacts on energy consumption, 

privacy issues limit the collection and distribution of energy data related to individual households and usually 

the detailed metering of end-uses consumption have high costs. The importance of the demand side 

modelling is particularly high when demand-response studies are being performed: having a detailed insight 

on how energy use in the households might vary following the designer’s input, is of the uttermost importance 

to develop a solid study.  



 
 

This paper proposes a model aimed at describing the energy consumption of building clusters and 

neighbourhoods. The model uses a stochastic approach to simulate more than one household at the same 

time. The idea behind the model is having a high-resolution tool, dependent on easily modifiable parameters. 

The model allows a simple and effective customization by the user, keeping it robust. The parameters of the 

model are also related with energy standards of appliances, making possible an analysis of their effect at 

neighbourhood level. The modelling environment chosen for the implementation of the model is TRNSYS, in 

order to complement the simulation of thermal loads in buildings. Considering existing literature, the model 

could be one of the first implementations in an environment of user-related energy consumption models. The 

aim of the paper is the analysis of the performance of the model by considering that main inputs and 

parameters to the model are derived from empirical analysis of real data from existing research projects. A 

detailed sensitivity analysis of parameters and a comparison of the results with other studies available in the 

literature are done. Although many household electrical consumption studies are available in the literature, the 

proposed model is one of the first to be implemented in Mediterranean regions. 

1.1. State of the art 

Residential energy use modelling is usually very dependent on the level of accuracy of the input data. 

Therefore, different modelling approaches have been developed in the last decades, with different strengths 

and weaknesses, as well as different model resolutions and modelling capabilities. 

The main techniques used to model residential energy uses can be grouped up into two main categories [8]: 

“top-down” and “bottom-up”. Top-down models underwent a major development during the energy crisis of 

the late 1970s. The major aim of such research effort was to understand better consumer behaviour with 

changing supply and pricing. Such models analyse residential sector as a whole and their objective was to 

determine and to analyse trends of the sector. The strength of “top-down” models is that they do not need 

very detailed input data to work. They just need widely available energy aggregate data and rely on historic 

residential sector energy values. The heavy reliance on historical trends and data for these models is also a 

major drawback, since they are not able to handle discontinuities in the major trends. 

Saha and Stephenson [9] developed  a “top-down” model for New Zealand, modelling in separate sub-models 

space heating, domestic hot water and cooking, that are added up to obtain total consumption. The proposed 

method used historical data to predict future energy use levels as function of stock, ownership, appliance 

ratings and use factor. Its prediction was excellent during the 1960s, but in 1970s the shifts in home insulation 

levels caused a major deviation between monitored and simulated data. 



 
 

The “bottom-up” approach goes beyond the limits of the “top-down” one, accounting in detail for individual 

houses and energy end-uses. After that, the results of the model may be extrapolated to represent a region or 

a nation, according to the level of detail of the inputs. Common input data to bottom-up models are dwelling 

properties, equipment and appliances, climate characteristics, occupancy schedules and use levels of 

equipment. This detail in characterization is the strength of these methods. It allows a very accurate 

modelling, but has as drawback the difficulty of obtaining all the needed data. No historical data are required. 

However, in order to extrapolate the results for a whole region or country, data must be representative of the 

zone. A peculiar characteristic of these models is the modelling of occupant behaviour. The main modelling 

approaches in this field may be summarized as: statistical techniques (regression and conditional demand 

analysis) and neural networks. 

Widen et al. [10] proposed a Markov-Chains method with a wide use of Time Use Data (TUD) information for 

Sweden. TUD were used to describe occupancy patterns, obtaining transition probabilities of 3 states (outside 

home, active at home, and passive at home). The model is developed in the field of electrical and lighting 

demand. Widen et al. used detailed modelling of the time use for each occupant. The fundamental section of 

the model is the conversion of the TUD into occupancy levels. Subsequently, the model obtains energy use 

profiles through the use of different patterns and converting functions for each appliance.  

Yamaguchi et al. [11] has developed an occupant behaviour model for estimating high-resolution electricity 

demand profiles of residential buildings. The occupant behaviour is based on statistical treated data of TUD in 

Japan. The model is based on a set of probabilities related to different behaviours or activities, which are 

used to define the behaviour of each occupant and then its electrical consumption. One of the advantages of 

this model is that not detailed data are needed. Richardson et al. [12] proposed a method having as input the 

value of natural light entering windows and the activity level of the household residents. The main input of the 

model is a time-series representing the number of active occupants within a dwelling and is based on Monte-

Carlo technique. The statistical information used is from the United Kingdom. Paatero and Lund [13] built a 

model for generating electricity load profiles for a dwelling using representative data sample and statistical 

averages from Finland. The randomness has been included using stochastic processes and probability 

distribution functions (starting probability function based on the seasonal, hourly and social factors). Paatero 

and Lund use the model to simulate strategies of Demand Side Management (DSM). Another key element is 

the high influence of the occupancy activity with heating and cooling loads and in consequence, with the size 

of the systems. Baetens and Saelens [14] simulated in Modelica user behaviour and use of lighting and 



