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Abstract. This paper deals with the question of completing a
monotone increasing family of subsets Γ of a finite set Ω to obtain
the linearly dependent subsets of a family of vectors of a vector
space. Specifically, we prove that such vectorial completions of
the family of subsets Γ exist and, in addition, we show that the
minimal vectorial completions of the family Γ provide a decom-
position of the clutter Λ of the inclusion-minimal elements of Γ.
The computation of such vectorial decomposition of clutters is also
discussed in some cases.

1. Introduction

A monotone increasing family of subsets Γ of a finite set Ω is a col-
lection of subsets of Ω such that any superset of a set in the family
Γ also belongs to Γ. All the inclusion-minimal elements of Γ deter-
mine a clutter Λ, that is, a collection of subsets of Ω none of which
is a proper subset of another. Clutters are also known as antichains,
Sperner systems or simple hypergraphs.

In this paper we focus our attention on those monotone increasing
families of subsets that arise from linear algebra: the collection of the
linearly dependent subsets of vectors in a vector space. We say that a
clutter Λ is vectorial if its elements are the inclusion-minimal linearly
dependent subsets of an indexed family of vectors of a vector space.

Vectorial clutters are an important issue in matroid theory. A ma-
troid M is a combinatorial object that provides an axiomatic abstrac-
tion of linear dependence on a finite set Ω. The minimal dependent
sets of a matroid are called circuits. Therefore, the family of circuits
of a matroidM is a clutter. Vectorial clutters are exactly those corre-
sponding to the set of circuits of representable matroids.

In some cases it is convenient to use clutters that are either vectorial
or are close to being vectorial. Examples of this situation can be found
in the context of secret-sharing schemes [3, 5], or in the framework of
algebraic combinatorics and commutative algebra [1, 6]. For instance,
in the context of secret-sharing schemes, vectorial clutters become a
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crucial issue for providing general bounds on the optimal information
rate of the scheme, while in the framework of algebraic combinatorics
and commutative algebra, they are useful for controlling certain arith-
metic properties of either monomial ideals or the face rings of simplicial
complexes.

In general, a clutter is far from being vectorial. Therefore it is of in-
terest to determine how it can be transformed into a vectorial clutter.
This paper deals with this issue. More specifically, we first define a par-
tial order 6 on the set of all clutters on Ω. Then a vectorial completion
of a clutter Λ is a vectorial clutter Λ′ such that Λ 6 Λ′. We show that
these completions exist and that Λ can be recovered from the minimal
ones. We speak in this case of a decomposition of the clutter Λ.

The structure of the paper is as follows. In Section 2 we recall some
definitions and basic facts about clutters and present the problem of
the vectorial completion of a clutter. Our main results are gathered
in Section 3; namely, we present three theorems concerning vectorial
completion and decomposition of clutters (Theorem 4, Theorem 5 and
Theorem 6), and we apply them to obtain the decomposition of non-
representable matroids into representable matroids (Corollary 7). Fi-
nally, Section 4 is devoted to analyzing the computation of such de-
compositions: first, in Subsection 4.1 we study the vectorial comple-
tions and decompositions of clutters on a finite set of size at most
seven (Proposition 9); next, in Subsection 4.2 we present the minimal
binary completions of the excluded minor of binary matroids (Propo-
sition 12); and we close in Subsection 4.3 by describing the minimal
vectorial completions over fields of characteristic two of the non-Fano
matroid (Proposition 14).

2. Vectorial clutters and vectorial completions

In this section we present the definitions and basic facts concerning
families of subsets, clutters and vectorial clutters that are used in the
paper.

Let Ω be a finite set. A family of subsets Γ of Ω is monotone in-
creasing if any superset of a set in Γ must be in Γ; that is, if A ∈ Γ and
A ⊆ A′ ⊆ Ω, then A′ ∈ Γ. A clutter of Ω is a collection of subsets Λ
of Ω, none of which is a proper subset of another; that is, if A,A′ ∈ Λ
and A ⊆ A′ then A = A′.

Observe that if Γ is a monotone increasing family of subsets of Ω,
then the collection min(Γ) of its inclusion-minimal elements is a clutter;
while if Λ is a clutter on Ω, then Λ+ = {A ⊆ Ω : A0 ⊆ A for some
A0 ∈ Λ} is a monotone increasing family of subsets. Clearly, Γ =
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(min(Γ))+ and Λ = min(Λ+). So a monotone increasing family of
subsets Γ is uniquely determined by the clutter min(Γ), while a clutter
Λ is uniquely determined by the monotone increasing family Λ+.

Let Λ1,Λ2 be two clutters on Ω. It is clear that if Λ1 ⊆ Λ2 then
Λ+

1 ⊆ Λ+
2 . However, the converse is not true; that is, there exist

clutters with Λ1 6⊆ Λ2 and Λ+
1 ⊆ Λ+

2 . For instance, on the finite set
Ω = {1, 2, 3}, let us consider the clutters Λ1 = {{1, 2}, {2, 3}} and Λ2 =
{{1}, {2, 3}}. Then Λ1 6⊆ Λ2, while Λ+

1 = {{1, 2}, {2, 3}, {1, 2, 3}} ⊆
{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} = Λ+

2 .
This fact leads us to consider a binary relation 6 defined on the set

of clutters on Ω. Namely, if Λ1 and Λ2 are two clutters on Ω, then we
say that Λ1 6 Λ2 if and only if Λ+

1 ⊆ Λ+
2 . The following lemma will be

used several times throughout the paper.

Lemma 1. Let Ω be a finite set. The following statements hold:

(1) If Λ1,Λ2 are two clutters on Ω then, Λ1 6 Λ2 if and only if for
all A1 ∈ Λ1 there exists A2 ∈ Λ2 such that A2 ⊆ A1.

(2) The binary relation 6 is a partial order on the set of clutters of
Ω.

Proof The proofs of the statements are a straightforward conse-
quence of the definition of Λ+ and of the fact that Λ = min(Λ+).
�

There are many interesting families of clutters that can be consid-
ered. However, because of their applications, we are interested in those
clutters that are vectorial .

Let Ω = {x1, . . . , xn} be a finite set of n elements. A monotone
increasing family Γ of subsets of Ω is said to be a vectorial family
if there exists an indexed family of not necessarily distinct vectors
v1, . . . , vn of a K-vector space such that {xi1 , . . . , xir} ∈ Γ if, and only
if, {vi1 , . . . , vir} is a linearly dependent multiset of vectors. A clutter
Λ on Ω is said to be a vectorial clutter if the monotone increasing fam-
ily Λ+ is a vectorial family. In such a case we say that the vectors
v1, . . . , vn provide a K-representation of Λ.

