
Author Retrospective for 

 Software Trace Cache 

Alex Ramirez1,2, Ayose J. Falcón3, Oliverio J. Santana4, Mateo Valero1,2 
1 Universitat Politècnica de Catalunya, BarcelonaTech 

2 Barcelona Supercomputing Center 
3 Intel Labs, Barcelona 

4 Universidad de Las Palmas de Gran Canaria 
{aramirez@ac.upc.edu} 

 
ABSTRACT 
In superscalar processors, capable of issuing and executing 
multiple instructions per cycle, fetch performance represents an 
upper bound to the overall processor performance. Unless there is 
some form of instruction re-use mechanism, you cannot execute 
instructions faster than you can fetch them. 

Instruction Level Parallelism, represented by wide issue out of 
order superscalar processors, was the trending topic during the 
end of the 90's and early 2000's. It is indeed the most promising 
way to continue improving processor performance in a way that 
does not impact application development, unlike current multicore 
architectures which require parallelizing the applications (a 
process that is still far from being automated in the general case). 
Widening superscalar processor issue was the promise of never-
ending improvements to single thread performance, as identified 
by Yale N. Patt et al. in the 1997 special issue of IEEE Computer 
about "Billion transistor processors" [1].  

However, instruction fetch performance is limited by the control 
flow of the program. The basic fetch stage implementation can 
read instructions from a single cache line, starting from the 
current fetch address and up to the next control flow instruction. 
That is one basic block per cycle at most. 

Given that the typical basic block size in SPEC integer 
benchmarks is 4-6 instructions, fetch performance was limited to 
those same 4-6 instructions per cycle, making 8-wide and 16-wide 
superscalar processors impractical. It became imperative to find 
mechanisms to fetch more than 8 instructions per cycle, and that 
meant fetching more than one basic block per cycle. 

The Trace Cache [2] [3] [4] quickly established itself as the state 
of the art in high performance instruction fetch. The trace cache 
relies on a trace building mechanism that dynamically reorders the 
control flow of the program, and stores the dynamic instruction 
sequences in sequential storage, increasing fetch width. 

However, it is a complex hardware structure that adds not only 
another cache memory to the on-chip storage hierarchy, but also 
requires a branch predictor capable of issuing multiple predictions 
per cycle to index the contents of the trace cache, and distinguish 
between multiple dynamic sequences of instructions. 

The Software Trace Cache is a compiler transformation, or a post-
compilation binary optimization, that extends the seminar work of 
Pettis and Hansen PLDI'90 to perform the reordering of the 
dynamic instruction stream into sequential memory locations 
using profile information from previous executions. The major 
advantage compared to the trace cache, is that it is a software 
optimization, and does not require additional hardware to capture 
the dynamic instruction stream, nor additional memories to store 
them. Instructions are still captured in the regular instruction 
cache. The major disadvantage is that it can only capture one of 
the dynamic instruction sequences to store it sequentially. Any 
other control flow will result in taken branches, and interruptions 
of the fetch stream. 

Our results show that fetch width using STC was competitive with 
that obtained with the hardware TC, and was applicable to a wide 
range of superscalar architectures, because it does not require 
hardware changes to enable fetching from multiple basic blocks in 
a single cycle, even if only one branch prediction can be issued. 
Any front-end architecture built on a BTB that ignores branches 
as long as they are not taken, will automatically treat such 
branches as NOP instructions in terms of fetch [5]. 

This was only the beginning. The impact of this optimization on 
fetch and superscalar processor architectures went much further 
than the original ICS paper in 1999 
 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors. Compilers. Code 
generation. Optimization. 

General Terms 
Performance, Experimentation. 

Keywords 
Binary trabslation, ILP. Superscalar processors. Instruction fetch. 

1. IMPACT 
After the first STC presentation, the first author, Alex Ramirez, 
was invited for a summer internship in Digital Equipment 
Corporation's Western Research Lab.((by the time the internship 
actually happened, DEC and its Research Labs had been acquired 
by Compaq)) in Palo Alto (CA) in order to implement the STC 
algorithm in their SPIKE binary optimizer. 

This work actually expanded two consecutive summers (1999 and 
2000). The first one was required to finalize the implementation, 
and perform initial simulation studies. The second one allowed 
finalizing the implementation and performing tests on real 
workloads and systems. 

 
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage, and that copies bear this notice and 
the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the owner/author(s). Copyright is 
held by the author/owner(s). 
ICS 25th Anniversary Volume. 2014. 
ACM 978-1-4503-2840-1/14/06. 
http://dx.doi.org/10.1145/2591635.2594508 
 

ACM International Conference on Supercomputing 25th Anniversary Volume

45

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41778714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Using SPIKE we optimized the performance of both a commercial 
DBMS (Oracle) and the operating system kernel, improving TPC 
benchmark results on Alpha platforms. 

Similar code layout optimizations [6] were implemented in the 
IBM FDPR binary optimizer, and the STC algorithm is 
implemented in the Control Flow branch of the GNU gcc 
compiler [7]. 