 
 

appliances. The use of appliances has been implemented by a semi-Markov process based on the presence 

of an occupant and their activity profiles. In a similar way, Neu et al. [15] integrate a Markov Chain Monte 

Carlo approach in EnergyPlus platform to simulate multi-zone single-storey detached building.  The model is 

based on TUD of Ireland to obtain disaggregated residential appliances uses profiles, as Widen et al. did. The 

model generates occupancy profiles at a fifteen-minute time resolution, electrical appliances load and lighting 

load profiles. They relate these profiles with the building models, including the associated heat gains of each 

element (occupancy, appliances and lighting).  

Even though the use of Neural networks methods has been historically limited in this field, they have had 

some applications to the modelling of electrical consumption in households [16, 17] due to their capability of 

modelling non-linear phenomena with forecasting purposes. 

2. Stochastic model description 

In the simulation, the energy uses are selected and modelled for each household, through a stochastic 

approach. Main outputs of the model are energy consumption of both neighbourhood and household, in terms 

of aggregated and single energy use consumption. The simulation is divided in two steps, which are related to 

two different sources of stochasticity: dwelling characterization and use of equipment.  

The characterization of each dwelling is performed at the first time step by the routine. In this first phase, a set 

of energy uses is selected randomly for each household. In other words, the model defines stochastically 

which and how much equipment there is in each simulated dwelling. In the equations (1) are represented the 

conditions to choose the equipment of each dwelling, using the parameters of the stock characterization 

described in Table 1.  
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Where RNEe is the random number for each type of equipment e and dwelling d. Pre is the penetration rate for 

each type of equipment e. Mpe1, Mpe2, Mpe3 and Mpe4 are multi-equipment probabilities for each type of 

equipment e. 

Once the dwelling characterization is done, the model has to choose randomly which equipment is ON or OFF 

(or Stand-by), using the probability values for each of them. Then, in each time step another set of random 

number have generated (RNP(t)e) in order to be compared with the probabilities of use of each equipment 



 
 

type. In the equation (2) the comparison done and the energy consumption calculation at each time step is 

shown. 

 
              The equipment is OFF or in Stand-by 
                  (2) 
                 The equipment is ON 
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Where RNP(t)e is the random number generated for the equipment e of the dwelling d at time t. prob(t)e is the 

probability of use at the time t of the equipment e (t refers to the season, type of day and hour of day). Pstbe, 

Pe, PFe and CFe are the parameters of the equipment e described in the Table 1. Δt is the time step (1 hour). 

Finally, the E(t)e is the energy consumption for the equipment e of the dwelling d at time t.  

In Figure 1 an example of the hourly probability of use for a dishwasher and a television is shown.  

2.1. Basis of the model 

Recently, “Instituto para la Diversificación y Ahorro de la Energía” (IDAE) has carried out the SECH-

SPAHOUSEC project [18]. This project characterizes the energy consumption of the residential sector in 

Spain, including detailed information about the equipment stock and the main energy uses. The information is 

aggregated by regions (Atlantic, Continental and Mediterranean) and by building type (detached houses and 

apartment buildings). 

Data collection done in SECH-SPAHOUSEC has been performed by three complementary methods: 

telephone surveys, in-person surveys and electrical measurements of individual equipment in 600 dwellings.  

The main information obtained from surveys is related to the occupancy, the equipment stock and the annual 

energy consumption (based on estimations and bills). The electricity measurements give information about 

the use and the hourly consumption profile of each equipment and the hourly aggregate profile of the 

electricity consumption for each dwelling. In addition, the energy label of the characterised equipment is 

known, thus allowing a detailed knowledge of the energy efficiency level of the equipment stock. 

The study presented in this paper uses detailed data from an apartment building from the Mediterranean 

region, taken as an example of the whole study. The general considerations on the method presented in the 

following paper may be extended to the other regions and building typologies as well. A post-processing of the 

data is done to obtain the parameters and inputs of the stochastic model. 

2.2. Input and parameters of the model 

The model is arranged in two different sub-routines, describing two different families of energy uses. The first 

one deals with electrical appliances: refrigerator, freezer, washing machine, dishwasher, television, tumble 



 
 

dryer, microwave, PC, lighting and other (which includes a group of small appliances that do not strongly 

impact the overall energy consumption, e.g., electrical radios, computer games, etc.). The second sub-routine 

models kitchen devices: gas and electric stoves and ovens. The model does not include heating and cooling 

systems consumption because their use mainly depends on weather data and building typology.  