In other words, a monotone increasing family of subsets Γ is vectorial
if Γ is the family of the dependent sets of a representable matroid M
with ground set Ω; whereas a clutter Λ is vectorial if the clutter Λ is the
set of circuits of a representable matroid M with ground set Ω (defini-
tions and basic facts about matroids are recalled in Subsection 3.3 as
no matroid theory is needed until then).

There are clutters on a finite set Ω that are not vectorial (in fact,
there are matroids that are not representable matroids). So, a natural
question that arises at this point is to determine how to complete a
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clutter Λ to obtain a vectorial clutter. In order to look for vectorial
completions, it is important to take into account the binary relation
6 rather than the inclusion ⊆. This is due to the fact that, as the
following example shows, there exist clutters Λ such that Λ 6⊆ Λ′ for
any vectorial clutter Λ′.

Example 2. Let us consider the clutter Λ = {{1, 2}, {1, 3}, {2, 3, 4}}
on the finite set Ω = {1, 2, 3, 4}. Observe that

(
{1, 2} ∪ {1, 3}

)
\ {1} =

{2, 3}  {2, 3, 4}. Hence it follows that Λ is not a vectorial clutter
and, moreover, Λ 6⊆ Λ′ for any vectorial clutter Λ′. However, we have
that Λ 6 Λ′, where Λ′ is the vectorial clutter Λ′ = {{1}, {2, 3, 4}} (a
vectorial realization of Λ′ is given by the set of vectors {v1, v2, v3, v4}
where v1 = (0, 0), v2 = (1, 0), v3 = (0, 1) and v4 = (1, 1)). Futhermore,
if Λ′′ is the clutter on Ω defined by Λ′′ = {{1, 2}, {1, 3}, {2, 3}}, then we
have that Λ 6 Λ′′ and that the clutter Λ′′ is also a vectorial clutter (a
vectorial realization of Λ′′ is given by the set of vectors {w1, w2, w3, w4}
where w1 = (1, 1), w2 = (1, 1), w3 = (1, 1) and w4 = (0, 1)). Notice
that now the clutter Λ can be obtained from the vectorial clutters Λ′

and Λ′′. Indeed, it is easy to check that the following equality holds
Λ = min

({
A′ ∪ A′′ where A′ ∈ Λ′ and A′′ ∈ Λ′′

})
. Therefore, the

vectorial clutters Λ′ and Λ′′ in some way provide a decomposition of
the non-vectorial clutter Λ.

The above example leads us to the following definition. Let Λ be a
clutter on a finite set Ω. A vectorial completion of the clutter Λ is a
vectorial clutter Λ′ on the finite set Ω such that Λ 6 Λ′.

The set of all the vectorial completions of a clutter Λ is denoted by
Vect(Λ). Observe that if ∅ ∈ Λ, then Λ = {∅}, and thus Vect(Λ) = ∅.
So, from now on we assume that ∅ 6∈ Λ if Λ is a clutter. As shown
in the next section, this assumption guarantees that Vect(Λ) 6= ∅ for
all clutters and, in addition, we demonstrate that, in the same way as
in Example 2, suitable clutters in the non-empty set of the vectorial
completions Vect(Λ) provide a decomposition of the clutter Λ.

3. Three results on vectorial completions and
decompositions

The aim of this section is to present three theoretical results concern-
ing the “decomposition” of a clutter Λ into vectorial clutters Λ1, . . . ,Λr.
The general case is considered in Theorem 4, while Theorem 5 and The-
orem 6 deal with those “decompositions” of Λ whose vectorial compo-
nents Λ1, . . . ,Λr admit vectorial realizations either over a fixed field K
or over fields having a specific characteristic. The section concludes by
applying these theorems to matroids (Corollary 7).
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3.1. General case. Let Λ be a clutter on a finite set Ω. Our first
result, Theorem 4, states that the set Vect (Λ) of its vectorial com-
pletions is a non-empty set and that its minimal elements provide a
decomposition of Λ (in the sense that the elements A of the clutter Λ
can be obtained from the elements Ai of its minimal vectorial comple-
tions Λ1, . . . ,Λr). To prove this we will use the following proposition
which is a general result about the decomposition of the clutter Λ into
clutters of a specific type.

Let us denote by Clutt (Ω) the set whose elements are the clutters
on the finite set Ω, and for a non-empty subset X ⊆ Ω, let ΛX be the
clutter on Ω defined by ΛX = {{x} : x ∈ X}.
Proposition 3. Let Λ be a clutter on a finite set Ω. Let Σ ⊆ Clutt (Ω)
be a collection of clutters on Ω and let Σ(Λ) = {Λ′ ∈ Σ : Λ 6 Λ′}. As-
sume that ΛX ∈ Σ for all non-empty subsets X of Ω. Then, Σ(Λ) 6= ∅
and
Λ = min

({
A1∪ · · · ∪Ar : Ai ∈ Λi

})
where Λ1, . . . ,Λr are the minimal

elements of the poset
(
Σ(Λ) , 6

)
. In particular, Λ ∈ Σ if and only if

r = 1.

Proof Let n = |Ω| be the size of Ω and let Ω = {x1, . . . , xn}. On
one hand, it is clear that Λ 6 ΛΩ = {{x1}, . . . , {xn}}. On the other,
from our assumption we get that ΛΩ ∈ Σ. Therefore, ΛΩ ∈ Σ(Λ), and
so Σ(Λ) 6= ∅.

Since the set Ω is a finite set, then Σ(Λ) is finite. Without loss of
generality, we may assume that Σ(Λ) = {Λ1, . . . ,Λr, . . . ,Λm}, where
1 ≤ r ≤ m is such that Λ1, . . . ,Λr are the minimal elements of the poset(
Σ(Λ) , 6

)
. Let us denote by Λ0 the clutter Λ0 = min

({
A1∪· · ·∪Ar :

Ai ∈ Λi

})
. It is necessary to demostrate the equality Λ = Λ0. Observe

that by using this equality it is easy to prove that Λ ∈ Σ if and only if
r = 1.

So, from now on we are going to prove the equality Λ = Λ0. In
order to do this we use that the binary relation 6 is a partial order
(see Lemma 1). Namely, we are going to prove the equality Λ = Λ0 by
proving the two inequalities Λ 6 Λ0 and Λ0 6 Λ.

Let 1 ≤ i ≤ r. Since Λ 6 Λi, for A ∈ Λ, there exist Ai ∈ Λi such
that Ai ⊆ A. Therefore, we obtain that A1 ∪ · · · ∪ Ar ⊆ A, and hence
it follows that Λ 6 min

({
A1 ∪ · · · ∪ Ar : Ai ∈ Λi

})
; that is, Λ 6 Λ0.

Therefore, to finish the proof of the proposition we must demonstrate
that Λ0 6 Λ.