Although 16-wide superscalar processors never happened (so far), 
we have seen other wide-issue superscalars such as the IBM 
Power7, and Intel SandyBridge or Haswell, where fetch 
performance is a potential bottleneck. These architectures have 
implemented solutions to enable fetching of multiple basic blocks 
per cycle, from the standard instruction cache, and would greatly 
benefit from optimizations such as the STC. 

Also, fetch performance and fetch scheduling become even more 
important in simultaneous multithreaded architectures (which also 
exploit wide-issue superscalar pipelines), such as the IBM Power5 
(and its successors), or the AMD Bulldozer. Again, improving the 
layout of the code could lead to both simpler microarchitectures 
and better performance. 

The hardware trace cache has been actually implemented in the 
Intel Pentium 4 and Pentium D NetBurst architectures, from 
Willamette to Presier. However it was widely acknowledged that 
the main purpose was to store and fetch decoded micro-ops rather 
than increasing fetch width. As such, it is more closely related to 
the Decoded Instruction Area [8] or the rePLay framework [9] 
than to the STC.  

2. RELATED AND FOLLOW-UP WORK 
There were several papers that derived from this original Software 
Trace Cache paper. A slightly different version of the code layout 
algorithm was developed focusing on database workloads, which 
traverse a very large instruction working set, with lots of 
subroutine calls and low branch predictability in ICPP'99 [10], 
with a journal archive version in IJPP'02 [11]. An improved 
version of the fetch stage microarchitecture avoiding redundancy 
between software traces in the instruction cache, and dynamic 
traces in the trace cache was published in HPCA’00 [12]. 

The final, archive version of the algorithm with new heuristics to 
totally automate the process, was published in IEEE Transactions 
on Computers in 2004 [12]. 

Also, several papers explored in depth analysis of the impact of 
the STC optimizations in the SPIKE optimizer. A detailed 
analysis on the instruction cache and fetch performance on Oracle 
database was published in ISCA'01 [13], showing not only 
improvements on the instruction cache, but also a mush tighter 
packaging of useful instructions into cache lines, and a reduction 
in taken branches that leads to improved fetch width. A detailed 
analysis on the impact on branch prediction accuracy for various 
prediction strategies was published in PACT'00 [14], showing that 
since most branches behave the same way (usually not taken), 
their interference in the branch prediction tables was constructive, 
not destructive, achieving the same effect as an Agree prediction 
strategy. 

Finally, based on all these observations, we developed a new fetch 
stage microarchitecture and a specialized branch predictor that 
exploit the maximum benefits of these layout optimizations: the 
instruction stream fetch engine, in MICRO'02 [15]. 

This fetch architecture for wide superscalar instruction fetch was 
picked up by the next PhD students in the group, and produced 
several related papers. A modification of the stream fetch engine 
for SMT processors was evaluated in HPCA'04 [16], showing 
relevant impact on the choice of the fetch policy to be used when 
fetching from a single thread on each cycle. A stream predictor 
capable of issuing multiple predictions per cycle was shown in 
ISHP'05 [17]. And a mechanism to store decoded instructions 
(like the Pentium4 trace cache) in the standard instruction cache 
was presented in PACT'06 [18] (archive version published in 
IEEE ToC'09 [19]).  

3. DISCUSSION 
There have been multiple works, before and after the STC, that 
have shown the benefits of feedback directed compilation. 
However, profile feedback is standard practice only in benchmark 
runs. It has not been adopted by end users in daily usage of 
computers. This may indicate that we need to change the way we 
use the compiler and how profile data is generated and stored, to 
make it easier for users to use them. 

At the same time, and for the same reasons, it is very important to 
develop heuristic analysis techniques that can statically obtain an 
approximation of the information that would be obtained via 
profiling, such as the "Branch prediction for free" paper by Ball 
and Larus in PLDI'93 [20]. 

Combining profile feedback and heuristics, it is possible to 
reproduce at compile time many of the complex dynamic 
mechanisms that we have in out of order execution, leading to 
significant savings at reduced performance penalties. Even if 
maximum performance is required, and thus we resort to complex 
dynamic solutions in hardware, the combination of software and 
hardware optimizations still leads to improved results. 

The combined results of all the STC related research show that 
code layout optimizations have an impact that goes far beyond a 
mere reduction in the instruction cache misses. 

Even if 16-wide superscalar processors have not been produced 
yet, there is a significant benefit of wide superscalar instruction 
fetch in terms of power consumption. As shown by our instruction 
stream fetch engine, it takes approximately the same effort to 
fetch 16 instructions in one cycle, than to fetch just 4. That means 
that we could be fetching instructions only once every 4 cycles, or 
that we could decouple the clock frequency of the processor front-
end from the processor back-end. 

All in all, the STC was the seed for a very exciting series of 
research projects spanning compiler algorithms, superscalar 
processor microarchitecture, branch prediction, multithreaded 
processors, and instruction decoding. With the demise of wide 
issue superscalar processors in favor of multicore processors, 
interest in this kind of techniques has decreased. However, given 
the power efficiency difficulties that future processor and 
multicore architectures are facing, it is likely that techniques 
originally intended for wide superscalar processors can be 
revisited focusing on their energy saving potential. 