The chosen time resolution is one hour. The main parameters required for the characterization of equipment 

are reported in Table 1. They are mainly derived from the analysis of empirical data. In addition, more general 

parameters are needed to carry out the simulation, e.g., the number of simulated dwellings, start time of the 

seasons, seed numbers…  

Table 2 and Table 3 show the values of the different inputs and parameters used in the Base Simulation 

(stock characterization and technical data, respectively).  

3. Validation of the model 

In this section a detailed validation of the model and their results are done. In previous works [19], a general 

validation of the model has been done. The validation is based on the analysis of aggregated results of the 

SECH-SPAHOUSEC project, starting from annual energy consumption per equipment and dwelling. A  first 

analysis on the full database has been performed in [20], using more detailed information of the measurement 

campaigns. The obtained results show that the model is able to reproduce the patterns of electricity 

consumption of a residential building. However, slight differences with the reference data were observed. This 

fact, together with the analysis performed on the whole database from [18] suggested the need to carry out a 

more detailed validation of the model. 

The detailed validation consists of three levels of analysis: a verification of expected results, a verification of 

equipment profiles and a comparison with other studies. 

3.1. Verification of expected results 

The objective of this section is to check that the model works properly and their results are reliable. Three 

classes of parameters have been checked in detail: penetration rates, multi-equipment probabilities and 

probability of use. To carry out that, a simulation of 1000 dwellings has been performed, using the inputs and 

parameters of Table 2 and Table 3. In addition, a comparison with the complete database of the SECH-

SPAHOUSEC is done. 

Table 4 shows the comparison of the penetration rates (Pr) and the values obtained by the simulation. The 

relative errors between the penetration rates and the results of the model are lower than 5%. Differences are 

low enough to conclude that they are caused by mere stochastic fluctuations. 



 
 

The evaluation of the multi-equipment probabilities is done by comparison of different results: annual 

consumption per dwelling and multi-equipment probabilities. Computer and television are the equipment 

included in this validation. In Figure 2 results of simulation are presented graphically by a box-plot and 

numerically through mean dwelling consumption and their fraction of multi-equipment. The results obtained 

show how the mean number of equipment of the simulation is lower than the input data, just as it happens 

with the mean annual consumption. Notice that the multi-equipment probability is not directly available from 

the SECH-SPAHOUSEC information. They have been estimated using the total number of equipment, the 

penetration rate and the mean number of equipment per dwelling. In spite of this fact, the multi-equipment 

probabilities (input) are quite similar to the simulated data results. Then, the estimation of the multi-equipment 

probabilities is considered good enough based on the available data (relative error lower than 10%).   

The last verification of the model is the probability of use of each equipment, which is defined as the 

proportion of appliances that are on at a given hour. In order to compare the input data with the simulation, a 

t-test is performed. We consider that there are statistically significant differences if p-value is lower than 0.05. 

As Table 5 shows, the results of the test highlight that the difference between the input data and the 

simulation is not significantly different for all the equipment.  

To complete the verification of the composition profiles, a comparison of the results with the different regions 

and typologies of buildings in Spain is done. The data used are the complete data from SECH-SPAHOUSEC 

project, which are not used to develop the model. In Figure 3 an hourly profile of mean dwellings are shown: 

apartment buildings and detached houses from Atlantic, Continental and Mediterranean regions. The 

modelled profile has the same trend than the measured profiles. There are slight differences between them, 

especially with detached houses. These results show that the equipment energy use in Spain is more 

dependent on the building type than on the region. We can conclude that the model reproduces properly the 

daily profile. 

3.2. Equipment profiles analysis 

3.2.1. Representative sample size 

The first step of the equipment profile validation is to define how many dwellings need to be simulated in order 

to be representative. The test is performed under the following assumptions: simulation of 1
st
 month of the 

year and penetration rates of the equipment equal to 1 (this configuration allows setting up a link between the 

number of dwelling and the number of equipment). The test consist of 5 sets of simulations, increasing the 

number of dwellings (N=10, 50, 250, 500 and 1000) and changing the seed number of the random number 



 
 

generator (5 simulation are done for N number of dwellings, changing the seed number in each simulation; 

then this test is repeated increasing the number of dwellings).   

Figure 4 is an example of the results obtained in this test. The simulations of 1000 dwellings are not included 

in Figure 4 because there are no appreciable differences with respect to the 500 dwellings results. Figure 4 

shows how the variation of the energy profile is lower as the number of dwellings included in the simulation is 

higher. There are differences between the 5 simulations when 10 dwellings are simulated. However, there are 

not significant differences between simulations when the number of dwellings is high enough. The results of 

the test concluded that simulations with 500 or more dwellings are representative of the mean dwelling. 

Considering these the results, all the subsequent validations have been done with 500 dwellings. 

