
Quarry: Digging Up the Gems of Your Data Treasury

Petar Jovanovic
Universitat Politècnica de
Catalunya, BarcelonaTech

Barcelona, Spain
petar@essi.upc.edu

Oscar Romero
Universitat Politècnica de
Catalunya, BarcelonaTech

Barcelona, Spain
oromero@essi.upc.edu

Alkis Simitsis
HP Labs

Palo Alto, CA, USA
alkis@hp.com

Alberto Abelló
Universitat Politècnica de
Catalunya, BarcelonaTech

Barcelona, Spain
aabello@essi.upc.edu

Héctor Candón
Universitat Politècnica de
Catalunya, BarcelonaTech

Barcelona, Spain
hector.candon@est.fib.upc.edu

Sergi Nadal
Universitat Politècnica de
Catalunya, BarcelonaTech

Barcelona, Spain
snadal@essi.upc.edu

ABSTRACT
The design lifecycle of a data warehousing (DW) system is
primarily led by requirements of its end-users and the com-
plexity of underlying data sources. The process of design-
ing a multidimensional (MD) schema and back-end extract-
transform-load (ETL) processes, is a long-term and mostly
manual task. As enterprises shift to more real-time and ’on-
the-fly’ decision making, business intelligence (BI) systems
require automated means for efficiently adapting a physical
DW design to frequent changes of business needs. To ad-
dress this problem, we present Quarry, an end-to-end sys-
tem for assisting users of various technical skills in manag-
ing the incremental design and deployment of MD schemata
and ETL processes. Quarry automates the physical design
of a DW system from high-level information requirements.
Moreover, Quarry provides tools for efficiently accommodat-
ing MD schema and ETL process designs to new or changed
information needs of its end-users. Finally, Quarry facili-
tates the deployment of the generated DW design over an
extensible list of execution engines. On-site, we will use a
variety of examples to show how Quarry facilitates the com-
plexity of the DW design lifecycle.

1. INTRODUCTION
Traditionally, the process of designing a multidimensional

(MD) schema and back-end extract-transform-load (ETL)
flows, is a long-term and mostly manual task. It usually
includes several rounds of collecting requirements from end-
users, reconciliation, and redesigning until the business needs
are finally satisfied. Moreover, in today’s BI systems, de-
ployed DW systems, satisfying the current set of require-
ments is subject to frequent changes as the business evolves.
MD schema and ETL process, as other software artifacts, do
not lend themselves nicely to evolution events and in general,

c©2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

maintaining them manually is hard. First, for each new,
changed, or removed requirement, an updated DW design
must go through a series of validation processes to guaran-
tee the satisfaction of the current set of requirements, and
the soundness of the updated design solutions (i.e., meeting
MD integrity constraints [9]). Moreover, the proposed de-
sign solutions should be further optimized to meet different
quality objectives (e.g., performance, fault tolerance, struc-
tural complexity). Lastly, complex BI systems may usually
involve a plethora of execution platforms, each one special-
ized for efficiently performing a specific analytical process-
ing. Thus the efficient deployment over different execution
systems is an additional challenge.

Translating information requirements into MD schema and
ETL process designs has been already studied, and various
works propose either manual (e.g., [8]), guided (e.g., [1]) or
automated [2, 10, 11] approaches for the design of a DW
system. In addition, in [4] a tool (a.k.a. Clio) is proposed to
automatically generate correspondences (i.e., schema map-
pings) among different existing schemas, while another tool
(a.k.a. Orchid) [3] further provides interoperability between
Clio and procedural ETL tools. However, Clio and Orchid
do not tackle the problem of creating a target schema. More-
over, none of these approaches have dealt with automating
the adaptation of a DW design to new information needs of
its end-users, or the complete lifecyle of a DW design.

To address these problems, we built Quarry, an end-to-
end system for assisting users in managing the complexity
of the DW design lifecycle.

Quarry starts from high-level information requirements
expressed in terms of analytical queries that follow the well-
known MD model. That is, having a subject of analysis and
its analysis dimensions (e.g., Analyze the revenue from the
last year’s sales, per products that are ordered from Spain.).
Quarry provides a graphical assistance tool for guiding non-
expert users in defining such requirements using a domain-
specific vocabulary. Moreover, Quarry automates the pro-
cess of validating each requirement with regard to the MD
integrity constraints and its translation into MD schema and
ETL process designs (i.e., partial designs).

