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Abstract 

An increasing number of dental applications based on yttria-stabilized zirconia (3Y-TZP) have been 

developed in recent years as a result of the advances and versatility of dry-processing and soft machining at 

the pre-sintered state. Nonetheless, the long-term surface stability of these materials in humid environment is 

still a matter of concern and may limit its application. In this work, a simple method to prevent hydrothermal 

degradation on zirconia surface is studied in detail. This method involves the infiltration of pre-sintered parts 

with optimized solutions containing Ce salts, leaving unchanged the other processing steps, allowing the 

diffusion of Ce during conventional sintering. Several pre-sintering conditions, solution concentrations and 

sintering temperatures were studied and characterized, obtaining working parameters for the production of 

zirconia parts with mechanical properties similar to standard 3Y-TZP and high resistance to hydrothermal 

aging. This optimal combination was obtained with the 1150 ºC pre-sintering temperature, 50 wt% solution 

and sintering at 1450 ºC, leading to a superficial CeO2 content of about 3 mol%. 
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1 Introduction 

Tetragonal polycrystalline zirconia stabilized with 3 mol% of yttria (3Y-TZP) is a 

biocompatible ceramic with good mechanical properties and a white translucent color, which makes 

it suitable as a structural material in biomedical implants and dentistry. Transformation toughening 

is the mechanism behind the mechanical behavior of 3Y-TZP. The tetragonal phase, stable above 

1000 ºC in pure zirconia, is retained to room temperature in a metastable state by adding a suitable 

amount of yttria, which acts as stabilizer. This metastable phase is able to undergo stress-induced 

transformation thanks to the high stresses arising in front of a crack under external loading. The 

product is the stable monoclinic phase, which has a specific volume approximately 4.5% higher 

than the tetragonal phase. This local transformation has a displacive character and the increase in 

volume generates compressive stresses around the growing crack, hindering its propagation and 

thus increasing the fracture toughness of the material. The transformability of the tetragonal phase 

is the key parameter in Y-TZP: the stabilizer content should be high enough to avoid transformation 

during cooling from the sintering temperature, but low enough to guarantee metastability in the 

tetragonal phase so that t-m transformation can be activated by stress. With 3 mol% of yttria, a fair 

combination of bending strength (higher than 1000 MPa) and fracture toughness (about 5 MPa√m) 

can be achieved [1]. 

1.1 Zirconia in arthroplasty and dentistry 

Zirconia started to be employed in total hip arthroplasty in the late 80’s, when it became an 

alternative to alumina for manufacturing femoral heads, since its higher strength and fracture 

toughness could offer more flexibility in terms of design and the possibility to implant less invasive 

prosthesis. In the last years, 3Y-TZP has also been used for the production of various dental devices 

(crowns, bridges, abutments, fixed partial dentures-FPDs and dental implants), where translucency 
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and easy color modification for matching teeth shade represent big advantages for 3Y-TZP with 

respect to metal and metal-ceramic parts [2,3]. 

The production of 3Y-TZP femoral heads dropped drastically after finding that slight 

alterations in the processing steps could lead to failure of ceramic balls partly due to low-

temperature degradation (LTD) [4]. This phenomenon, often referred to as hydrothermal 

degradation or aging, occurs in humid environments and at moderate temperatures (including 

human body temperature). LTD consists of the spontaneous and progressive formation of 

monoclinic phase under hydrothermal exposure, inducing surface roughening, localized stress, 

microcracking and often grain pull-out. The effects of LTD become evident when degraded parts 

are subjected to wear since large quantities of debris are produced and the wear rate dramatically 

increases with respect to non-degraded zirconia [5]. Even though in near fully-dense 3Y-TZP parts 

LTD may only interest a superficial layer of few micrometers, in poorly sintered pieces with 

significant residual porosity, the bulk may be affected leading eventually to failure [6]. For these 

reasons, new composites of alumina/zirconia (zirconia-toughened alumina, ZTA) have been 

developed, which offer similar or improved mechanical properties and are barely affected by LTD. 

However, 3Y-TZP is now attracting increasing interest in dentistry, thanks to the latest 

improvements in CAD/CAM processing and the possibility to color the visible parts by doping or 

by veneering to match the natural teeth shade [7,8]. It is also becoming clear that zirconia can be 

osseoconductive, so dental implants with tailored superficial porosity and roughness are being 

developed [9]. In these applications, a solid anchor of the implant to the bone is needed during the 

whole life of the patient. Due to the relatively high cyclic contact loading during mastication, crack 

nucleation and propagation by subcritical crack growth should be avoided, therefore the effect of 

the environment must be considered. In the current generation of 3Y-TZP, a small content of Al 

(less than 0.5%) is added in order to reduce the LTD kinetics [10], but the material still suffers from 

this phenomenon. Even though the effects of LTD on the flexural strength of dental zirconia under 
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monotonic and cyclic loading seems to be limited and dependent on the aging time [11,12], this 

issue is still a matter of concern [13–15] and represents an impediment to the development of all-

ceramic dental systems. Better solutions are therefore needed to overcome the problem, which is the 

subject of this work. 

