
Abstract—We consider a system where multiple users are 
connected to a small cell base station enhanced with 
computational capabilities. Instead of doing the computation 
locally at the handset, the users offload the computation of full 
applications or pieces of code to the small cell base station. In this 
scenario, this paper provides a strategy to allocate the uplink, 
downlink, and remote computational resources. The goal is to 
improve the quality of experience of the users, while achieving 
energy savings with respect to the case in which the applications 
run locally at the mobile terminals. More specifically, we focus on 
minimizing a cost function that depends on the latencies 
experienced by the users and provide an algorithm to minimize 
the latency experienced by the worst case user, under a target 
energy saving constraint per user. 

Index Terms—Multiuser systems, small cell networks, 
application offloading, scheduling, energy efficiency, adaptive 
rate. 

I. INTRODUCTION

LOUD computing is a flexible and cost-effective concept
that allows mobile terminals (MTs) to have access to
larger computational and storage resources than those 

available in typical user equipment [1]. On the other hand, 
small cells deployments can be seen as an opportunity to offer 
low-cost solutions for cloud services if the small cell base 
stations (BSs) are enhanced with computational and storage 
capabilities [2,3]. In addition to the economic advantages, 
bringing computational power closer to the end user is 
expected to provide a lower latency along with an energy 
saving. As a result, an improvement on the user experience 
and a prolonged battery lifetime may be obtained. This, 
however, requires effective resource allocation and power 
control mechanisms so that the small cell BSs can properly 
perform computations from multiple users.

A description of the challenges for supporting mobile 
cloud computing applications in heterogeneous networks is 
provided in [4], including the offloading decision, admission 
control, cell association, power control, and resource 
allocation. Most of the work done so far corresponds to the 
offloading decision based on energy consumption criteria and 
experimental evaluation of the offloading performance [5-11]. 
The resource allocation problem in a multiuser set up is 
considered in [12] where, to avoid the instability of the 

queues, a mechanism is proposed that assigns more resources 
to those users with more bits to send in the uplink 
(UL)/downlink (DL) or instructions to execute. Different from 
[12], in this paper, we focus directly on the optimization of the 
quality of service (QoS) perceived by the different users in 
terms of the average latency. In addition to that, our scheme 
allows to trade easily between such QoS and the energy saving 
obtained with respect to the case of executing all the code 
locally at the MTs. 

At this point it is important to remark that, in general terms, 
the offloading procedure depends on the kind of application 
that the users want to run. In this paper we are considering 
continuous-execution applications where there is a single 
execution stream per application (i.e., the different modules of 
the same application are not executed in parallel). More 
concretely, we consider that each user in the system has 
already decided to offload its corresponding application. For 
this scenario, different from [1], the paper focuses on how to 
deal with the allocation of the communication and remote 
computational resources among the users to achieve a low 
latency in the execution of the applications. Of course, other 
kinds of applications and scenarios could also be considered, 
but they are out of the scope of this paper. 

The rest of the paper is organized as follows. Section II
describes the system. Section III provides a model for the 
energy consumption of the MT and explains how the target 
energy saving impacts on the selection of the communication 
data rates, which in turns impact on the average latency of the 
users. The solution to the resource allocation problem is given 
in Section IV. Finally, Sections V and VI provide simulations 
results and conclusions, respectively. 

II. SYSTEM DESCRIPTION

We consider a system with K active users connected to a 
small cell BS endowed with some computational capabilities. 
In such scenario, each MT offloads a continuous-execution 
application to the BS. Each application or piece of code 
offloaded requires that the MT sends some input bits through 
the UL and that the BS executes a set of instructions in order 
to process (P) such bits. Then, the output bits are sent back 
from the BS to the user through the DL. See Fig. 1 as an 
illustrative example of the scenario. 
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Fig. 1. Example of the scenario considered in this paper. 

In order to accommodate the bursty nature of the packets 
to be processed, each stage (UL, P, and DL) implements one 
queue per user, which are served under TDMA. 

Fig. 2 shows the UL, P, and DL queues for this system, 
where each queue is fed by the outputs coming out from the 
previous server. 

Fig. 2. System model with UL, P, DL queues and associated servers. 

We will denote by , [ ]UL kt n , , [ ]P kt n , and , [ ]DL kt n  the UL, 
P, and DL times allocated to the k-th user in the n-th
scheduling period. Note that the n-th scheduling period of the 
three queues may be misaligned in time as a result of the 
different duration of the scheduling periods on each server,
denoted by ULT , PT , and DLT  respectively (see Fig. 3). As it 
is shown in Fig. 3, the n-th scheduling period of the DL phase 
must follow the n-th scheduling period of the P stage that 
must, in turn, follow the n-th scheduling period of the UL 
phase. 