In order to do this, let us consider the clutter Λ′0 on Ω defined by
all the elements of Σ(Λ) = {Λ1, . . . ,Λr, . . . ,Λm}, that is, let Λ′0 be the
clutter Λ′0 = min

({
A1 ∪ · · · ∪ Am : Ai ∈ Λi

})
.
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We claim that Λ′0 = Λ0. Let us prove our claim. It is clear that if
{Λi1 , . . . ,Λis} ⊆ {Λ1, . . . ,Λm}, then Λ′0 6 min

({
Ai1 ∪ · · ·∪Ais : Aij ∈

Λij

})
. In particular, we obtain that Λ′0 6 Λ0. Next we are going to

prove that Λ0 6 Λ′0. So let A1 ∪ · · · ∪ Ar ∈ Λ0. Since Λ1, . . . ,Λr are
the minimal elements of the poset

(
Σ(Λ) , 6

)
, for j > r there exists

αj ≤ r such that Λαj
6 Λj. Therefore, there exists A′j ∈ Λj such that

A′j ⊆ Aαj
. So we have that A1∪· · ·∪Ar∪A′r+1∪· · ·∪A′m ⊆ A1∪· · ·∪Ar,

and hence it follows that there exists C ∈ Λ′0 such that C ⊆ A1∪· · ·∪Ar.
Therefore, by Lemma 1, Λ0 6 Λ′0. This completes the proof of our
claim.

Let us consider the set of subsets {X1, . . . , Xt} = {X ⊆ Ω : Λ 6
ΛX}, (observe that this set is non-empty and so t ≥ 1 because Λ 6
ΛΩ). By assumption ΛX1 , . . . ,ΛXt ∈ Σ. So {ΛX1 , . . . ,ΛXt} ⊆ Σ(Λ) =
{Λ1, . . . ,Λm}, and hence it follows that Λ0 = Λ′0 6 min

({
AX1 ∪ · · · ∪

AXt : AXj
∈ ΛXj

})
.

Now the proof of the proposition is completed by showing the in-
equality min

({
AX1 ∪ · · · ∪ AXt : AXj

∈ ΛXj

})
6 Λ; that is, we

must demonstrate that if C ∈ min
({
AX1 ∪ · · · ∪ AXt : AXj

∈ ΛXj

})
then there exists A ∈ Λ such that A ⊆ C (see Lemma 1). So let
C ∈ min

({
AX1 ∪ · · · ∪ AXt : AXj

∈ ΛXj

})
. Then C = {xα1 , . . . , xαt}

where xαj
∈ Xj for 1 ≤ j ≤ t. Assume that A 6⊆ C for all A ∈ Λ.

Therefore, if A ∈ Λ, then A∩(Ω\C) 6= ∅, and so there exists x0 ∈ Ω\C
such that {x0} ⊆ A. Hence, by applying Lemma 1 it follows that
Λ 6 ΛΩ\C . So Ω \ C ∈ {X ⊆ Ω : Λ 6 ΛX} and thus Ω \ C = Xi0

for a certain i0 ∈ {1, . . . , t}. This leads to a contradiction because
xαi0
∈ C ∩Xi0 . Therefore, there exists A ∈ Λ such that A ⊆ C. This

completes the proof of the proposition. �

Theorem 4. Let Λ be a clutter on a finite set Ω. Then, Vect (Λ) 6= ∅
and Λ = min

({
A1 ∪ · · · ∪ Ar : Ai ∈ Λi

})
where Λ1, . . . ,Λr are the

minimal elements of the poset
(
Vect (Λ) , 6

)
of the vectorial comple-

tions of Λ. In particular, the clutter Λ has a unique minimal vectorial
completion if, and only if, the clutter Λ is a vectorial clutter.

Proof Observe that Vect (Λ) = Σ(Λ) where Σ ⊆ Clutt (Ω) is the
collection of the vectorial clutters on Ω. Therefore, from Proposition 3,
we only must prove that ΛX ∈ Σ if ∅  X ⊆ Ω; that is, we only must
demonstrate that the clutter ΛX is a vectorial clutter on the finite set
Ω if X is a non-empty subset of Ω.

Let n = |Ω| and let Ω = {x1, . . . , xn}. Let ∅  X ⊆ Ω. With-
out loss of generality, we may assume that X = {x1, . . . , xr} where
1 ≤ r ≤ n. Let K be a field, and let E be a K-vector space having
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dimension dimE ≥ n− r. Let us consider an indexed family of vectors
v1, . . . , vn ∈ E, where vi = 0 if 1 ≤ i ≤ r and where vr+1, . . . , vn are lin-
early independent. Then, it is easy to check that the vectors v1, . . . , vn
provide a K-representation of ΛX . So, ΛX is a vectorial clutter on Ω.
�

3.2. Completion and decomposition with field restrictions. Ob-
serve that the previous theorem, Theorem 4, deals with vectorial com-
pletions and decompositions in the case where no field restrictions are
assumed. The next theorems, Theorem 5 and Theorem 6, state that
similar results occur if we consider only the case in which the vector
spaces of the vectorial completions are either over a fixed field or over
fields with a specific characteristic. Before stating these theorems, we
introduce some notations.

Let K be a field and let p be a prime number. A vectorial clutter is
said to be K-vectorial if admits a K-representation, and is said to be p-
vectorial if it has an L-representation for some field L of characteristic
p. For a clutter Λ, let us denote by Vect K(Λ) the set whose elements
are the K-vectorial completions of Λ, and by Vect p(Λ) the set whose
elements are the p-vectorial completions of Λ; that is, the elements of
Vect K(Λ) are the K-vectorial clutters Λ′ with Λ 6 Λ′, while the ele-
ments of Vect p(Λ) are the p-vectorial clutters Λ′ with Λ 6 Λ′. Observe
that Vect (Λ) =

⋃
K Vect K(Λ) and that Vect (Λ) =

⋃
p Vect p(Λ).

The next theorems state that the sets Vect K(Λ) and Vect p(Λ) are
non-empty sets and that their minimal elements provide a decompo-
sition of the clutter Λ (in the sense that the elements of Λ can be
obtained from these minimal vectorial completions).

Theorem 5. Let Λ be a clutter on a finite set Ω and let K be a field.
Then, Vect K(Λ) 6= ∅ and Λ = min

({
A1 ∪ · · · ∪ Ar : Ai ∈ Λi

})
where

Λ1, . . . ,Λr are the minimal elements of the poset
(
Vect K(Λ) , 6

)
. In

particular, the clutter Λ has a unique minimal vectorial completion over
K if, and only if, the clutter Λ is a K-vectorial clutter.

Proof Essentially, the proof of this theorem works like the previous
one. We must only take into account that, VectK (Λ) = Σ(Λ) where
Σ ⊆ Clutt (Ω) is the collection of the K-vectorial clutters on Ω; and
that, for a non-empty subset X ⊆ Ω, the clutter ΛX is a K-vectorial
clutter. �

Theorem 6. Let Λ be a clutter on a finite set Ω and let p be a prime
number. Then, Vect p(Λ) 6= ∅ and Λ = min

({
A1∪· · ·∪Ar : Ai ∈ Λi

})
where Λ1, . . . ,Λr are the minimal elements of the poset

(
Vect p(Λ) , 6

)
.
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In particular, the clutter Λ has a unique minimal p-vectorial completion
if, and only if, the clutter Λ is a p-vectorial clutter.