Independently of the way end-users translate their infor-
mation requirements into the corresponding partial designs,
Quarry provides automated means for integrating these MD
schema and ETL process designs into a unified DW design
satisfying all requirements met so far.

Figure 1: Quarry: system overview

Quarry automates the complex and time-consuming task
of the incremental DW design. Moreover, while integrat-
ing partial designs, Quarry provides an automatic valida-
tion, both regarding the soundness (e.g., meeting MD in-
tegrity constraints) and the satisfiability of the current busi-
ness needs. Finally, for leading the automatic integration of
MD schema and ETL process designs, and creating an opti-
mal DW design solution, Quarry accounts for user-specified
quality factors (e.g., structural design complexity of an MD
schema, overall execution time of an ETL process).

Since Quarry assists both MD schema and ETL process
designs, it also efficiently supports the additional iterative
optimization steps of the complete DW design. For example,
more complex ETL flows may be required to reduce the
complexity of an MD schema and improve the performance
of OLAP queries by pre-aggregating and joining source data.

Besides efficiently supporting the traditional DW design,
the automation that Quarry provides, largely suits the needs
of modern BI systems requiring rapid accommodation of a
design to satisfy frequent changes.

Outline. We first provide an overview of Quarry and
then, we present its core features to be demonstrated. Lastly,
we outline our on-site presentation.

2. DEMONSTRABLE FEATURES
Quarry presents an end-to-end system for managing the

DW design lifecycle. Thus, it comprises four main compo-
nents (see Figure 1): Requirements Elicitor, Requirements
Interpreter, Design Integrator, and Design Deployer.

For supporting non-expert users in providing their infor-
mation requirements at input, Quarry provides a graphical
component, namely Requirements Elicitor (see Figure 2).
Requirements Elicitor then connects to a component (i.e.,
Requirements Interpreter), which for each information re-
quirement at input semi-automatically generates validated
MD schema and ETL process designs (i.e., partial designs).
Quarry further offers a component (i.e., Design Integra-
tor) comprising two modules for integrating partial MD sch-
ema and ETL process designs processed so far, and gener-
ating unified design solutions satisfying a complete set of
requirements. At each step, after integrating partial designs
of a new requirement, Quarry guarantees the soundness of
the unified design solutions and the satisfiability of all re-

Figure 2: Requirements Elicitor

quirements processed so far. The produced DW design solu-
tions are further sent to the Design Deployer component for
the initial deployment of a DW schema and an ETL process
that populates it. The deployed design solutions are then
available for further user-preferred tunings and use.

To support intra and cross-platform communication, Qua-
rry uses the communication & metadata layer (see Figure 1).

2.1 Requirements Elicitor
Requirements Elicitor uses a graphical representation of a

domain ontology capturing the underlying data sources. A
domain ontology can be additionally enriched with the busi-
ness level vocabulary, to enable non-expert users to express
their analytical needs. Notice for example a graphical repre-
sentation of an ontology capturing the TPC-H1 data sources
in top-left part of Figure 2. Apart from manually defining
requirements from scratch, Requirements Elicitor also offers
assistance to end-users’ data exploration tasks by analyz-
ing the relationships in the domain ontology, and automat-
ically suggesting potentially interesting analytical perspec-
tives. For example, a user may choose the focus of an anal-

1http://www.tpc.org/tpch/

http://www.tpc.org/tpch/

Deployable design solutions

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
...

Partial designs

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_netprofit</name>
 ...

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Nation</from>
...

...

...

IR 1

IR N

IR 1

IR N

MD schema (xMD)

ETL process (xLM)

Unified design solutions (IR 1 – IR N)

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 …
<MDschema>
 <facts>
 <fact>
 <name>fact_table_netprofit</name>
 ...

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</name>
 <type>Datastore</type>
...

MD
Int.

ETL
Int.

CREATE DATABASE demo;
CREATE TABLE fact_table_revenue (

Partsupp_PartsuppID BIGINT… ,
Orders_OrdersID BIGINT …,
revenue double precision ,

PRIMARY KEY(Partsupp_PartsuppID,
 Orders_OrdersID)

); …
CREATE TABLE fact_table_netprofit (

...
); ...