Fig. 3. UL, P, DL scheduling periods.

According to Little’s theorem [13] for stable queues, the 
average latency experienced at each stage (UL, P, DL) 
measured in scheduling periods is given by 

, , ,
, , ,

, , ,
,   ,    and  UL k P k DL k

UL k P k DL k
UL k P k DL k

q q q
d d d ,  (1) 

with ,UL kq , ,P kq , and ,DL kq  being the average number of 
elements waiting in the k-th user’s UL, P, and DL queues,
respectively, and ,UL k , ,P k , ,DL k  the average number of 

input bits, instructions, and output bits arriving at the k-th 
user’s UL, P, and DL queue per scheduling period (i.e., every 

ULT , PT , and DLT  seconds, respectively). 
Note that if the system queues are stable, the values ,UL k ,
,P k , and ,DL k  will depend only on user behavior and 

application characteristics.  
In the following, we focus on the average latency as QoS 

metric. In the case that absolute latency (instead of average) 
requirements have to be fit, Markov’s inequality establishes 
that the latency outage probability (i.e. percentage of elements 
exceeding the absolute latency requirement) is upper bounded 
by the average latency divided by the absolute delay 
requirement [14]. Therefore, the minimization of the average 
latency is still meaningful in this case.

An estimation of the time-varying average latency can be 
obtained using an exponential weight window: 

, , ,
ˆ ˆ1 1 1i k i k i kd n d n d n , (2) 

where , 1i kd n  is the estimated instantaneous latency
experienced by the k-th user in the i-th queue (i ϵ {UL, P, 
DL}) at the beginning of the (n+1)-th scheduling period.  

The instantaneous latency, , 1i kd n , can be estimated
[14] as  

, , ,1 1 / ,i k i k i kd n q n (3) 
with , 1i kq n  being the number of elements in the i-th
queue of the k-th user at the beginning of the (n+1)-th 
scheduling period.  

We may replace , 1i kq n by
, , , ,1 ,i k i k i k i kq n q n n s n (4) 

with , [ ]i k n  is the number of elements arriving at the i-th
queue of the k-th user during the n-th scheduling period and 

, [ ]i ks n is the number of bits sent (in UL and DL) or 
instructions processed (in P) in the allocated time , [ ]i kt n .

Now combining(2), (3), and (4) we obtain: 
, , ,

, ,
,

ˆ ˆ1 1 i k i k i k
i k i k

i k

q n n s n
d n d n . (5) 

Note that while , [ ]UL k n  is the rate of bits generated 
directly by the MT, , [ ]P k n  and , [ ]DL k n  depends on the 
decisions of the UL and P schedulers during previous 
scheduling periods (see Fig. 2).

It is worthy to remark that expression (5) provides the 
estimation of the average latency per bit in the UL or DL 
queues, or per instruction in the P queue. In case that the 
processing of a set of instructions cannot start until the packet 
of data bits to be processed by such instructions has been sent 
completely through the UL, we should add a term to (5) 
accounting for this. The same applies for the DL, if we need to 
wait until a set of instructions have been executed before 
piling information to the DL queues. 

The problem that needs to be tackled within this 
framework is how to split the time resources at the beginning 
of each scheduling period (see Fig. 3) to reduce the latency 
experienced by the users. Note that we may always reduce this 
latency by increasing the communication rate in UL and DL, 
provided that the channel and the maximum transmission 
power of the transmitter support it. This increment, however,
will have an impact on the energy consumption of the MTs. 
We will address this issue in the next section, while in section 
IV we will formalize and propose a method that solves the 
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scheduling problem and allocates the time resources of the 
UL, P, and DL. 

For the sake of clarity in the presentation of the scheduling 
technique in the following sections, we collect the notation 
used in the paper in the table II, where the subindex i denotes 
the UL, P, and DL stages/queues, i.e. (i ϵ {UL, P, DL}). 