1.2 Ce doping in zirconia 

The presence of vacancies in the ZrO2 lattice generated by Y2O3 addition has been recognized 

as the key point for stabilization of the tetragonal phase at room temperature. During hydrothermal 

aging these vacancies may operate as hosting sites for the diffusion of water species from the 

surrounding environment, reducing their number and destabilizing the tetragonal crystal structure 

[16]. Other stabilizers can be employed instead of Yttrium. In the case of Cerium, due to the 

tetravalent character of Ce
4+

 ion that forms solid solution with zirconia, the vacancy mechanism is 

not operative, and therefore the stabilization of the tetragonal phase given by Ce
4+

 is imputable to 

the oversized dimension of this ion. Ce
+4

 forms a random substitutional solution into the Zr 

tetragonal lattice, but adopting a more symmetric 8-fold coordination due to the bigger size of Ce
4+

 

with respect to Zr
4+

, resulting in decreased tetragonality of the unit cell, and the stabilization of the 

tetragonal and cubic phases
 
[17]. 

Ce-stabilized zirconia (Ce-TZP) is far more resistant to hydrothermal ageing than 3Y-TZP [18]. 

However, both 10 Ce-TZP and 3Y-TZP have almost the same t–m transformation temperature T0, 

implying a similar driving force for transformation. Therefore, materials with the same driving 

force (as can be estimated in terms of T0 ) can exhibit very different LTD kinetics [18,19]. The 

slower kinetics in Ce-TZP may be reasonably related to the lack of extrinsic vacancies when Ce is 

still in the initial oxidized state 4+. The first steps of degradation may thus be blocked and this 

could explain why aging is strongly retarded. Nevertheless, hydrothermal aging is still present in 

Ce-TZP, with a very sluggish kinetics, so the explanation offered is not sufficient. Probably, the 



5 

 

vacancies naturally present in zirconia lattice at room temperature or retained after sintering are 

responsible for inducing aging. The presence of a limited amount of Ce
3+

 ions is also not to be 

excluded [20]. Other authors state that ceria apparently segregates into grain boundary or produces 

a thin film of CeO2 on the surface of the sample, preserving Y-TZP “active points” that would be 

responsible for initiating the aging phenomenon [21].  

Cerium can be added to Y-TZP improving significantly the aging resistance. Nonetheless, it 

has been observed that the co-doping increases the grain size and somehow reduces the sintering 

capabilities of the material leaving some residual porosity [22]. Indeed, the development of new 

materials stabilized with both Ce and Y will be confronted to the challenge of finding the right 

balance between Ce and Y in order to optimize both mechanical and aging behaviors. Increasing Ce 

and Y content may produce high hydrothermal ageing resistance but low fracture toughness because 

of lower transformability [18] as it occurs with the sole Y doping when its content is increased over  

3 mol%. On the other side, doping with only high Ce concentration makes the material immune to 

LTD but also induces low hardness and strength. 

Another possible strategy is to increase the Ce content only in the superficial region. Diffusion 

of ceria in the surface of zirconia was performed by heat-treating Y-TZP into ceria powder beds 

[23]. In a similar fashion, Marro et al. [24] have either pressed a layer of CeO2 powder on the 

surface of dense 3Y-TZP or deposited a thin film of ceria on the surface, followed by annealing to 

allow diffusion into 3Y-TZP. As a result, hydrothermal aging was prevented on the Ce-rich face in 

both cases, without impairing surface mechanical properties with respect to the standard 3Y-TZP. 

The objective of the present paper is precisely to study a method for adding ceria to 3Y-TZP, 

with higher concentrations in the surface, in order to improve its long-term surface stability. The 

method should easily adapt to dry processing of zirconia ceramic parts, commonly used to 

manufacture dental prosthesis. This method starts from spray-dried granules of sub-micrometric 

powders with tailored characteristics, which are usually pressed isostatically in a deformable mold. 
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The green piece is then pre-sintered in air, obtaining a porous machinable preform which can be 

soft machined via CAD/CAM before sintering in air between 1350 and 1600 ºC [25]. Infiltration 

processing was chosen for this purpose since it can be easily adapted to dry-processing. By this 

method, the pre-sintered blank is infiltrated with a Ce solution after soft machining, leaving 

unchanged the other usual processing steps. 

1.3 Infiltration processing  

Infiltration processing has been employed to add alumina to zirconia by soaking pre-sintered 

cylinders into molten Al nitrate salts [26]. Infiltration with Ce acetate was adopted for coloring 

purposes, observing no change in mechanical properties up to concentration of 5 wt% in water 

solutions [7]. Ce nitrate has been used for powder coating since this highly soluble salt distributes 

evenly once the solvent is evaporated, obtaining CeO2 after calcination [27]. 