3.2.2. Database comparison 

The aim of this comparison is to evaluate the correspondence between the simulation of each equipment and 

the database (SECH-SPAHOUSEC). Figure 5 presents annual results of a simulation of 500 washing 

machines chosen as an example, where it is possible to see the variability between the different simulated 

dwellings. Table 6 summarizes the statistics of the annual energy consumption for all the equipment.  

The hourly profile of an average washing machine is compared with results from [18] in Figure 6. The timing of 

the profile peaks and the average trend of the results fit with the reference data. The main difference is that 

the value of the peaks is usually underestimated by the model by a small amount (5-25 %, being worse during 

the winter time). There are three assumptions that could be a reason of these deviations: 

- Technical parameters of PF and CF are constant over time. 

- Assumption on cycle length of appliances, 

- The probabilities of use have been obtained considering the time when the equipment is ON and not 

just at the moment when the equipment is switched ON.  

The comparison of the other equipment shows the same behaviour as with the washing machine example. 

The trend of the model is quite similar to the reference data with just small differences if the value of the peaks 

is compared. Despite these differences, the model is completely valid for its purpose and the validation could 

be considered appropriate. 

3.2.3. Comparison with other countries 

After the detailed validation of the model with the reference data, it is important to compare it with other 

studies and countries. There are two scopes in this analysis: 



 
 

- To check that the model reproduces realistic profiles and annual consumption compared with other 

studies 

- To establish differences or similarities with Mediterranean and/or European countries 

The data used for the comparison has been obtained from the project Remodece, making use of one of its 

output: an updated database of consumption of EU-27 countries [21]. The database includes data of different 

measurement campaigns. The monitored data consists of annual, monthly and hourly consumption, for most 

of the appliances of the households (using electricity, gas, wood...). 

In Figure 6 and Table 7 a comparison of the model results with the different data from different countries are 

presented. For all the equipment, the annual consumption obtained by the simulation is in the range of the 

Remodece data, with the exception of the television which is higher. Nevertheless, these differences do not 

diminish the validation of the model and the results of the comparison with other measurement data is 

considered correct. 

4. Applications of the model 

4.1. Analysis of building cluster simulations 

Several profiles have been generated. The objectives are to simulate the electrical demand of a building block 

or neighbourhood and to evaluate when the uncertainty demand is low enough. Figure 8 is an example of an 

output of the model. One week of two random dwellings and mean consumptions among all the simulated 

dwellings are presented. The random dwellings have different profiles between them as well as the annual 

consumption, the maximum peak and the number of equipment. Such information is stochastically generated 

for each household. One of the most important characteristics of the output is that it is able to reproduce the 

peak values of the load profiles, which are different between days and dwellings.  

Figure 9 is an empirical distribution of annual electrical consumption. The X-axis is the number of simulated 

dwellings, and as it is expected, the distribution is better defined as the number of dwellings increase. The 

distribution becomes symmetric and the main statistics are stable. Two main statistical parameters of the 

distribution converge over 100 dwellings. The mean is around 2800kWh/yr and the standard deviation around 

490kWh/yr. The distribution of the annual energy consumption is slightly left-skewed, but it performs quite 

similar to a Normal distribution. 

4.2. Determination of synthetic profile 

The model is able to reproduce stochastic profiles of electricity consumption, as in the previous sections are 

shown. Taking the perspective that the buildings will go toward NZEB and will be integrated in smart grids, the 



 
 

electric consumption will become more and more important. In that situation and to simulate these systems, a 

detailed consumption profile representative of all the simulated dwellings could be useful. Here a synthetic 

profile is defined as a dwelling with a stochastic behaviour and whose annual and daily consumption are equal 

to the mean dwelling. A simulation of 500 dwellings has been performed in order obtain the synthetic profile. 

Among these 500 dwellings, the ones with an annual consumption equal to the mean consumption with only 

small differences (+/-1%) are selected. Figure 10 describes the electric consumption profile of the resulting 22 

dwellings. For clarification, only the results from a simulated week have been included. 

After this first selection, a detailed analysis of the equipment of 22 dwellings is done. The purpose is to 

choose a dwelling with an equipment distribution as close as possible to the mean dwelling (compared with a 

penetration rate). As Table 8 shows, there are three representative dwellings that meet these criteria, and in 

addition, their annual and daily consumption is around the mean dwelling consumption. In Figure 11 one of 

the synthetic dwellings is compared to the mean dwelling (one winter week and one summer week). The 

variability of the synthetic profile is reflected as a difference from the mean dwelling. One of the most 

important features of the synthetic profile is that the peaks of consumption are more realistic that the mean 

dwelling profiles, as it can be seen in Table 8 (hourly maximum peak) and Figure 11.  

4.3. High performance appliances simulation 

One of the advantages of the proposed model is that equipment characteristics can be changed and adapted 

to each simulation case. An analysis of the energy labelling data is performed by means of the proposed 

model, as a solid source of comparison. The energy label is the main information available in new appliances. 