Proof As before, the proof of this theorem works like the one of
Theorem 4. Now we only must bear in mind that, Vectp (Λ) = Σ(Λ)
where Σ ⊆ Clutt (Ω) is the collection of the p-vectorial clutters on Ω;
and that, for a non-empty subset X ⊆ Ω, the clutter ΛX is a p-vectorial
clutter. �

3.3. Completion and decomposition of matroids into repre-
sentable matroids. Matroids are combinatorial objects that can be
axiomatized in terms of their independent sets, bases, circuits, rank
function, flats, or hyperplanes (the reader is referred to [4, 7] for gen-
eral references on matroid theory). Here we present the definition in
terms of circuits.

A matroid M is an ordered pairM = (Ω, C) consisting of a finite set
Ω, called the ground set of the matroid, and a clutter C of non-empty
subsets of Ω which satisfies the weak circuit elimination property : if C1

and C2 are distinct members of C and x ∈ C1 ∩C2, then there is some
member C3 of C such that C3 ⊆ (C1 ∪ C2) \ {x}. The members of the
clutter C are the circuits of the matroidM. We shall often write C(M)
instead of C. The dependent sets of the matroid are the supersets of the
circuits, that is, the dependent sets of M are the members of C(M)+.
Sets that are not dependent are called independent.

Observe that since the set of circuits of a matroid is a clutter on the
ground set of the matroid, we can consider the partial order induced
by 6 on the set of matroids with ground set Ω. Thereby, if M1 and
M2 are two matroids with ground set Ω, then we say thatM1 6M2 if
and only if C(M1) 6 C(M2) where C(Mi) is the clutter of the circuits
of Mi. So, M1 6 M2 if and only if every circuit of M1 contains a
circuit of M2. In matroid theory this is equivalent to saying that the
identity map on Ω is a weak map from the matroidM1 to the matroid
M2 (see [4, Proposition 7.3.11]); that is, M1 6 M2 if M1 is above
M2 in the weak order .

A matrix A with entries in a field K gives rise to a matroidMA on its
set of columns. The dependent sets of the matroidMA are those sets of
columns of the matrix A that are linearly dependent as sets of vectors.
This matroid is called the column matroid of A, and the matrix A is
said to represent the matroid. A matroid M is called representable
over a field K if if there exists some matrix A with entries in the field
K such that M = MA. Therefore, a matroid M is representable if
and only if the clutter C(M) is vectorial. In addition, a matroid M is
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K-representable (resp. p-representable) if and only if the clutter C(M)
is K-representable (resp. p-representable).

In any case, for a given matroidM, we can now consider its vectorial
completions; that is, those representable matroids M′ with M 6M′.
We shall often write Vect (M), Vect K(M) and Vect p(M) instead of
Vect (C(M)), Vect K(C(M)) and Vect p(C(M)). The following result
states that all these three sets of representable matroidal completions
of M are non-empty, and that their minimal elements provide a de-
composition of the matroid M.

Corollary 7. Let M be a matroid with ground set Ω. Let K be a field
and let p be a prime number. Then:

(1) Vect (M) 6= ∅ and C(M) = min
({
A1∪· · ·∪Ar : Ai ∈ C(Mi)

})
where M1, . . . ,Mr are the minimal elements of

(
Vect (M) , 6)

. In particular, the matroidM has a unique minimal vectorial
completion if, and only if, the matroid M is representable.

(2) Vect K(M) 6= ∅ and C(M) = min
({
A1 ∪ · · · ∪ Ar : Ai ∈

C(Mi)
})

whereM1, . . . ,Mr are the minimal elements of
(
Vect K(M) , 6)

. In particular, the matroid M has a unique minimal K-
vectorial completion if, and only if, the matroidM is K-representable.

(3) Vect p(M) 6= ∅ and C(M) = min
({
A1 ∪ · · · ∪ Ar : Ai ∈

C(Mi)
})

whereM1, . . . ,Mr are the minimal elements of
(
Vect p(M) , 6)

. In particular, the matroidM has a unique minimal p-vectorial
completion if, and only if, the matroid M is p-representable.

Proof The three statements of the corollary are specializations of the
previous theorems. �

Remark 8. In this paper we focus on vectorial completions and decom-
positions, but we could have considered completions and decompositions
in some other families of clutters, as long as they include the clutters
ΛX . Indeed, a proof analogous to that of Theorem 4 would give the
desired completions and decompositions. For matroids, the ones whose
clutter of circuits is of the form ΛX are the all whose circuits have
size 1 or, in other words, the matroids that can be written as a di-
rect sum of loops and coloops. Most of the familiar classes of matroids
contain them, as graphic, cographic, regular, algebraic, transversal and
cotransversal matroids. Therefore, similar results can be obtained con-
cerning completions and decomposition of matroids into graphic, co-
graphic, regular, algebraic, transversal and cotransversal matroids.
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4. Computing minimal vectorial completions

This section is devoted to the computation of the minimal vectorial
completions and decomposition of clutters. The problems under con-
sideration are far from being solved. However, here we present some
partial results.

4.1. Vectorial completions of clutters on a finite set of size at
most seven. In this subsection we provide a method to obtain the
vectorial completions and decompositions of clutters on a finite set of
size at most seven (Proposition 9). Our result involves two transfor-
mations of clutters: the I-transformation and the T -transformation.
Both transformations where introduced in [2]. Let us recall them.

Let Λ be a clutter on a finite set Ω. For a subset X ⊆ Ω, we denote
by IΛ(X) the intersection of the subsets A in Λ contained in X, that
is, IΛ(X) =

⋂
AA where A ∈ Λ and A ⊆ X. We say that a clutter Λ′

is an I-transformation of the clutter Λ if Λ′ = min
(
Λ ∪ {A1 ∩ A2}

)
where A1, A2 ∈ Λ are two different subsets with IΛ(A1 ∪ A2) 6= ∅.

The definition of the T -transformation is more involved. Let Λ be a
clutter. We define the elementary transformations T (1)(Λ) and T (2)(Λ)
of the clutter Λ as the clutters T (1)(Λ) = min

(
Λ ∪

{
(A1 ∪ A2) \ {x},

where A1, A2 ∈ Λ are different and x ∈ A1 ∩ A2

})
and T (2)(Λ) =

min
(
Λ ∪

{
(A1 ∪ A2) \ IΛ(A1 ∪ A2), where A1, A2 ∈ Λ are different}

)
.