In Duh et al. [28], pellets of pressed zirconia, either mixed with CeO2 or Y2O3 by the co-

precipitation method, were infiltrated in the green state with Y nitrate and Ce nitrate solutions, 

respectively, and the properties of the resulting materials were compared, mainly in terms of 

fracture toughness and aging behavior. Unfortunately, no information was provided on the strength, 

the actual yttria and ceria contents, or their distribution in the final materials. Finally, it was shown 

in a previous communication that infiltration of dental posts in the pre-sintered state with Ce nitrate 

did not reduce the strength [29]. 

In the present work, we investigate processing conditions for the co-doping of 3Y-TZP with Ce 

by liquid infiltration with the objective of increasing significantly the aging resistance without 

affecting negatively mechanical properties. For doing so, we describe the influence of several Ce 

solution concentrations, pre-sintering and final sintering temperatures on microstructure, 

processability and mechanical properties. 
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2 Materials and methods 

2.1 Material preparation 

3Y-TZP spray-dried TZ-3YSB-E powders (Tosoh corp.) were isostatically pressed into 

cylindrical rods at 200 MPa during 10 min. The green body was then pre-sintered in air in a tubular 

furnace with heating/cooling ramps of 3º/min and dwell times of one hour at 700 ºC (to evacuate 

processing additives) and at the final pre-sintering temperature. In a preliminary study, 1100 ºC, 

1200 ºC and 1300 ºC temperatures were selected for pre-sintering, while the additional temperature 

of 1150 ºC was later incorporated for process optimization. Nonetheless, results will be presented 

altogether for the four pre-sintering temperatures, labeling the four conditions as “1100”, “1150”, 

“1200” and “1300” in order of increasing temperature. The pre-sintered rods were cut into discs of 

about 9.5 mm in diameter and 2.2 mm in thickness using a diamond disc (Struers Cutoff Diamond 

Wheel). The discs were ground (Struers MD-Piano 220) and washed several times with distilled 

water in ultrasonic bath. This ground and clean state can be reasonably compared to the condition of 

soft-machined prosthesis. 

Liquid solutions were prepared by mixing Ce III Nitrate Hexahydrate (Alfa Aesar) at 

prescribed concentrations (50 wt% and 75 wt%) in ethanol (C2H5OH), although it was later proved 

that similar results could be obtained by using distilled water as a solvent. The letters L and H (low 

and high concentration, respectively) will be added to the pre-sintering temperature codes to refer to 

the two concentrations. 

Infiltration of the pre-sintered blanks was carried out at ambient pressure by soaking the discs 

into the infiltrating solutions for a fixed time of two hours. The beakers containing the infiltrating 

solution were periodically stirred to expose both discs faces with direct contact with the solution. 

Initially, the infiltration was performed both at room temperature and at the solution boiling 

temperature (by recirculating the solution with a Soxhlet heater/condenser), though no significant 
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influence of this parameter could be appreciated, so only results for room temperature infiltration 

will be reported. After infiltration, the surface of the samples was rapidly dried from the solution in 

excess with clean laboratory paper and accommodated in vertical position on an alumina boat, 

avoiding contact between samples. The solvent was evaporated in an oven at around 60 ºC and the 

specimens were later sintered with 3 ºC heating/cooling rates and dwell time of 2 hours at 1450 ºC. 

A set of non-infiltrated specimens was also directly sintered under the same conditions, obtaining 

the reference material, which will be referred to as-sintered, “AS”. 

Some sets of specimens pre-sintered at 1150 ºC and infiltrated with 50 wt% solution, which 

showed good overall properties, were sintered both at the reference sintering temperature (1450 ºC) 

and at higher temperatures (1550 ºC and 1600 ºC). The objective was to evaluate the effect of 

increasing the grain size on transformability and resistance to LTD after the addition of Ce. The 

three materials compared here are labeled “S1450” (formerly named “1150L”), “S1550” and 

“S1600”, in order of increasing sintering temperature. 

After sintering, the samples were ground and polished down to a superficial roughness of less 

than 0.02 µm. The surface material layer removed during preparation of the samples was of about 

15 µm. For cross-sectional analysis, fully sintered non-polished discs were cut along the diameter 

with a diamond cutting disc and the section was ground and polished with diamond films using a 

tripod fixture to minimize edge effects. 

2.2 Characterization 

Density and apparent porosity were measured by Archimedes’ method at the sintered and pre-

sintered states, according to the guidelines of ASTM C 20-00 standard [30]. Apparent porosity is 

defined as the open porosity permeable to distilled water. Pore size was estimated at the pre-sintered 

condition by mercury intrusion porosimetry (MIP) employing a Micrometrics AutoPore IV 9500. 

The Washburn model, which considers pores of cylindrical geometry and is widely employed in 
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this technique, was applied in the calculation of pore diameter. The technique actually measures the 

largest entrance towards a pore rather than the real pore size, giving so smaller values than the real 

ones. Although the real pore shape is quite different from a cylinder, especially at low-densification 

states, this technique gives generally good and reproducible results [31]. The surface of washed 

blanks was finally imaged by scanning electron microscopy (SEM) with a JEOL JSM 6400. 