For this reason, establishing the relationship between the energy label and the input of the model is 

interesting. This energy label adaptation consists of entering corresponding inputs to the model for each 

equipment as a function of their energy efficiency class. The method to estimate the annual consumption 

depending on the labelling, is specific for each equipment type and is described in different directives 

(washing machine [22], drier [23], dishwasher [24], electric oven [25], refrigerating appliances [26] and 

television [27]).  To apply these methods some assumptions are needed, i.e., capacity, place settings, screen 

size, etc. Following the different directives, corresponding inputs of the model are defined for each energy 

efficiency class. Figure 12 shows the results of simulating several dishwashers with the different energy 

efficiency classes (D to A+++). 

In addition, a verification of the energy label adaptation has been done to compare with the database 

information. Table 9 shows the comparison between the database information regarding to the energy label, 



 
 

the energy label adaptation in terms of hourly consumption, and the input of the model (Table 3). For washing 

machine, dishwasher and drier there is an agreement between most representative energy label of the 

database and the input of the model. However, the fitting accuracy is lower for the equipment refrigerator and 

freezer. In that case, the input model represents an appliance with a lower energy label (less efficient) than 

the database one. One reason for these discrepancies could be that the Directive of refrigerating appliances 

needs extra information that is not available in the SECH-SPAHOUSEC project (i.e., type of refrigerating 

appliance, storage volumes, storage temperature...).     

Once the energy label is related with the inputs of the model, it is possible to use the model to test different 

strategies and policies for reducing the energy consumption in households. For example, it is possible to use 

the model with different DSM strategies as Paatero and Lund [13]. In the present paper, a comparison 

between the results of the simulated average dwelling to a high performance appliance dwelling is done. The 

objective is to evaluate the energy savings resulting from an overall improvement of the appliances efficiency. 

Only the equipment with labelling has been included in this test, which represent around the 70% of the 

annual consumption of the mean dwelling (without considering lighting). 

In Figure 13 and Figure 14 a comparison between the dwellings with high performance appliances (A+++) and 

the dwelling with the average energy efficiency class (Avg. EE class) is presented (hourly profile and annual 

consumption, respectively). The highest potential savings may be obtained by a substitution of the appliances 

with the poorest performance (refrigerator, freezer and television). The annual mean energy saving achieved 

using high performance appliance is closed to 40%. This reduction is also observed in the daily maximum 

value, as Figure 13 shows. The results show that the energy label of appliances is a first step to achieve 

important energy savings in the electric consumption of households.   

5. Discussion 

The proposed TRNSYS routine is a “bottom-up” model, where input data are derived from aggregated data. 

Such data are typical average consumption 24 hours profiles defined by geographical zone, season and type 

of day. The data is analysed with regression techniques (penetration rates, equipment information) into a set 

of different parameters that are used as input to the model. The work done can be divided in two parts: 

validation of the model (section 3) and their applicability and usefulness (section 4).  

The initial validation of the model is done in the section 3.1, where it has been proven that the model is solid 

and works properly. The outputs are very close to the input data when simulating a statistically relevant 

number of elements, in terms of characterization of the households (e.g., number and kind of appliances used 



 
 

in each flat) and the average use of the equipment. A comparison of the simulation results with the SECH - 

SPAHOUSEC database has been done. The model is able to resolve the timing of the peaks and the general 

trends of the resulting profiles. However the value of the peaks is usually under/overestimated. The reason 

could be due to some of the assumptions done in the estimation of the technical parameters.  

The simulation approach allows a detailed representation of household electrical consumption, distinguishing 

between different energy use activities. The model allows a very high customization rate, and takes implicitly 

in consideration the average occupants’ habits. However, the number of occupants cannot be changed and it 

is represented by the average of the Mediterranean region in Spain. This approach could be a limitation if 

dwellings with a very different occupancy would be reproduced. 

Another validation step comprises the comparison with other European studies. The comparison strengthens 

the reliability of the model, since the trend of the simulated results is quite similar to results in other studies. In 

particular, when comparing them to other Mediterranean countries, the habits of these countries are reflected 

(e.g., there is a peak during the lunch time in Mediterranean countries, while in other countries this peak does 

not exist). 

The usefulness of the model is shown in three different cases: analysing the simulation of building clusters; 

defining a synthetic profile; and evaluating the energy savings using high performance appliances.  

In the case of analysing cluster of buildings, the tool generates random profiles, all different between them. 

The output of the model makes possible to work at individual or aggregate level. The results show that the 

energy consumption is smoothed into average values as the number of dwellings in the neighbourhood 

increase.  

The definition of a synthetic profile allows to have a dwelling with the main characteristics of the mean 

dwelling (type of equipment, and annual and daily consumption), and also a stochastic behaviour (realistic 

profiles). The synthetic profile could be used to estimate with more accuracy the electrical consumption of a 

household, the design of renewable systems and the grid integration of net zero energy buildings (NZEB).  