Since T (1)(Λ) and T (2)(Λ) are clutters, we can apply the elementary
transformations again. Hence, for (i1, i2) ∈ {1, 2} × {1, 2} we can con-
sider the clutter T (i2)(T (i1)(Λ)). At this point we proceed in a recursive
way. Let r ≥ 2 be a non-negative integer and let (i1, . . . , ir) ∈ {1, 2}r
be an r-tuple. Then we define the clutter T (i1,...,ir)(Λ) by the recur-
sion formula T (i1,...,ir)(Λ) = T (ir)(T (i1,...,ir−1)(Λ)); that is, T (i1,...,ir)(Λ)
is the elementary transformation T (ir) of the clutter T (i1,...,ir−1)(Λ). We
say that a clutter Λ′ is a T -transformation of the clutter Λ if it is ob-
tained from Λ in this way, that is, if Λ′ = T (i1,...,ir)(Λ) for some r-tuple
(i1, . . . , ir).

We say that a clutter Λ′ is an (I, T )-transformation of the clutter Λ
if Λ′ can be obtained from Λ by applying successively I-transformations
or T -transformations; that is, if there exists a sequence of clutters

Λ = Λ′0  Λ′1  · · · Λ′r = Λ′

such that for i ≥ 1, either Λ′i is an I-transformation of Λ′i−1, or
Λ′i is a T -transformation of Λ′i−1. It is easy to check that if Λ′i is
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an I-transformation of Λ′i−1 then Λ′i−1 6 Λ′i; the same holds for T -
transformations (see [2, Lemma 7]). Therefore, since 6 is a partial
order, if Λ′ is an (I, T )-transformation of Λ, then Λ 6 Λ′.

It is clear that if Λ′ is an (I, T )-transformation of Λ and if Λ′′ is an
(I, T )-transformation of Λ′, then Λ′′ is an increased (I, T )-transformation
of Λ. A complete (I, T )-transformation of the clutter Λ is an (I, T )-
transformation Λ′ of Λ which cannot be increased; that is, an (I, T )-
transformation Λ′ of Λ such that Λ′ is the unique clutter which can be
obtained from Λ′ by applying I-transformations or T -transformations.

The next result states that by using the complete (I, T )-transformations
it is possible to compute all the minimal vectorial completions of a clut-
ter Λ on a finite set Ω of size at most seven.

Proposition 9. Let Λ be a clutter on a finite set Ω of size |Ω| ≤ 7.
Then, the minimal vectorial completions of the clutter Λ are the min-
imal complete (I, T )-transformations of Λ; that is, min

(
Vect (Λ)

)
=

min
(
{Λ1, . . . ,Λs}

)
where Λ1, . . . ,Λs are all the complete (I, T )-transformations

of Λ.

Proof Since Λ1, . . . ,Λs are complete (I, T )-transformations of Λ,
from the discussion above it follows that Λ 6 Λi for 1 ≤ i ≤ s.

Next we are going to prove that {Λ1, . . . ,Λs} ⊆ Vect (Λ). It is known
that if M is a matroid having fewer than eight elements, then M is
representable (see [4, Proposition 6.4.10]). Therefore, a clutter Λ′ on Ω
is a vectorial clutter if, and only if, the clutter Λ′ is the set of circuits
of a matroidM with ground set Ω. Hence, by applying [2, Proposition
5 and Proposition 8] we get that a clutter Λ′ is a vectorial clutter if,
and only if, Λ′ is the unique clutter which can be obtained from Λ′ by
applying I-transformations or T -transformations. Thus it follows that
the complete (I, T )-transformations of Λ are vectorial clutters, that is,
{Λ1, . . . ,Λs} ⊆ Vect (Λ).

Finally let us show that min
(
Vect (Λ)

)
= min

(
{Λ1, . . . ,Λs}

)
. Re-

call that since the set Ω has size |Ω| ≤ 7, a clutter Λ′ on Ω is a
vectorial clutter if and only if Λ′ is the set of circuits of a matroid
M with ground set Ω. Hence, from [2, Theorem 13] we get that
if Λ′ is a minimal element of the poset

(
Vect (Λ) , 6

)
, then there

exists a monotone increasing sequence of clutters Λ = Λ′0 � Λ′1 �
· · · � Λ′r = Λ′ such that for i ≥ 1, either Λ′i is an I-transformation
of Λ′i−1, or Λ′i is a T -transformation of Λ′i−1. Hence it follows that
min

(
Vect (Λ)

)
⊆ {Λ1, . . . ,Λs}. Since {Λ1, . . . ,Λs} ⊆ Vect (Λ), the

equality min
(
Vect (Λ)

)
= min

(
{Λ1, . . . ,Λs}

)
holds. �

We now give two examples to illustrate the above proposition.
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Example 10. First let us consider the clutter Λ = {{1, 2}, {1, 3}, {2, 3, 4}}
on the finite set Ω = {1, 2, 3, 4}. In this case only two clutters are ob-
tained by using or by combining I-transformations and T -transformations;
namely, the clutters Λ1 = {{1}, {2, 3, 4}} and Λ2 = {{1, 2}, {1, 3}, {2, 3}}.
Therefore Λ has only two complete (I, T )-transformations, and so from
Proposition 9 it follows that the minimal vectorial completions of the
clutter Λ are the minimal elements of {Λ1,Λ2}. In this case, Λ1 66 Λ2

and Λ2 66 Λ1, and so min
(
Vect (Λ)

)
= {Λ1,Λ2}. Observe that now

the vectorial decomposition of Λ given in Example 2 can be stated by
applying Theorem 4.

Example 11. Now, on the finite set Ω = {1, 2, 3, 4, 5, 6}, we con-
sider the clutter Λ = {{1, 2, 3}, {1, 4, 5}, {2, 3, 6}, {4, 5, 6}, {2, 3, 4, 5}}
(see [8, Example 4.7] for some properties of this clutter). It is a
straightforward calculation to check that Λ has seventeen complete (I, T )-
transformations Λ1, . . . ,Λ17. Specifically, by using only I-transformations
we obtain the clutter

Λ1 = {{2, 3}, {4, 5}};

while the clutters obtained by using only T -transformations are the clut-
ters


Λ2 = {{1, 6}, {1, 2, 3}, {1, 4, 5}, {2, 3, 6}, {4, 5, 6}, {2, 3, 4, 5}},
Λ3 = {A ⊆ Ω : |A| = 3}, and

Λ4 = {A ⊆ {2, 3, 4, 5} : |A| = 2} ∪ {{1, 2, 6}, {1, 3, 6}, {1, 4, 6}, {1, 5, 6}};

whereas the new clutters obtained by combining I-transformations and
T -transformations are the clutters Λ5, . . . ,Λ17, where
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