The CeO2 content profile was measured by Wavelength Dispersive X-Ray Spectrometry 

(WDS) with an electron microprobe (Cameca sx50) at a voltage of 15 kV along the polished cross-

section of sintered discs. Qualitatively similar results were obtained by using Energy-Dispersive X-

ray Spectroscopy (EDS). The microstructure was characterized on polished samples after thermal 

etching (1350 ºC, 1h) by imaging the specimens in the scanning electron microscope (SEM) (JEOL 

JSM 6400 or Zeiss Neon 40). Grain size was measured by the linear intercept method. 

To evaluate the hydrothermal aging resistance, several polished specimens per condition were 

exposed to accelerated aging in autoclave at 134 ºC and 2 bar water vapor pressure during 30 h. 

This degradation time was chosen to be representative of more than an average implant life, since 

according to the degradation kinetics described in Ref. [32] it roughly compares to 60 years in vivo, 

(note that this equivalence holds only for stress-free materials). X-Ray Diffraction (XRD) patterns 

were collected before and after the exposure with a Bruker D8 Advance diffractometer using Cu-

K radiation and /2 configuration. In this way, the monoclinic phase content (Vm%) could be 

determined using the equation proposed by Toraya et al. [33], giving a comparable measure of the 

aging resistance. 

Biaxial strength was measured in a ball on three ball configuration by employing an Instron 

8562 servohydraulic testing machine. The maximum biaxial stress at the centre of the tensile face 

was calculated with the equation proposed by Fett et al. [34]. The ball diameter used in this set-up 

was of 6 mm and the crosshead loading rate was adapted according to the specimen thickness, in 

order to generate a load rate in the sample of approx. 23 MPa/s. 
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Indentation fracture (IF) toughness was estimated using a Vickers indenter and a load of 10 kg 

(HV10) on the polished specimens. This indentation induces four symmetrical Palmqvist cracks in 

3Y-TZP, which were measured by laser scanning confocal microscopy (LSCM). Several equations 

have been proposed for the calculation of the IF toughness, leading to substantially different results, 

but all of them involve hardness, elastic modulus and the ratio c/a, where c is the distance between 

the center of the indentation and the extremity of the crack and a is half of the diagonal of the 

indentation mark. Here, the equation proposed by Niihara et al. [35] was employed in the 

calculation. However, since it was observed that in some of the compositions indentation cracks 

were not exactly of Palmqvist type, the c/a ratio is also reported as a direct measure of the 

resistance to cracking by indentation. To get a more complete comparison among similar materials, 

the shape of the induced cracks was also observed by LSCM on the fracture surface of indented 

discs broken under biaxial loading. An artificial degradation exposure of 10 h was applied to mark 

the indentation crack profile, as detailed in Ref. [36]. Micro-Raman spectroscopy was performed 

(Horiba Jobin-Yvon LabRAM HR 800) by scanning with a 532 nm solid state diode laser across an 

indentation crack, at a fixed distance of 50 µm from its tip, with steps of 1 µm. By applying the 

equation proposed by Katagiri [37], the amount of monoclinic phase can be estimated locally, so the 

transformability can be compared. Vickers hardness was measured using both 10 kg and 500 g 

loads.  

2.3 Statistical analysis 

One-way analysis of variance (ANOVA) with a Tukey post-hoc test was employed in the 

statistical analysis for all the tests with sample size greater than 5, excluding XRD, WDS and 

Raman data. The software Minitab was employed in the analysis, where normality of populations 

was reasonably assumed and p-value was set at 0.05. Mean values plus standard deviations are 
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presented in the results, while letters on the columns charts show the statistically significant 

differences. 

3 Results 

The aspect of the 1100 ºC pre-sintered blank surface after grinding is shown in Figure 1, 

together with the MIP curve, which shows that the pore size diameter is concentrated around 100 

nm in this condition. In Figure 2, density and apparent porosity are presented for the different pre-

sintering temperatures and 50 wt% Cerium nitrate solution. Since the actual content of Ce was 

impossible to determine a priori, the value of 6,10 g/cm
3
, which corresponds to the theoretical 

density of 3Y-TZP, was considered as the theoretical density in all the cases. Significantly different 

densities and porosities were found according to the pre-sintering temperature, while the sintered 

density did not change noticeably for infiltrated samples. Similar results were found for these 

parameters by using the solution with 75 wt% concentration of solute. After drying the samples, 

rests of CeO2 powder were found on the surface of samples and in the boat, meaning that certain 

amount of salt could escape from the preform when considerable quantities of gases are formed 

during the decomposition process. Sintered parts that had been infiltrated had a pale yellowish 

color, being the coloration more significant for lower pre-sintering temperatures and not perceptible 

for the 1300 condition. 