<transformation>
 <connection>
 … <database>demo</database>...
<order>
 <hop>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </hop> …
<step>
 <name>DATASTORE_Partsupp</name>
 <type>TableInput</type> ...

MD schema (xMD)

ETL process (xLM)

MD schema (SQL, RDBMS)

MD
dep.

ETL process (Pentaho PDI)

ETL
dep.

Figure 3: Design integration & deployment example

ysis (e.g., Lineitem), while the system then automatically
suggests useful dimensions (e.g., Supplier, Nation, Part).
The user can further accept or discard the suggestions and
supply her information requirement.

2.2 Requirements Interpreter
Each information requirement defined by a user, is then

translated by the Requirements Interpreter to a partial DW
design. In particular, Requirements Interpreter maps an in-
put information requirement to underlying data sources (i.e.,
by means of a domain ontology that captures them and cor-
responding source schema mappings; see Section 2.5), and
semi-automatically generates MD schema and ETL process
designs that satisfy such requirement. For more details and
a discussion on correctness we refer the reader to [11].

In addition, Quarry allows plugging in other external de-
sign tools, with the assumption that the provided partial
designs are sound (i.e., meet MD integrity constraints) and
that they satisfy an end-user requirement. To enable such
cross-platform interoperability, Quarry provides logical, pla-
tform-independent representations (see Section 2.5). Gener-
ated designs are stored to the Communication & Metadata
layer using corresponding formats and related to the infor-
mation requirements they satisfy.

2.3 Design Integrator
Starting from each information requirement, translated to

corresponding partial MD schema and ETL process designs,
Quarry takes care of incrementally consolidating these de-
signs and generating unified design solutions satisfying all
current requirements (see Figure 3).
MD Schema Integrator. This module semi-automatica-

lly integrates partial MD schemas. MD Schema Integrator,
comprises four stages, namely matching facts, matching di-
mensions, complementing the MD schema design, and in-
tegration. The first three stages gradually match different
MD concepts and explore new DW design alternatives. The
last stage considers these matchings and end-user’s feedback
to generate the final MD schema that accommodates new
information requirements. To boost the integration of new
information requirements spanning diverse data sources into
the final MD schema design, we capture the semantics (e.g.,
concepts, properties) of the available data sources in terms of
a domain ontology and corresponding source schema map-
pings (see Section 2.5). MD Schema Integrator automat-
ically guarantees MD-compliant results and produces the
optimal solution by applying cost models that capture dif-
ferent quality factors (e.g., structural design complexity).

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
 <dimension>
 <name>Part</name>
 ...
 </dimensions>
</MDschema>

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
 <dimension>
 <name>Part</name>
 ...
 </dimensions>
</MDschema>

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
 <dimension>
 <name>Part</name>
 ...
 </dimensions>
</MDschema>

<cube>
 <dimensions>
 <concept id="Part_p_nameATRIBUT"/>
 <concept id="Supplier_s_nameATRIBUT"/>
 </dimensions>
 <measures>
 <concept id="revenue">
 <function> Lineitem_l_extendedpriceATRIBUT
 * Lineitem_l_discountATRIBUT</function>
 </concept>
 </measures>
 <slicers>
 <comparison>
 <concept id="Nation_n_nameATRIBUT"/>
 <operator>=</operator>
 <value>Spain</value>
 </comparison>
 </slicers>
…

...
<aggregations>
 <aggregation order="1">
 <dimension refID="Part_p_nameATRIBUT"/>
 <measure refID="revenue"/>
 <function>AVERAGE</function>
 </aggregation>
 <aggregation order="1">
 <dimension
 refID="Supplier_s_nameATRIBUT"/>
 <measure refID="revenue"/>
 <function>AVERAGE</function>
 </aggregation>
 </aggregations>
</cube>

 to xRQ

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</name>
 <type>Datastore</type>
 <optype>TableInput</optype>
 ... </nodes> … </design>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</name>
 <type>Datastore</type>
 <optype>TableInput</optype>
 ... </nodes> … </design>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</
name>
 <type>Datastore</type>
 <optype>TableInput</optype>
 ... </nodes> … </design>