Λ5 = {{2, 3}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {4, 5, 6}},
Λ6 = {{2, 3}, {1, 6}, {1, 4, 5}, {4, 5, 6}},
Λ7 = {{4, 5}, {1, 2, 3}, {1, 2, 6}, {1, 3, 6}, {2, 3, 6}},
Λ8 = {{4, 5}, {1, 6}, {1, 2, 3}, {2, 3, 6}},
Λ9 = {{1}, {6}, {2, 3, 4, 5}},
Λ10 = {{1}} ∪ {A ⊆ {2, 3, 4, 5, 6} : |A| = 3},
Λ11 = {{6}} ∪ {A ⊆ {1, 2, 3, 4, 5} : |A| = 3},
Λ12 = {{2}, {3}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {4, 5, 6}},
Λ13 = {{2}, {3, 4}, {3, 5}, {4, 5}, {1, 3, 6}, {1, 4, 6}, {1, 5, 6}},
Λ14 = {{3}, {2, 4}, {2, 5}, {4, 5}, {1, 2, 6}, {1, 4, 6}, {1, 5, 6}},
Λ15 = {{4}, {5}, {1, 2, 3}, {1, 2, 6}, {1, 3, 6}, {2, 3, 6}},
Λ16 = {{4}, {2, 3}, {2, 5}, {3, 5}, {1, 2, 6}, {1, 3, 6}, {1, 5, 6}}, and

Λ17 = {{5}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 6}, {1, 3, 6}, {1, 4, 6}}.

Therefore, by applying Proposition 9 we obtain that the set of the mini-
mal vectorial completions of Λ is min

(
Vect (Λ)

)
= min

(
{Λ1, . . . ,Λ17}

)
=

{Λ1,Λ2,Λ3,Λ5,Λ7}. So, from Theorem 4 we conclude that Λ admits a
vectorial decomposition with five components. We remark that the clut-
ters Λ1 and Λ2 alone already give a vectorial decomposition of Λ. It
is though not always the case that such decompositions exist with two
components; for instance, Example 15 from [2] needs at least three com-
ponents.

4.2. Binary completions and decomposition of non-binary ma-
troids. A binary matroid is one that is representable over the finite
field Z/(2). The goal of this subsection is to compute the minimal
binary completions of the excluded minor of binary matroids.

The uniform matroid U2,4 is the matroid on a ground set Ω such that
|Ω| = 4 and with set of circuits C(U2,4) = {C ⊆ Ω : |C| = 3}. It is well
known that the uniform matroid U2,4 is the unique excluded minor for
Z/(2)-representability (see [4, Theorem 9.1.5]).

The uniform matroid U2,4 is K-representable if and only if K 6= Z/(2)
(see [4, Proposition 6.5.2]). Therefore, by applying Corollary 7 we ob-
tain that min

(
Vect (U2,4)

)
= {U2,4}; that min

(
VectK (U2,4)

)
= {U2,4}

if K 6= Z/(2), and that min
(
VectZ/(2) (U2,4)

)
has at least two elements.

Our goal is to compute the minimal Z/(2)-vectorial completions of U2,4.
The following proposition states that the poset

(
VectZ/(2) (U2,4) , 6

)
has six minimal elements.
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Proposition 12. The minimal binary completions of the uniform ma-
troid U2,4 on Ω = {1, 2, 3, 4} are the matroids M1,2,M1,3,M1,4,M2,3,
M2,4,M3,4 where, if 1 ≤ i1 < i2 ≤ 4, and if {i3, i4} = {1, 2, 3, 4} \
{i1, i2}, thenMi1,i2 is the matroid with ground set Ω and set of circuits
C(Mi1,i2) = {{i1, i2}, {i1, i3, i4}, {i2, i3, i4}}.

Proof The set of circuits of the uniform matroid U2,4 is C(U2,4) =
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. So U2,4 6 Mi1,i2 for 1 ≤ i1 <
i2 ≤ 4. Moreover, the matroidMi1,i2 is binary (indeed the vectors vi1 =
vi2 = (1, 0), vi3 = (1, 1) and vi4 = (0, 1) provide a Z/(2)-representation
ofMi1,i2). Therefore we have that {M1,2,M1,3,M1,4,M2,3,M2,4,M3,4} ⊆
VectZ/(2) (U2,4). Observe that Mi1,i2 66 Mi′1,i

′
2

if (i1, i2) 6= (i′1, i
′
2). To

complete the proof we just need to show that ifM is a binary comple-
tion of U2,4 then there exist 1 ≤ i1 < i2 ≤ 4 such that Mi1,i2 6M.

Let M be binary completion of U2,4. As U2,4 6 M, any set of 3
elements is dependent inM. If every 3-element set of Ω were a circuit
of M, then {C ⊆ Ω : |C| = 3} ⊆ C(M), hence {C ⊆ Ω : |C| = 3} =
C(M) and so U2,4 =M, which leads us to a contradiction because the
matroid M is binary. Therefore {C ⊆ Ω : |C| = 3} ⊆ C(M)+ and
{C ⊆ Ω : |C| = 3} 6⊆ C(M), and so there exists a 2-element set of Ω
which is dependent in M. By symmetry, we can assume that {1, 2} is
dependent inM. Then it is straightforward to check thatM1,2 6M,
as needed. �

Remark 13. Observe that from this result, and by applying Corol-
lary 7, it follows that the non-binary matroid U2,4 admits a Z/(2)-
vectorial decomposition with six components. However, in this case the
decomposition can be achieved with only two components. More con-
cretely, let N1 and N2 be any two of the minimal binary completions
of U2,4. Then it is easy to check that C(U2,4) = min

({
C1 ∪ C2 : Ci ∈

C(Ni)
})

.

4.3. Completions and decomposition of the non-Fano matroid.
In this subsection we describe the minimal 2-vectorial completions of
the non-Fano matroid, which is one of the excluded minors of repre-
sentable matroids over a field of characteristic two (see [4, Proposition
6.5.6]).

Let Ω be the finite set of seven points Ω = {1, 2, 3, 4, 5, 6, 7}. The
Fano matroid F7 and the non-Fano matroid F−7 are the matroids with
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ground set Ω and sets of circuits

C(F7 ) = {{1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 4, 6}, {2, 5, 7}, {3, 4, 5}, {3, 6, 7},
{1, 2, 4, 5}, {1, 2, 6, 7}, {1, 3, 4, 6}, {1, 3, 5, 7},
{2, 3, 4, 7}, {2, 3, 5, 6}, {4, 5, 6, 7}};

C(F−7 ) = {{1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 5, 7}, {3, 4, 5}, {3, 6, 7},
{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 6, 7}, {1, 3, 4, 6}, {1, 3, 5, 7},
{2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 5, 6},
{2, 4, 5, 6}, {2, 4, 6, 7}, {4, 5, 6, 7}}.

Geometric representations of these two matroids are given in Figure 1.