The WDS results are shown in Figure 3, where the profile obtained from the cross-sections is 

an average of 4 measures and the first point corresponds to a depth of less than 20 µm below the 

outer non polished surface of the disc while the last point corresponds to the sample center, at 

approximately 1 mm depth. Measurements taken on the outer disc surface were only approximate 

due to the effect of roughness on the probe signal, so they are not reported. The WDS profiles show 

that CeO2 is present after infiltration and sintering with a continuous distribution at the scale length 

analyzed, with higher content close to the surface. 
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The resistance to hydrothermal aging for the different pre-sintering treatments is compared in 

Figure 4 in terms of superficial monoclinic content calculated from the XRD spectra after artificial 

degradation. These results show a strong enhancement of aging resistance when significant amounts 

of Ce are added. The XRD patterns of some selected aged and non-aged material conditions are 

shown in Figure S2 of the supporting information, where the effect of aging on the AS samples can 

be compared and the similarity between the non-degraded AS material and the aged specimens with 

higher CeO2 content can be appreciated. Patterns of pre-sintered specimens are not presented since 

there is no appreciable difference with respect to the non-aged AS, meaning that at the pre-sintered 

states the material is fully tetragonal, although minor amounts of cubic phase may be present. 

The SEM pictures in Figure 5 show an example of change in microstructure associated with Ce 

co-doping in two of the infiltration conditions. In the histogram, the grain size measured by the 

intercept method is compared, showing that the microstructure is significantly modified by the 

presence of Ce. More pictures can be found in the supporting information. 

IF toughness is reported in the histogram of Figure 6. The c/a ratio is plotted on the chart to the 

right as a function of the CeO2 content measured close to the surface (20 µm below the surface) by 

WDS. Increasing c/a ratios correspond to a decrease in IF toughness. These results show that IF 

toughness is significantly affected by the infiltration for certain conditions. Vickers hardness values 

of 13.0 ± 0.1 GPa were measured both for AS and for infiltrated samples. 

Mean values of biaxial strength (σ*) are reported in the first histogram of Figure 7. For the 

specimens with high CeO2 contents a slight decrease in strength is appreciated, otherwise no 

significant drop is observed. After hydrothermal ageing for 30 h, a tendency to a minor decrease in 

biaxial strength was recorded for all the samples, though the difference was not statistically 

significant. 

The variation of the 1150L samples properties with increasing final sintering temperatures is 

reported in Table 1. A clear increase in grain size is observed for S1550 and S1600 with respect to 
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S1450 samples (see the supporting information for micrographs). The CeO2 content was in this case 

measured by EDS, so it is only reported for comparison among these three conditions. The 

monoclinic content is also quantified in Table 1, meanwhile examples of XRD spectra after 

artificial degradation can be found in the supporting information. The aging behavior was clearly 

worsened by sintering at higher temperatures. By contrast, IF toughness values reported in Table 1 

show significant improvements for S1550 and S1600 materials. The shape of the indentation cracks 

below the surface can be appreciated on the fracture surfaces presented in Figure 8. The crack shape 

of co-doped samples with pre-sintering parameters other than the 1150L one varied according to 

CeO2 content. Palmqvist cracks similar to the one shown in Fig. 8 for AS were obtained for low 

CeO2 contents, while the shape was similar to the one for S1450 for intermediate contents and 

deeper cracks with nearly half-penny shape were observed for higher amounts of ceria. 

The monoclinic content calculated from the Raman spectra obtained by scanning across an 

indentation crack at 50 µm from the crack tip is shown in Figure 8. The thickness of the 

transformed region and the amount of monoclinic phase (Vm%) give an idea of the transformability 

of the tetragonal phase, which increases with higher sintering temperatures. The monoclinic fraction 

is meant only for qualitative comparison, since the conical laser sampling volume comprises several 

micrometers below the surface, where the transformed fraction is not constant [38]. 

4 Discussion 

This work approaches in a systematic way the development of and easy and inexpensive 

method for increasing the surface stability of 3Y-TZP implants. It was proved that tailored 

quantities of CeO2 could be infiltrated into the ceramic part after soft machining, without altering 

significantly the processing method. 
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4.1 Density 

In the pre-sintered state, significant differences in density were observed in the range of 

temperature studied, from approx. 50% for 1100 ºC to approx. 90 % for 1300 ºC. Moreover, nearly 

all the porosity was open to water infiltration for all conditions with the exception of the 1300 ºC 

pre-sintering temperature, where the difference between total porosity (100-90.7 = 9.3%) and 

apparent porosity (4.7%) was significant. It means that a big fraction of the porosity is closed or not 

accessible to boiling water for this temperature. After final sintering, the density was relatively 

close (≥ 97%) to the theoretical full density of 3Y-TZP, independently of the pre-sintering 

temperature.   