 
TABLE I 

 

NOTATION USED 
 

, [ ]i kt n  Times allocated to k-th user in the n-th scheduling 
period of the i-th stage 

iT  Duration of the scheduling period associated to the i-th 
stage  

,i kq n  Number of elements in the k-th user’s i-th queue at the 
beginning of the n-th scheduling period 

,i kq  Average number of elements waiting in the k-th user’s 
i-th queue 

,i k n  Number of elements arriving at the k-th user’s i-th 
queue during the n-th scheduling period 

,i k  Average number of input bits, instructions, and output 
bits arriving at the k-th user’s i-th queue per scheduling 
period 

, [ ]i ks n  Number of bits sent (in UL and DL) or instructions 
processed (in P) in the allocated time corresponding to 
the k-th user’s i-th stage during the n-th scheduling 
period 

,i kd  Averaged latency experienced by the k-th user at the i-
th stage 

,
ˆ
i kd n  Exponential temporal average of the latency 

experienced by the k-th user associated to the i-th queue 
(UL, P, DL) up to the n-th scheduling period 

,i kd n  Instantaneous estimate of the latency experienced by the 
k-th user associated to the i-th queue (UL, P, DL) at the 
n-th scheduling period 

 

III. ENERGY CONSUMPTION 
In addition to the expected reduced latency, the offloading 

will be worthy if the energy spent in average by the MT when 
offloading an application (which requires wireless 
transmission of data) is lower than the energy required for 
doing the processing locally. To compare both quantities, we 
need a model for the energy consumption of the terminal when 
the terminal offloads an application and also when the 
terminal runs the application locally.  

The measurements provided in [15] for a LTE-MT dongle 
show that the UL transmit power, ,tx kp , and the DL data rate, 

,DL kr  (because of the increase on decoding complexity), 
greatly affect the power consumption, while the UL encoding 
rate and the DL received power has little effect. In addition to 
that, a baseline power is also consumed just for having the 
transmitter and receiver chains switched on [15]. However, for 
conventional user terminals without microsleep capabilities 
[16,17], the baseline energy consumption due to having the 
transmission circuitry on is present even if the computation is 
performed locally. For this reason we will not considered this 
baseline power consumption when comparing the energy 
consumption with and without offloading. Following the 
assumptions mentioned in previous works, we adopt the 
following approximated power consumption models 
associated to the UL and DL transmissions to compute the 
extra power required for performing the remote processing 
with respect to the case of doing the processing locally: 

, , , , , ,,UL k tx k tx k DL k rx k DL kp k p p k r ,          (6) 
with ,tx kk and ,rx kk being model dependent constants. 

An upper bound on the transmission rate that depends on 
the transmission power and the quality of the channel is given 
by Shannon’s formula [18]. Despite it is a theoretical bound, it 
is widely used to predict the supported rate. A constant  can 
account for the gap between the theoretical and real 
performance [19]: 

, 2 , ,log 1UL k UL k tx kr W p .     (7) 

In eq. (7), W  represents bandwidth measured in Hz, and 
,UL k  and ,DL k  are the channel gains normalized by the 

noise power in UL and DL, respectively. 
From expressions (6)-(7), the energy spent by the MT in 

the offloading process at each UL and DL scheduling period 
can be computed as follows: 

, [ ]

, , ,
,

2 1      

UL kr n
W

UL k tx k UL k
UL k

e n k t n ,     (8) 

, , , [ ]DL k rx k DL ke n k s n .         (9) 
The average energy consumption per second for the k-th 

user can be written as follows, assuming that ,UL kr  remains 
constant over the averaging period: 

,

, ,
, , ,

, ,

2 1
UL kr
WUL k DL k

k UL k tx k rx k
UL UL k UL k DL

e r k k
T r T

.   (10) 

Note that in (10) we do not include the energy 
consumption for the processing stage since, when offloading is 
performed, the computation and execution of the instructions 
imply an energy spenditure outside the MT. The scheduling 
strategy that we present in this paper could be directly adapted 
to include the energy consumption of the BS. However, in this 
paper, we focus only on the MT energy consumption as it is 
the MT the terminal that is battery limited. 

An important observation is that ,k UL ke r  (see eq.  (10)) 
does not change with the DL data rate, but it is an increasing 
function of the UL date rate.  

We will consider that the offloading is worthy for the MT 
from an energy point of view if ,k UL ke r  in (10) is lower 
than a percentage of the average energy per second spent by 
the MT when performing all the processing locally i.e. 

 
, , 01 /k UL k P k Pe r T .      (11) 

 
In (11), 0  is the energy required to process an instruction 

locally (i.e. the energy consumed per CPU cycle for 
computation at the MT), and  the energy saving that we 
want to achieve.  