1

2

3
4

7 6

5

F7

1

2

3
4

7 6

5

F−7

Figure 1. Geometric representations of F7 and F−7 .
The circuits correspond to sets of 3 collinear elements
and sets of 4 elements no 3 of them being collinear.

These matroids are representable matroids. Namely F7 isK-representable
if and only if the characteristic of K is two; while F−7 is K-representable
if and only if the characteristic of K is not two (see [4, Proposition
6.4.8]). Moreover, the non-Fano matroid F−7 is an excluded minor
of 2-representable matroids (see [4, Proposition 6.5.6]). Therefore,
by applying Corollary 7 we obtain that min

(
Vect (F−7 )

)
= {F−7 };

that min
(
Vectp (F−7 )

)
= {F−7 } if p 6= 2 is a prime integer; and that

min
(
Vect2 (F−7 )

)
has at least two elements. The next proposition

states that
(
Vect2 (F−7 ) , 6

)
has nine minimal elements. The matroids

in min
(
Vect2 (F−7 )

)
, except F7 and up to isomorphism, are depicted in

Figure 2.

Proposition 14. The minimal 2-vectorial completions of the non-Fano
matroid F−7 are the Fano matroid F7 and the matroidsM1,1,M1,3,M1,5,M1,7,
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M2,0,M2,2,M2,4,M2,6 with ground set Ω and sets of circuits:
C(M1,1) = {{1}} ∪ {C ∈ C(F−7 ) : C ⊆ Ω \ {1}},
C(M1,3) = {{3}} ∪ {C ∈ C(F−7 ) : C ⊆ Ω \ {3}},
C(M1,5) = {{5}} ∪ {C ∈ C(F−7 ) : C ⊆ Ω \ {5}},
C(M1,7) = {{7}} ∪ {C ∈ C(F−7 ) : C ⊆ Ω \ {7}},

C(M2,0) = {{1, 3}, {1, 5}, {1, 7}, {3, 5}, {3, 7}, {5, 7}}∪
∪ {{1, 2, 4, 6}, {2, 3, 4, 6}, {2, 4, 5, 6}, {2, 4, 6, 7}},

C(M2,2) = {{1, 3}, {5, 7}}∪
∪ {A ⊆ Ω \ {2} such that |A| = 3 and {1, 3}, {5, 7} 6⊆ A},

C(M2,4) = {{1, 7}, {3, 5}}∪
∪ {A ⊆ Ω \ {4} such that |A| = 3 and {1, 7}, {3, 5} 6⊆ A},

C(M2,6) = {{1, 5}, {3, 7}}∪
∪ {A ⊆ Ω \ {6} such that |A| = 3 and {1, 5}, {3, 7} 6⊆ A}.

1

4

7

6

3

2

5

1
3

2

4

6

5
7

M2,0

1

2

4 6

3 7

5

M2,2M1,1

Figure 2. Geometric representations of the matroids
M1,1, M2,0 and M2,2. Here two elements lying on the
same point form a 2-element circuit and an element inside
a box is a 1-element circuit.

Proof Let Σ = {F7,M1,1,M1,3,M1,5,M1,7,M2,0,M2,2,M2,4,M2,6}
and take M ∈ Σ. On one hand, by using Lemma 1 it is not hard to
check that F−7 6 M. On the other, from [4, Proposition 6.4.8] and
from the excluded minor characterizations [4, Proposition 6.5.4 and
Proposition 6.5.6] we get that there exists a field K of characteristic
two such that M is K-representable. So we conclude that if M ∈ Σ
then F−7 6 M and M is 2-representable, that is, M is a 2-vectorial
completion of the non-Fano matroid.

From the above we have that Σ ⊆ Vect2 (F−7 ). In addition, by us-
ing Lemma 1 it is a straightforward proof to check that M 66 M′ if
M,M′ ∈ Σ are different. Hence we have that Σ ⊆ Vect2 (F−7 ) and
that two different matroids of Σ are not comparable. Therefore the
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proof of the proposition will be completed by showing that if N is a
2-vectorial completion of F−7 , then there exists a matroidM∈ Σ such
that M 6 N .

So from now on, let N be a 2-representable matroid with ground set
Ω and such that F−7 6 N .

We must demonstrate that M 6 N for some M ∈ Σ. In order to
do this, we distinguish three cases according to the circuits of N . We
systematically use Lemma 1 to compare matroids under the relation
6.

Case 1: {2, 4, 6} ∈ C(N )+.

We claim that, in such a case, F7 6 N . Indeed, if {2, 4, 6} is a de-
pendent set of N , then there exists a circuit C0 ∈ C(N ) such that C0 ⊆
{2, 4, 6}, and hence we get that F7 6 N because C(F7) \ {{2, 4, 6}} ⊆
C(F−7 ) and F−7 6 N . So, if {2, 4, 6} ∈ C(N )+, then F7 6 N .

Case 2: {2, 4, 6} 6∈ C(N )+ and N has a 1-element circuit.

In such a case we are going to prove that there exists i ∈ {1, 3, 5, 7}
such that M1,i 6 N . Let C0 be a 1-element circuit of N . Since
{2, 4, 6} 6∈ C(N )+, there exists i ∈ {1, 3, 5, 7} such that C0 = {i} ∈
C(N ). Then for all C ∈ C(M1,i), either C = {i}, or there exists
C ′ ∈ C(N ) such that C ′ ⊆ C, (because if i 6∈ C ∈ C(M1,i) then
C ∈ C(F−7 ) and F−7 6 N ). Therefore, M1,i 6 N , as we wanted to
prove.

Case 3: {2, 4, 6} 6∈ C(N )+ and |C| ≥ 2 for all C ∈ C(N ).

This is the last case that we must consider. Now, the proof of the
proposition will be completed by showing that, in this case, there exists
j ∈ {0, 2, 4, 6} such that M2,j 6 N . In order to prove this we will use
some basic matroid theory facts that are recalled in the following. For
a subset S ⊆ Ω, let the closure of S in N be cl(S) = S ∪ {x ∈ Ω :
there is C ∈ C(N ) such that x ∈ C ⊆ S ∪ {x}}. Then, the following

statements hold:

(a) If {a, b} and {a, c} are circuits of N , then {b, c} is also a circuit
of N .

(b) If {a, b} is a circuit ofN then cl({a, c}) = cl({b, c}) for all c ∈ Ω.
(c) If y ∈ cl(S), then cl(S ∪ {y}) = cl(S).
(d) If T ⊆ cl(S) and T ∪ {x} ∈ C(N ), then x ∈ cl(S).
(e) Every subset of cl(S) with more than |S| elements is dependent.
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The first statement is an immediate application of the weak circuit
elimination property. To prove the other four statements, let us inter-
pret the closure operator when N is the column matroid of the matrix
A (which in fact is the only case that we need here). Recall that,
in such a case, circuits correspond to minimal sets of linearly depen-
dent columns, and thus the closure of a set S consists of the columns
of A that are in the linear span of the columns corresponding to S.
Therefore, the properties (b)–(e) are clear from properties of linear
dependence. This completes the proof of the five statements.