4.2 CeO2 profiles and microstructural aspects 

By increasing the concentration of the infiltration solution, considerably higher quantities of 

CeO2 doping are obtained. The same tendency is observed when the pre-sintering temperature is 

decreased, that is, when total and open porosity reaches higher values. The highest concentration of 

ceria (7.8 mol%) was detected close to the surface of 1100H samples, which had the highest 

porosity at the pre-sintered state. Practically no Cerium was introduced with the 1300 ºC pre-

sintering treatment since the open porosity is small at this temperature. A direct correspondence 

exists between the CeO2 content measured after sintering and pre-sintered porosity. Therefore, these 

results are consistent with the apparent porosity results shown above. On the other hand, it can be 

appreciated that higher quantities of CeO2 result in greater differences between the center and the 

surface, i.e. the concentration profile becomes steeper. 

Certain variability exists between samples processed under the same conditions, since 

differences in the CeO2 content were found at the same depth from the surface. These differences, 

which could be related to non-uniformities during drying and salt decomposition, were smaller than 

1 mol%. In order to reduce this variability, the drying conditions after infiltration were changed 
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avoiding the contact between sample surface and porous setters or supports during this process. 

Similar precautions may be followed during salt decomposition, since melting occurs before the 

elimination of hydration water. 

The microstructure is progressively affected by the introduction of CeO2, obtaining slightly 

bigger grain sizes with respect to the reference material. The increase in grain size is small as 

compared to Ce-TZP sintered with prealloyed powders containing 10-12 mol% CeO2,  where 3-5 

m are usually reported [39]. Therefore, alloying with Ce by infiltration has the relevant outcome of 

obtaining smaller grain sizes compared with sintering from prealloyed powders. The slight grain 

size increase associated with Ce doping may be related to a reduction in the solute drag mechanism 

active in Y-TZP, where yttria segregates at grain boundaries operating a drag force against grain 

boundary mobility. On the contrary, in Ce-TZP the segregation has not been observed, meanwhile it 

seems to be present but less active in Ce-Y-TZP [40,41]. According to the ternary phase diagram 

Y2O3-CeO2-ZrO2 at 1450 ºC [42], the addition of CeO2 to 3Y-TZP leads to a moderate increase in 

the fraction of cubic phase at equilibrium. At the same time, the miscibility gap becomes wider, 

meaning that the tetragonal phase contains less yttria (and more ceria) and the cubic phase contains 

more yttria (and less ceria) than for 3Y-TZP. Yttria will tend to move from the tetragonal to the 

cubic grains and ceria will tend to diffuse mostly into the tetragonal ones. Therefore, the observed 

grain growth may be related to both the reduction of yttria in tetragonal grains, where the solution-

drag mechanism would be less significant, and the generation of more yttria-rich cubic grains, 

which have faster growth kinetics. To support this idea, the progressive development of a bimodal 

grain distribution can be appreciated from micrographs, which is often observed in Y-TZP after 

long sintering times or at higher temperatures [43]. Nonetheless, with these sintering conditions we 

are still far from the equilibrium and the conversion from tetragonal to cubic phase needs the 

formation of highly concentrated regions where the tetragonal distortion is reduced enough to 

nucleate the new phase [44]. Hence, the amount of cubic phase will be sensitive to the sintering 
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time at this temperature [45,46]. The dopants in excess are probably highly concentrated along grain 

boundaries, which can accommodate more stabilizer, and the tetragonal phase is likely to be 

supersaturated. The development of two types of supersaturated tetragonal grains (one more and 

one less doped) instead of the separation into cubic and tetragonal phases has also been reported 

[47]. 

4.3 Aging resistance 

CeO2 addition increases significantly the aging resistance: after 30 h of artificial degradation 

the amount of monoclinic phase is still practically zero for some of the infiltrated specimens. Here 

the material has been considered hydrothermally stable for the processing conditions where the 

transformation falls below 5 Vm%, which corresponds with the limit detectable by XRD. These 

conditions are those where the superficial CeO2 content is at least roughly 3 mol%. The 

improvement of aging behavior may be ascribed to the presence of the additional stabilizer, which 

is not affected by the diffusion of water species. Moreover, the partial diffusion of yttria into cubic 

grains and ceria into the tetragonal ones may reduce the number of vacancies in the tetragonal 

phase. 

A shift of the 101 tetragonal peak (2θ~30.2º) towards the left of the XRD pattern, which 

corresponds to the increase in the unit cell dimension that is normally associated with Ce doping in 

zirconia [48], was observed in co-doped samples (spectra available in the supporting information). 

This evidence suggests a method for measuring the quantity of CeO2 at the surface after infiltration, 

based on the 101 peak position. Modeling of the calibration curve would require specimens with 

controlled compositions and free from stresses at the surface. 