Finally, a potential application of the model is connected to the quantification of benefits for improving the 

energy efficiency of appliances. The simulated case-study with the average energy efficiency class of the 

Spanish-Mediterranean household is compared with a dwelling with high performance appliances. The results 

of this comparison show that a dwelling could reduce nearly half (40%) of its energy consumption if high 

performance appliances would be used. 



 
 

However, the model is, as for most bottom-up models, highly dependent on the input data, since the modelling 

capabilities of the TRNSYS component have been tuned up to fit the detailed monitoring databases.    

6. Conclusions 

The detailed modelling of household energy consumption is a complex task that involves different issues and 

requires different competencies. Often in practice, electrical consumption caused by appliances is based on 

statistical data. Although this kind of approaches has some strength (e.g., simple calculations, perfect for first 

stage analysis), they are not useful when a detailed characterization is needed. For example, to model the 

energy interactions of a building that has complex interactions with the energy grid (e.g., NZEB). The 

proposed model, being one of the first implementations of stochastic models in TRNSYS environment, 

focuses on the simulation of a Spanish Mediterranean apartment building. The TRNSYS implementation 

allows for an easy integration in building simulation, as a complement of deriving heating and cooling 

consumption. With the total energy consumption of a building, one can study matching between load and 

generation from renewables systems. 

The paper has presented a detailed validation of a household energy consumption model, in addition to some 

typical output profiles for a simulated household district. The model is able to reproduce random realistic 

profiles with the preservation of the important qualitative features of residential consumption of the 

Mediterranean countries, complementing similar models available for other regions (e.g., Nordic European 

countries). Some of the potential applications of the model are demonstrated.  The model can be used to 

analyse cluster of buildings, with the option to focus on each individual building or on the combination of them. 

This kind of analysis can be used to analyse the uncertainty of their energy consumption. The model has 

proven its usefulness to define synthetic profiles. The synthetic profile could be applied in high time resolution 

studies that aim to model peak loads as well as average data. A direct relationship between the input of the 

model and the energy labelling of appliances is established. This relationship helps to easily evaluate the 

potential savings of high performance appliances.  

After this analysis of the model and their results, some improvement points have been detected. On one hand, 

the model could include the occupant as a variable of the model, in order to reproduce a wider range of 

households. On the other hand, the time step could be lower than one hour, increasing the detail of the 

energy use events in order to improve the energy peaks simulation.   



 
 

It can be concluded that the model is a validated approach to be integrated into simulation tools. The model is 

a simplified tool that brings detailed information about electrical consumption profiles, as part of studies of 

residential neighbourhoods or net zero energy districts. 
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FIGURE CAPTION 

 

 

Figure 1 Hourly probability of use for dishwasher (left) and television (right).  

Figure 2  Multi-equipment verification (top: television, bottom: computer). Left: Distribution of the annual 

energy consumption for the equipment of 1000 multi dwelling households of Mediterranean region (energy 

consumption in the left axis and number of equipment in the right one. Description of the box plot parameters: 

mean by square; median by horizontal line; 25-75% and 10-90% percentile by box; 5% and 95% by whiskers; 

1% and 99% percentile by cross; minimum and maximum by dash. Right: Comparison of the database 

information with the model results (input data vs. simulated). 

Figure 3 Comparison of the models result with the different regions of Spain and types of buildings (SECH-

SPAHOUSEC). 

Figure 4 Results of the representative sample size test. Comparison of the simulations with different 

configurations. Example of the cooking devices: electrical kitchen, electric oven and microwave. 

Figure 5 Distribution of the annual energy consumption for 500 washing machines in a multi dwelling of 

Mediterranean region. Description of the box plot parameters: mean by square; median by horizontal line; 25-

75% and 10-90% percentile by box; 5% and 95% by whiskers; 1% and 99% percentile by cross; minimum and 

maximum by dash. 

Figure 6 Average hourly profile of the energy consumption for a washing machine: simulation vs. reference 

data. 

Figure 7 Average hourly energy consumption for dishwasher, electric oven, television and computer. 

Comparison of different studies and countries. Left: Mediterranean Countries; Right: Center-North EU 

Countries. 

Figure 8 Hourly electric consumption for a winter week. Example output of the model, two random dwellings 

and the mean dwelling (reference data). 

Figure 9 Distribution of the annual energy consumption for dwelling, increasing the number of dwellings. 

Figure 10 Winter week profile of the mean dwelling (black line) and the dwellings with an annual consumption 

equal to mean +/- 1% (grey lines). 

Figure 11 Week profile of the synthetic profile (SP1). Left: winter week. Right: summer week. 

Figure 12 Hourly energy consumption for dishwasher with different energy labels. Capacity: 12 place settings 

(without stand-by).  