Hereafter, we finalize the proof of the proposition.

We are assuming that N is a 2-vectorial completion of F−7 such that
{2, 4, 6} is not a dependent set of N and that no singleton is a circuit
of N (that is, N is loopless). In such a case we are going to prove that
M2,j 6 N for some j ∈ {0, 2, 4, 6}. We proceed by three steps.

Step 1. There exists a circuit C ∈ C(N ) with |C| = 2.

Proof. Let us assume that N has no circuit of size 2. We have
then that every 3-element circuit of F−7 is also a circuit of N because
F−7 6 N . At this point observe that if X ⊆ Ω is a subset with |X| ≥ 3,
then either X ⊆ C ′ or C ′ ⊆ X for some C ′ ∈ C(F−7 ). Therefore, if
C(F−7 ) ⊆ C(N ) then C(F−7 ) = C(N ) and thus F−7 = N which leads
us to a contradiction because the matroid N is 2-representable. Hence
it follows that C(F−7 ) 6⊆ C(N ) and so, since F−7 6 N , some 4-element
circuit of F−7 must properly contain a 3-element circuit C0 of N . Up to
symmetry, there are three possibilities for this circuit C0 ofN : {1, 2, 4},
{1, 3, 4} and {1, 3, 5}. In order to obtain a contradiction, we analyze
each one of the different situations that may occur.

First assume that C0 = {1, 2, 4} ∈ C(N ). Consider L = cl({1, 2}),
which by property (c) equals cl({1, 4}) (all closures are taken in N ).
Now the circuit {1, 2, 3} forces 3 to be in L (recall that every 3-element
circuit of F−7 is also a circuit of N ); similarly, the circuit {1, 4, 7}
forces 7 to belong to L. But now the circuit {3, 6, 7} gives that 6 is in
L. Thus {2, 4, 6} ⊆ L = cl({1, 2}) and hence {2, 4, 6} is dependent by
property (e), which is impossible as we are assuming that {2, 4, 6} is
independent.

Next assume that C0 = {1, 3, 4} ∈ C(N ). In such a case we have
that {1, 2, 3}, {1, 3, 4} ∈ C(N ) and so, from the weak circuit elimination
property, it follows that {1, 2, 4} ∈ C(N ). At this point, a contradiction
is obtained by applying the previous case.

Now assume that C0 = {1, 3, 5}. So we have {1, 2, 3}, {1, 3, 5} ∈
C(N ). Hence, from the weak circuit elimination property we get that
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{1, 2, 5} ∈ C(N ). Thereby {1, 2, 6} ∈ C(N ) because {1, 5, 6} ∈ C(N ).
In this case a contradiction is obtained by applying the first case to
C ′0 = {1, 2, 6}.

This completes the proof of the first step.

Step 2. There exists a circuit C ∈ C(N ) with |C| = 2 and C ⊆
{1, 3, 5, 7}.

Proof. Assume that no two elements of {1, 3, 5, 7} form a circuit of
N . On one hand, {2, 4, 6} is not a dependent set of N . On the other,
from the previous step N has some 2-element circuit. Therefore, by
symmetry, we may assume that {1, 2} ∈ C(N ). We have that {1, 4}
is independent, as otherwise property (a) would imply that {2, 4} is
a circuit; similarly, we get that {2, 7} is also independent. Consider
L′ = cl({1, 4}); as {1, 2} ∈ C(N ), the element 2 belongs to L′. The
circuit {1, 4, 7} of F−7 forces 7 to be in L′ because F−7 6 N . Since
{2, 5, 7} ∈ C(F−7 ) and F−7 6 N , but {2, 7} 6∈ C(N ), there exists C ∈
C(N ) such that 5 ∈ C ⊆ {2, 5, 7}, and hence property (d) gives that
5 ∈ L′ because 2, 7 ∈ L′. Similarly, as {1, 5, 6} ∈ C(F−7 ) and we are
assuming that {1, 5} 6∈ C(N ), we deduce that 6 belongs to L′. But now
{2, 4, 6} ⊆ L′ = cl({1, 4}) and thus it is dependent by property (e),
which is not possible.

Step 3. There exists j ∈ {0, 2, 4, 6} such that M2,j 6 N .

Proof. Recall that we are assuming that {2, 4, 6} 6∈ C(N )+ and
that N is loopless. From the previous step, {1, 3, 5, 7} contains a 2-
element circuit. By symmetry, assume {1, 3} ∈ C(N ). If both {1, 5}
and {1, 7} are also circuits, then by property (a) every 2-element subset
of {1, 3, 5, 7} is a circuit of N and one easily checksM2,0 6 N because
F−7 6 N .

So let us assume that {1, 3} ∈ C(N ) but {1, 5} 6∈ C(N ), and thus by
property (a) we get that {3, 5} 6∈ C(N ). Now consider L′′ = cl({1, 5}),
that equals cl({3, 5}) by property (b). As {1, 5, 6} and {3, 4, 5} are
dependent in N , the elements 6 and 4 belong to L′′. Observe that
2 6∈ L′′ because if so the set {2, 4, 6} would be dependent in N by
property (e).

Now observe that it cannot be that both {1, 4} and {3, 6} are circuits
of N , since it that were the case, applying property (a) twice we would
get that {4, 6} ∈ C(N ), contrary to {2, 4, 6} being independent in N .

Assume by symmetry that {1, 4} 6∈ C(N ). Then, as {1, 4, 7} ∈
C(N )+, there is a circuit C ofN such that 7 ∈ C ⊆ {1, 4, 7}. Therefore,
since 1, 4 ∈ L′′, the element 7 also belongs to L′′ by property (d). Thus,
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L′′ contains all elements except 2. Now consider the set {2, 5, 7} ∈
C(N )+; because 2 6∈ L′′, it is forced that {5, 7} ∈ C(N ). So we have that
{1, 3} and {5, 7} are circuits of N and that L′′ = cl({1, 5}) = Ω \ {2}.
Hence we conclude that M2,2 6 N , as we wanted to prove.

This step completes the proof of the third case, and so the proof of
the proposition. �

Remark 15. Since
(
Vect2 (F−7 ) , 6

)
has nine minimal elements, from

Corollary 7 we conclude that the non-Fano matroid F−7 admits a 2-
vectorial decomposition with nine components. However, as in the case
of U2,4, it is possible to obtain a decompositon of F−7 by using only some
of the minimal completions obtained in Proposition 14. Namely, if N1

and N2 are two such minimal completions, then

C(F−7 ) = min
({
C1 ∪ C2 : Ci ∈ C(Ni)

})
if and only if either N1 or N2 is the Fano matroid F7.
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