to xMD

to xLM

Partial designs

Figure 4: Example design process

ETL Process Integrator. This module processes par-
tial ETL designs and incrementally consolidates them into
a unified ETL design. ETL Process Integrator, for each new
requirement maximizes the reuse by looking for the largest
overlapping of data and operations in the existing ETL pro-
cess. To boost the reuse of the existing data flow elements
when answering new information requirements, ETL Pro-
cess Integrator aligns the order of ETL operations by apply-
ing generic equivalence rules. ETL Process Integrator also
accounts for the cost of produced ETL flows when integrat-
ing information requirements, by applying configurable cost
models that may consider different quality factors of an ETL
process (e.g., overall execution time).

More details, as well as the underlying algorithms of MD
Schema Integrator can be found in [6] and of ETL Process
Integrator in [5].

2.4 Design Deployer
Finally, Quarry supports the deployment of the unified

design solutions over the supported storage repositories and
execution platforms (see example in Figure 3). By using
platform-independent representations of a DW design (see
Section 2.5), Quarry is extensible in that it can link to a
variety of execution platforms. At the same time, the vali-
dated DW designs are available for additional tunings by an
expert user (e.g., indexes, materialization level).

2.5 Communication & Metadata Layer
To enable communication inside Quarry, the Communica-

tion & Metadata layer uses logical (XML-based) formats for
representing elements that are exchanged among the com-
ponents. Information requirements are represented in the
form of analytical queries using a format called xRQ2 (see
bottom-left snippet in Figure 4). An MD schema is repre-
sented using the xMD format3 (see top-right snippet in Fig-
ure 4), and an ETL process design using the xLM format
[12] (see bottom-right snippet in Figure 4). Moreover, the
Communication & Metadata layer offers plug-in capabilities
for adding import and export parsers, for supporting var-
ious external notations (e.g., SQL, Apache PigLatin, ETL
Metadata; see more details in [7]).

Besides providing the communication among different com-
ponents of the system, the Communication & Metadata layer

2xRQ ’s DTD at: www.essi.upc.edu/~petar/xrq.html
3xMD ’s DTD at: www.essi.upc.edu/~petar/xmd.html

www.essi.upc.edu/~petar/xrq.html
www.essi.upc.edu/~petar/xmd.html

also serves as a repository for the metadata that are pro-
duced and used during the DW design lifecycle. The meta-
data used to boost the semantic-aware integration of DW de-
signs inside the Quarry platform, are domain ontologies cap-
turing the semantics of underlying data sources, and source
schema mappings that define the mappings of the ontologi-
cal concepts in terms of underlying data sources.

2.6 Implementation details
Quarry has been developed at UPC, BarcelonaTech in the

last three years, using a service-oriented architecture.
On the client side, Quarry provides a web-based compo-

nent for assisting end-users during the DW lifecycle (i.e.,
Requirements Elicitor). This component is implemented in
JavaScript, using the specialized D3 library for visualizing
domain ontologies in form of graphs. The rest of modules
(i.e., Requirements Interpreter, MD Schema Integrator, and
ETL Process Integrator) are deployed on Apache Tomcat
7.0.34, with their functionalities offered via HTTP-based
RESTful APIs. Such architecture provides the extensibility
to Quarry for easily plugging and offering new components
in the future (e.g., design self-tuning). Currently, all mod-
ule components are implemented in Java 1.7, whilst new
modules can internally use different technologies. For gen-
erating internal XML formats (i.e., xRQ, xMD, xLM) we
created a set of Apache Velocity 1.7 templates, while for
their parsing we rely on the Java SAX parser. For repre-
senting domain ontology inside Quarry, we used Web Ontol-
ogy Language (OWL), and for internally handling the ontol-
ogy objects inside Java, we used the Apache Jena libraries.
Lastly, the Communication & Metadata layer, which im-
plements communication protocols among different compo-
nents in Quarry, uses a MongoDB instance as a storage
repository, and a generic XML-JSON-XML parser for read-
ing from and writing to the repository.