 
 

Figure 13 Comparison of the mean hourly energy consumption for dwelling with high performance equipment 

(A+++) and the dwelling with the average energy efficiency class of Mediterranean region (Refrigerator: B; 

Freezer: B; Washing machine: A; Dishwasher: A; Television: C; Drier: A). 

Figure 14 Comparison of the annual consumption for a dwelling with high performance appliances (A+++) and 

the dwelling with average energy efficiency class of Mediterranean region. 

 



 

Table 1 Description of the parameters and inputs of the stochastic model of electrical load profiles for 

dwellings 

Data type Parameter Units Description 

Stock 

characterization 

Penetration rate (Pr) % Fraction of dwellings with at least one equipment. 

Multi-equipment 

probabilities (Mp) 
% 

These values represent the probability to have a different number of the 

same equipment in the same dwelling (e.g. having multiple televisions). The 

input of the model is defined as the cumulative fraction of dwellings with 1, 2, 

3 or 4 equipment, based on the initial penetration rate (1-Pr). As an example, 

the fraction of dwellings with 1 equipment is (Mp1-(1-Pr)) while the one with 2 

equipment is (Mp2-Mp1). 

Fraction of electric 

devices (FE) 
% 

In the case of the kitchen devices, it is necessary to include the fraction of 

electric devices. The gas devices fraction is calculated as (1 – FE) 

Technical data 

Power (P) kW 
P is the nominal power. This information is available in the technical sheet of 

the equipment.. 

Power Fraction (PF) % 
PF is the hourly mean power when the equipment is ON to the nominal the 

power (P) ratio of the equipment. This parameter is constant over time. 

Cycle Length Fraction 

(CF) 
% 

CF is the ratio between the cycle length and the corresponding integer hours, 

rounded to the upper value. For example, the duration of the cycle of a 

washing machine is 1.5 hours, then the integer hours is 2, and CF is 1.5/2.  

Power of Stand-by 

(Pstb) 
kW 

Pstb is the power of the stand-by mode. If the equipment does not have 

stand-by, the value is zero. 

Statistics of use 

Hourly profile of 

probabilities  

of use (prob(t)) 

% 

The probabilities of use represent the probability to use one equipment at 

each hour. Hourly profiles for each season (summer, winter and intermediate 

season) and type of day (weekday and weekend) have been derived in the 

study.  
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Table 2 Stock characterization of the block of apartments in the Mediterranean Region. 

 

Equipment 
Pr Mp1 Mp2 Mp3 Mp4 FE 

% % % % % % 

Refrigerator 99 100 - - - - 

Freezer 16 100 - - - - 

Washing machine 92 100 - - - - 

Dishwasher 49 100 - - - - 

Television 100 35 75 90 100 - 

Tumble drier 31 100 - - - - 

Microwave 89 100 - - - - 

PC 50 60 85 97 100 - 

Others 100 100 - - - - 

Lighting 100 100 - - - - 

Kitchen 100 100 - - - 62 

Oven 77 100 - - - 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 Technical data of the equipment used in the Base Simulation (block of apartments in Mediterranean 

Region). 

 

Equipment 

P PF Cycle Length EON ESTB 

W % hh mm % Wh Wh 

Refrigerator 180 45 23.0 - 96 77 - 

Freezer 130 40 23.0 - 96 50 - 

Washing machine 2200 19 - 111 93 380 7 

Dishwasher 2200 17 - 170 94 350 - 

Television 125 73 6.9 - 99 90 5 

Tumble drier 2000 25 - 162 90 450 - 

Microwave 1100 10 - 30 50 55 3 

PC 225 45 7.9 - 99 100 5 

Others 3000 10 - 40 22 65 1.4 

Lighting 200 100 - 60 100 200 - 

Kitchen (electric) 5000 12 - 204 85 510 - 

Kitchen (gas) 6176 12 - 204 85 630 - 

Oven (electric) 2500 17 - 144 80 340 - 

Oven (gas) 3162 17 - 144 80 430 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 Comparison of the Penetration rate (Pr) with the Fraction (F) of dwellings with each equipment (input 

vs. output). 
 

Equipment 

Pr  Fraction  Relative error
a 

% % % 

Refrigerator 99.4 99.7 0.3 

Freezer 15.8 15.7 0.8 

Washing machine 92.2 91.6 0.7 

Dishwasher 48.8 47.1 3.5 

Television 100.0 100.0 0.0 

Tumble drier 31.3 29.9 4.5 

Microwave 89.4 89.6 0.2 

PC 49.7 50.4 1.5 

Others 100.0 100.0 0.0 

Lighting 100.0 100.0 0.0 

Electric Kitchen
b 

62.1 61.6 0.9 

Electric Oven
b 

60.0 62.3 3.9 

100
Pr

PrF
Er

a 


  

b
Obtained by: (Pr x FE)/100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 Comparison of the daily proportion of equipment in state ON (Two sample t-Student test, α=0.05 
confidence level). 
 