4.4 Mechanical properties 

Vickers hardness values were not affected by the Ce infiltration, probably in relation to the 

limited modification of the microstructure. On the other hand, a significant decrease in IF toughness 
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is observed for the specimens with high CeO2 contents; the drop can be as much as 1 MPa√m with 

respect to the control material. This aspect is related to the over-stabilization of the tetragonal phase 

due to the co-doping and the possible increase in the amount of cubic phase. For other processing 

conditions where hydrothermally stable materials are obtained, the decrease is smaller (about 10%), 

e.g. 1100L, 1150L, 1200H. These are therefore the optimum infiltration conditions, and correspond 

to superficial CeO2 contents between 3 and 4.6 mol%. For lower concentrations, the material still 

suffers from LTD. Since the concentration of CeO2 only changes slightly along the depth of the 

induced cracks (120 µm ~ 0.06 norm. depth), the CeO2 gradient effects on IF toughness should be 

of minor importance, so the measured values can be assumed as representative of the average IF 

toughness in the near-surface region. 

Figure 6 clearly shows that as CeO2 content increases, there is an increase in the c/a ratio, 

meaning that the IF toughness of the near-surface region is reduced. However, it may be kept close 

to typical values of 3Y-TZP by limiting the CeO2 doping below 4 mol%. In this sense, the effect of 

adding Ceria stabilizer on the fracture toughness of 3Y-TZP is similar as for yttria in Y-TZP, but 

the change per mol% of stabilizer is smaller. 

The biaxial strength shows values above 1000 MPa for all the infiltrated conditions, being only 

slightly lower than the reference material. This result is important because, despite the “near-

surface” IF toughness being slightly decreased by the stabilizer addition, the biaxial strength is still 

close to typical values of 3Y-TZP in most of the treatments. From this observation, it can be 

concluded that the optimal infiltration conditions do not introduce large processing defects or 

impair the sintering behavior of 3Y-TZP.  For the rest of the infiltration conditions, a weak 

correlation exists between the observed drop in strength and the measured IF toughness. 

Nevertheless, the large scatter in the results, the graded composition along specimen thickness and 

the changes in the cracks shape observed with increasing CeO2 content (see Fig. 8 and next section) 
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makes the correlation not straightforward. However, the clear result is that the reliability in terms of 

strength for infiltrated specimens under optimum conditions is very close to standard 3Y-TZP. 

4.5 Effect of the sintering temperature 

Among all the tested materials, 1150L specimens were selected to study the effect of sintering 

temperature since these were resistant to LTD, their IF toughness was only slightly affected and 

their biaxial strength unchanged if compared with the reference material. The main objective was to 

assess if the decrease in “near-surface” IF toughness could be avoided by increasing the sintering 

temperature. Higher sintering temperatures would increase the grain size and promote phase 

separation, favoring t-m transformation and so enhancing fracture toughness [49], but the 

degradation kinetics may be negatively affected [50]. On the other hand, by increasing the grain 

size, other toughening mechanisms may be operative, like crack deflection and microcracking. 

For the higher sintering temperatures, the average grain size was significantly increased, as 

reported in Table 1. At the same time, Vickers hardness registered a slight decrease. Taking into 

account the limited precision of the EDS technique used in this case, no significant difference in the 

CeO2 content was measured. IF toughness was considerably increased for the S1600 condition, 

obtaining values even higher than for the reference AS condition (Table 1). These results can be 

rationalized in terms of the enhancement of t-m transformability with temperature, which can also 

be appreciated from the width of the transformed zone and the amount of monoclinic phase near the 

crack in Fig. 8. The relation between transformability and fracture toughness is not straightforward, 

though. For example, it can be observed that S1550 samples had identical KIC as AS, in spite of 

apparent less transformability (Fig. 8), meaning that other toughening mechanisms may play a 

minor role. Besides the effect of the grain size increase on transformability, an influence of the 

sintering temperature on the Ce distribution at the microscopic level has to be considered. Since Ce 

starts diffusing from the pores, a local Ce concentration gradient is expected at low sintering 
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temperature, while better homogenization should result from higher temperatures thanks to the 

increased diffusion coefficient, which suggests an increase in tetragonal stability. Nevertheless, the 

system is getting closer to the equilibrium at higher temperature and the stabilizers are likely to 

segregate more at the grain boundaries [41,51], with the formation of increasing fractions of cubic 

phase that would favor the destabilization of the neighboring tetragonal grains [46]. These 

conflicting behaviors cannot be used as an argument unless the Ce local concentration is studied 

with high resolution techniques, which is out of the scope of the present study. 

In order to understand the change in IF toughness it is important to observe the shape of 

indentation cracks. In Fig. 8 it can be clearly observed that Palmqvist cracks are obtained in AS 

samples and that the effect of Ce addition is to change the dimensions and shape of the cracks, 

which extend below the plastic zone. This change in shape has been observed before, either as the 

indentation load is increased or as the fracture toughness decreases [52]. The Palmqvist shape is 

recovered in the S1550 and in S1600 samples, being the cracks in the latter even less deep than in 

AS material, which is in agreement with the higher IF toughness measured.  

In spite of the higher IF toughness of S1600, this material shows a slight lower biaxial strength 

(see Table 1). This may be explained considering the general relation between strength and fracture 

toughness of zirconia-based ceramics [53]. When transformation toughening increases, the strength 

is also improved if the defect size is unchanged. However, when the transformation stress becomes 

relatively small and the transformed volume is not only confined near sharp cracks, the transition 

between the flaw-limited to the transformation-limited strength regimes takes place [54]. 