4. ACKNOWLEDGEMENTS 
The authors want to thank those industrial partners who expressed 
interest in the STC-derived technologies (Sun Microsystems, 
IBM, Intel, Digital Equipment Corporation / Compaq), and 
specially Luiz Barroso and Kourosh Garachorloo who hosted the 
first author for two consecutive summers in Compaq's Western 
Research Lab. 

ACM International Conference on Supercomputing 25th Anniversary Volume

46



5. REFERENCES 
[1]  Y. N. Patt y et al., «One Billion Transistors, One 

Uniprocessor, One Chip,» IEEE Computer, pp. 51-58, Sept. 
1997.  

[2]  A. Peleg y U. Weiser, «Dynamic Flow Instruction Cache 
Memory Organized Around Trace Segments Independent of 
Virtual Address Line». United States Patente 5,381,533, 
1995. 

[3]  E. Rottenberg, S. Bennett y J. E. Smith, «Trace cache: a low 
latency approach to high bandwidth instruction fetching,» de 
ACM/IEEE international symposium on Microarchitecture 
(MICRO 29), 1996.  

[4]  D. H. Friendly, S. J. Patel y Y. N. Patt, «Alternative fetch 
and issue policies for the trace cache fetch mechanism,» de 
30th annual ACM/IEEE international symposium on 
Microarchitecture (MICRO 30), 1997.  

[5]  B. Calder y D. Grunwald, «Reducing branch costs via branch 
alignment,» de 6th Intl. Conference on Architectural Support 
for Programming Languages and Operating Systems 
(ASPLOS), 1994.  

[6]  K. Pettis y R. C. Hansen, «Profile guided code positioning,» 
de ACM SIGPLAN Conf. on Programming Language Design 
and Implementation (PLDI), 1990.  

[7]  «Improving GCC's Infrastructure (Control Flow Graph),» 
[En línea]. Available: 
http://www.gnu.org/software/gcc/projects/cfg.html. 

[8]  O. J. Santana, A. Falcon, A. Ramirez y M. Valero, «Branch 
predictor guided instruction decoding,» de 15th international 
conference on Parallel architectures and compilation 
techniques (PACT '06), 2006.  

[9]  S. J. Patel y S. S. Lumetta, «rePLay: A hardware framework 
for dynamic optimization,» IEEE Transactions on 
Computers, 2001.  

[10] A. Ramirez, J. L. Larriba-Pey, C. Navarro, X. Serrano y M. 
Valero, «Optimization of Instruction Fetch for Decision 
Support Workloads,» de International Conference on 
Parallel Processing (ICPP), 1999.  

[11] A. Ramirez, J. L. Larriba-Pey, C. Navarro, M. Valero y J. 
Torrellas, «Software Trace Cache for Commercial 
Applications,» Internatinal Journal of Parallel 
Programming, vol. 30, nº 5, pp. 373-395, 2002.  

[12] A. Ramirez, J. L. Larriba-Pey y M. Valero, «Trace Cache 

Redundancy: Red & Blue Traces,» de Sixth International 
Symposium on High-Performance Computer Architecture 
(HPCA), 2000.  

[13] A. Ramirez, J. L. Larriba-Pey y M. Valero, «Software Trace 
Cache,» IEEE Transactions on Computers, vol. 54, nº 1, pp. 
22-35, 2005.  

[14] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. L. 
Larriba-Pey, G. P. Lowney y M. Valero, «Code layout 
optimizations for transaction processing workloads,» de 28th 
Annual International Symposium on Computer Architecture, 
2001.  

[15] A. Ramirez, J. L. Larriba-Pey y M. Valero, «The Effect of 
Code Reordering on Branch Prediction,» de International 
Conference on Parallel Architectures and Compilation 
Techniques, 2000.  

[16] A. Ramirez, O. J. Santana, J. L. Larriba-Pey y M. Valero, 
«Fetching instruction streams,» de 35th Annual International 
Symposium on Microarchitecture, 2002.  

[17] A. Falcon, A. Ramirez y M. Valero, «A Low-Complexity, 
High-Performance Fetch Unit for Simultaneous 
Multithreading Processors,» de 10th International 
Conference on High-Performance Computer Architecture, 
2004.  

[18] A. Falcon, A. Ramirez y m. Valero, «Tolerating Branch 
Predictor Latency on SMT,» de 5th International Symposium 
on High Performance Computing (ISHPC), 2005.  

[19] O. J. Santana, A. Falcon, A. Ramirez y M. Valero, «Branch 
predictor guided instruction decoding,» de 15th International 
Conference on Parallel Architecture and Compilation 
Techniques, 2006.  

[20] J. S. Oliverio, F. Ayose, R. Alex y V. Mateo, «DIA: A 
Complexity-Effective Decoding Architecture,» IEEE 
Transactions on Computers, vol. 58, nº 4, pp. 448-462, 2009. 

[21] T. Ball y J. R. Larus, «Branch prediction for free,» de ACM 
SIGPLAN Conf. on Programming Language Design and 
Implementation (PLDI'93), 1993.  

 

 

ACM International Conference on Supercomputing 25th Anniversary Volume

47