Equipment 

Daily proportion mean of equipments ON 

Simulation Input Data t p-value 

Washing machine 0.0742 0.0728 0.0510 0.95 

Dishwasher 0.0825 0.0822 0.0079 0.99 

Television 0.2152 0.2148 0.0057 0.99 

Tumble drier 0.0651 0.0620 0.1461 0.88 

Microwave 0.0762 0.0751 0.0288 0.98 

PC 0.2673 0.2582 0.1467 0.88 

Kitchen 0.1022 0.1024 -0.0032 0.99 

Oven 0.0508 0.0512 -0.0127 0.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6 Statistics of the annual energy consumption for 500 simulated equipment in a multi dwelling of 
Mediterranean region. 
 
 

Summary 

statistics 

Wash. mach. Dishwasher Television Drier Ele. kitchen Ele. oven Microwave Computer 

kWh kWh kWh kWh kWh kWh kWh kWh 

Mean 303.9 246.3 210.6 248.8 435.6 163.3 61.0 290.7 

Standard deviation 8.8 7.1 2.8 9.8 11.9 6.7 1.1 3.5 

Minimum 277.6 223.6 200.9 216.9 401.9 142.1 57.1 278.9 

Maximum 331.7 272.6 319.7 281.3 485.0 190.0 64.6 302.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7  Comparison of the annual energy consumption obtained in different studies and countries by 

measurement campaigns (Nº is the number of equipments). In grey the Mediterranean countries. 
 

Study Country 

Dishwasher Electric Oven Television Computer 

Nº kWh/yr Nº kWh/yr Nº kWh/yr Nº kWh/yr 

Ciel 1995/96 FR France 45 277 22 95 122 137 - - 

Irise 1997/99 FR France 49 306 27 186 113 133 - - 

Eureco 

2000-2001 

DK Denmark 46 289 - - 91 31 - - 

GR Greece 40 159 - - 142 35 - - 

IT Italy 49 369 8 130 123 131 - - 

PT Portugal 42 256 8 144 92 66 - - 

Remodece 

2006-2008 

BE Belgium 11 288 - - 145 24 22 194 

BU Bulgaria 7 151 - - 166 106 15 294 

CZ Czech Rep. 32 223 7 169 171 57 25 393 

DE Germany 17 146 3 65 112 63 12 225 

DK Denmark - - - - 239 81 54 743 

FR France 68 250 - - 180 137 13 228 

GR Greece - - - - 166 135 42 322 

HU Hungary 18 330 4 100 97 51 12 177 

IT Italy 41 206 9 146 101 53 6 263 

NO Norway 9 188 7 298 223 49 3 312 

PT Portugal - - - - 108 71 4 123 

Simulation results (ON+STB)  246  163  177+34  260+31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8 Characteristics of the dwellings with a synthetic profile: equipments, annual and daily consumption. 
Comparison with the mean dwelling. 
 

 Synthetic Profile Mean dwelling 

 SP1 SP2 SP3 Pr (%) Mp (nº) 

Refrigerator 1 1 1 100 1 

Freezer 0 0 0 16 1 

Washing Machine 1 1 1 92 1 

Dishwasher 0 1 1 49 1 

TV 2 1 1 100 1.9 

Drier 0 0 1 31 1 

Microwave 1 1 1 89 1 

PC 1 1 0 50 1.08 

Others 1 1 1 100 1 

Lighting 1 1 1 100 1 

Ele. kitchen 1 1 1 100 1 

Ele. Oven 1 1 1 77 1 

Annual consumption (kWh) 2939 2944 2923 2932 

Hourly  maximum peak (Wh) 187 213 213 93 

Weekday consumption (Wh) 800 796 794 795 

Weekend consumption (Wh) 818 835 816 821 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 9 Energy label comparison: database, label adaptation and input model (hourly consumption). 
 

 DDBB Label adaptation Input model 

 % Label 
Min 

Wh 

Max 

Wh 
Wh 

Washing Machine 

20 A+ 339 384 

380 41 A 384 443 

19 B 443 502 

Dishwasher 

11 A+ 308 347 

350 60 A 347 391 

23 B 391 440 

Drier 

29 A 444 687 

450 20 B 687 803 

27 N/A - - 

Refrigerator 

30 A+ 37 49 

77 38 A 49 61 

24 B 61 84 

Freezer 

54 A 34 43 

50 11 B 43 59 

23 C 59 74 
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HIGHTLIGHTS 

 We develop a stochastic model for electric loads in Mediterranean households 

 The model is able to reproduce the most important features of residential loads 

 The model can be used for simulated detailed profiles for a cluster of buildings 

 Generation of stochastic dwellings with real peaks and annual and daily mean loads 

 The model can use the energy labelling information of appliances as input 

 

*Highlights (for review)