Nevertheless, in the present case there was no evidence of extensive transformation at the surface 

after testing and the transformation thickness near the crack was lesser (S1550) or comparable 

(S1600) to the reference material, suggesting that probably the increase of defects size may explain 

the drop in fracture strength. 
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At the same time, for S1550 and S1600 samples the resistance to degradation is lost, obtaining 

similar amounts of monoclinic phase as for AS samples. Therefore, 1450 ºC is also the optimum 

sintering temperature for achieving higher strength in the infiltrated material, where the decrease in 

IF toughness cannot be fully compensated without affecting negatively hydrothermal stability, 

biaxial strength and hardness. 

4.6 Clinical implications and perspectives 

The proposed method is directly applicable by the technician or practitioner to the preparation 

of aging resistant zirconia dental parts in the dental laboratory. In practical terms, it implies the 

pressureless dipping of shaped parts pre-sintered at 1150 ºC into a 50 wt% Cerium Nitrate solution, 

prior to firing. The potential impact is to solve the problem of hydrothermal aging in zirconia dental 

materials, moving towards a new generation of reliable all-ceramic dental systems, where esthetical 

and allergic problems related to the use of metals are avoided. The major drawback of this 

procedure is represented by the slight color change, which is not an issue in the case of implants and 

abutments but might require the adaptation of the veneering procedure for achieving the same 

tonality in visible parts. Future studies may aim to control the infiltration profile to confine the co-

doping to a thin superficial layer, with the goal of compensating the observed small reduction in IF 

toughness. 

5 Conclusions 

A simple method for modifying dental zirconia to improve its long-term superficial stability 

has been presented. This is based on the infiltration of the pre-sintered 3Y-TZP machined part with 

Ce salt solutions, and can be easily adapted to the dry-processing of dental applications. 

It has been shown that hydrothermal degradation can be remarkably reduced by selecting 

specific pre-sintering temperatures and optimized solutions. An optimal compromise in properties is 
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achieved for CeO2 contents around 3 mol% at the surface. If the sintering temperature for this 

composition is increased, fracture toughness can be improved up to values higher than for the 

reference 3Y-TZP; however, a slight decrease in strength and poor LTD resistance are obtained in 

this case, meaning that the standard 1450 ºC sintering temperature provides better overall properties 

for the Cerium infiltrated zirconia with the composition studied. 
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Figure 1. (L) surface appearance imaged by SEM (scale bar = 500 nm) and (R) MIP curve as a 

function of pore size are shown, as an example, for the 1100 ºC pre-sintered state. 

Figure 2. The density and apparent porosity for the pre-sintered state, as well as sintered density 

after infiltration with 50 wt% solution, are shown in the column chart. The apparent porosity at the 

sintered state was ~ 0. 

Figure 3. WDS CeO2 content: a) in terms of depth normalized by disc thickness, and b) measured 

near the disc surface. Mean values ± SD. 

Figure 4. Degradation vs. pre-sintering temperature and solution concentration. Mean values ± SD. 

Figure 5. Grain size vs. pre-sintering condition. Pictures a and b show, respectively, the 

microstructure of 1300L and 1100H materials. 

Figure 6. (L) Indentation fracture toughness vs. pre-sintering temperature and solution 

concentration. (R) Relative indentation crack length (c/a) as a function of the CeO2 content 

measured at the surface. 

Figure 7. Biaxial strength vs. pre-sintering temperature and solution concentration. 

Figure 8. Transformability and crack development in AS, S1450, S1550 and S1600 materials. Top: 

LSCM micrographs of indentation crack surfaces after biaxial breakage. Scale bar = 100 μm. 

Bottom: monoclinic content measured by Raman spectroscopy across an indentation crack. The 

Raman analysis was performed from the polished surface of the sample, as indicated in the diagram. 
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Table 1. Properties of AS, S1450, S1550 and S1600 materials (mean values ± SD). Letters indicate the statistically 

significant differences. 

Condition 
Sinter. Temp. 

(ºC) 

Grain Size 

(µm) 

HV10 

(GPa) 

CeO2 

(mol%) 

Vm 

(%) 

KIC 

(MPa√m) 
*B3B 

(MPa) 

AS 1450 0.32±0.03 13.0±0.1 0 42±24 4.9±0.1 1616±74 

  
a a 

  
a a 

S1450 1450 0.34±0.05 13.1±0.2 2.6 0±2 4.5±0.1 1587±148 

  
a a 

  
b a, b 

S1550 1550 0.64±0.14 12.7±0.2 2.4 34±15 4.9±0.2 1360±218 

  
b b 

  
a b, c 

S1600 1600 0.78±0.18 12.4±0.1 2.2 40±15 5.0±0.1 1320±112 

  
b c 

  
a c 
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