3. DEMONSTRATION
In the on-site demonstration, we will present the function-

ality of Quarry, using our end-to-end system for assisting
users in managing the DW design lifecycle (see Figure 1).
We will use different examples of synthetic and real-world
domains, covering a variety of underlying data sources, and
a set of representative information requirements from these
domains depicting typical scenarios of the DW design life-
cycle. Demo participants will be especially encouraged to
provide example analytical needs using Requirements Elici-
tor, and play the role of Quarry ’s end-users. The following
scenarios will be covered by our on-site demonstration.

DW design. Business users are not expected to have deep
knowledge of the underlying data sources, thus they may
choose to pose their information requirements using the do-
main vocabulary. To this end, business users may use the
graphical component of Quarry (i.e., Requirements Elici-
tor), and its graphical representation of a domain ontol-
ogy. This scenario shows how Quarry supports non-expert
users in the early phases of the DW design lifecycle, to ex-
press their analytical needs (i.e., through assisted data ex-
ploration of Requirements Elicitor), and to easily obtain the
initial DW design solutions.

Accommodating a DW design to changes. Due to possi-
ble changes in a business environment, a new information
requirement could be posed or existing requirements might
be changed or even removed from the analysis. Designers

thus must reconsider the complete DW design to take into
account the incurred changes. This scenario demonstrates
how Quarry efficiently accommodates these changes and in-
tegrate them by producing an optimal DW design solution.
We will consider structural design complexity as an example
quality factor for output MD schemata, and overall execu-
tion time for ETL processes. The participants will see the
benefits of integrated DW design solutions (e.g., reduced
overall execution time for integrated ETL processes, exe-
cuted in Pentaho PDI).

Design deployment. Finally, after the involved parties
agree upon the provided solution, the chosen design is de-
ployed on the available execution platforms. In this sce-
nario, we will show how Quarry facilitates this part of the
design lifecycle and generates corresponding executables for
the chosen platforms. We use PostgreSQL for deploying our
MD schema solutions, while for running the corresponding
ETL flows, we use Pentaho PDI.

4. REFERENCES
[1] Z. E. Akkaoui, E. Zimányi, J.-N. Mazón, and

J. Trujillo. A BPMN-Based Design and Maintenance
Framework for ETL Processes. IJDWM, 9(3):46–72,
2013.

[2] L. Bellatreche, S. Khouri, and N. Berkani. Semantic
Data Warehouse Design: From ETL to Deployment à
la Carte. In DASFAA (2), pages 64–83, 2013.

[3] S. Dessloch, M. A. Hernández, R. Wisnesky,
A. Radwan, and J. Zhou. Orchid: Integrating Schema
Mapping and ETL. In ICDE, pages 1307–1316, 2008.

[4] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema Mapping
Creation and Data Exchange. In Conceptual Modeling:
Foundations and Applications, pages 198–236.
Springer, 2009.

[5] P. Jovanovic, O. Romero, A. Simitsis, and A. Abelló.
Integrating ETL processes from information
requirements. In DaWaK, pages 65–80, 2012.

[6] P. Jovanovic, O. Romero, A. Simitsis, A. Abelló, and
D. Mayorova. A requirement-driven approach to the
design and evolution of data warehouses. Inf. Syst.,
44:94–119, 2014.

[7] P. Jovanovic, A. Simitsis, and K. Wilkinson. Engine
independence for logical analytic flows. In ICDE,
pages 1060–1071, 2014.

[8] R. Kimball, L. Reeves, W. Thornthwaite, and
M. Ross. The Data Warehouse Lifecycle Toolkit. J.
Wiley & Sons, 1998.

[9] J.-N. Mazón, J. Lechtenbörger, and J. Trujillo. A
survey on summarizability issues in multidimensional
modeling. Data Knowl. Eng., 68(12):1452–1469, 2009.

[10] C. Phipps and K. C. Davis. Automating data
warehouse conceptual schema design and evaluation.
In DMDW, volume 58 of CEUR Workshop
Proceedings, pages 23–32, 2002.

[11] O. Romero, A. Simitsis, and A. Abelló. GEM:
Requirement-Driven Generation of ETL and
Multidimensional Conceptual Designs. In DaWaK,
pages 80–95, 2011.

[12] A. Simitsis and K. Wilkinson. The specification for
xLM: an encoding for analytic flows, HP Technical
Report, 2015.