Combining (10) and (11) results in an upper bound for the 
UL data rate equal to inverse function of (10), 1

ke , evaluated 
at , 01 /P k PT : 

, 01
,

1 P k
UL k k

P
r e

T
.          (12) 

Increasing the target energy saving, , will result in a 
tighter bound for the UL data rate. This means that we can 
exchange latency in the UL by energy consumption or 



 

viceversa. The reason is because we can increase the UL data 
rate (and therefore reduce latency) at the expense of increasing 
the energy consumption of the MT. On the other hand, as far 
as the DL data rate is concerned, the best strategy from the 
MT point of view is to increase the DL data rate as much as 
possible, since this reduces the latency experienced by the 
MT, without affecting the energy consumption of the MT. 

IV. PROBLEM FORMULATION AND SOLUTION 
While the UL and DL schedulers may work together, it may 

be unpractical or too complex that the processor scheduler and 
the radio schedulers take decisions jointly because of the high 
associated complexity and the huge amount of messages that 
would need to be exchanged among different layers of the 
protocol stack. Due to these considerations, we assume in this 
paper a decoupled resource allocation problem with three 
schedulers, each one managing the queues of the UL, P, and 
DL independently. Although the schedulers operate 
separately, the global performance of the system implies an 
inherent coupling since each queue is fed by the outputs 
coming out from the previous server. 

The problem to be solved at each queue during the n-th 
scheduling period has the same structure and can be 
formulated as (for i ϵ {UL, P, DL}): 

, , 1

,
1,

,
1

, ,

, , ,

ˆmin 1

s.t. ,  

      ,  

      .

K

i k i k k

K
i k

kt n s n

K

i k i
k

i k i k

i k i k i k

c d n

t n T

s n q n

s n t n R

       (13) 

In problem (13), c(·) is the cost function to be minimized (it 
depends on the estimated average latencies of the K users), 
and Ri,k is a rate constraint. Note that: 
 

 In the P stage, ,P kR is the number of instructions per 
second that the remote processor can execute, and 
hence is independent of the user.  

 As far as RUL,k is concerned, this value given by the 
right-hand side of (12) and depends on the target 
energy saving, , of the k-th MT. For higher target 
energy savings, RUL,k  will be lower, and therefore the 
latency will increase. 

 RDL,k is the maximum DL data rate that it is only 
determined by the DL channel and the physical layer.  

In the following we adopt as cost function the latency for 
the worst case user, i.e., 

, ,
1 1

ˆ ˆ1 max 1
K K

i k i k
kk k

c d n d n .  (14) 

The previous problem can be rewritten in a simplified way 
by using a dummy variable d that refers to the latency of the 
worst case user. In addition to that, it can be proved easily that 
the optimum solution implies that the rate constraint is 
fulfilled with equality (i.e., , , ,i k i k i ks n t n R ), otherwise, 
the scheduled time for the users for which the rate constraint is 
fulfilled with strict inequality could be lowered until equality 

is fit without affecting the value of the cost function and the 
fulfillment of the other constraints. Thanks to this, we can 
consider the scheduling times ,i kt n  as the only 
optimization variables in the new reformulated problem 
(where the expression of the average latency given in eq. (5) 
has been included): 

, 1
,

, , , ,
,

,

,
1

, , ,

min

ˆs.t. 1 ,

      ,  

      .

K

i k k
d t n

i k i k i k i k
i k

i k
K

i k i
k

i k i k i k

d

q n t n R
d n d

t n T

t n R q n

       

(15) 
Note that in the estimation of the latency appearing in the 

first constraint of problem (15), we have substituted , [ ]i k n  
(see eq. (4) with its average value ,i k  becuase, in practice, 
the scheduler will not be aware of , [ ]i k n  when taking the 
resource allocation decision (this is the approach followed also 
in [14]). From the first and last constraints in (15), it can be 
proved that the time to be allocated to the k-th user has to 
fulfill the following conditions: 

 
,

, , , ,
,

1 ˆ[ ] (1 ) [ ] ,i k
i k i k i k i k

i k
t n q n d d n

R
 
 

(16) 
,

,
,

[ ] ,i k
i k

i k

q n
t n

R
                    (17) 

where max 0,x x . Considering jointly constraints 1 
and 3 for all the users in problem (15), we can derive the 
following condition: 

min ,
ˆmax 1

i i k
k

d d d n .    (18) 

For a given value of d, the optimum allocated time for each 
user are given by the lower bound in (16). Note that any other 
solution would spend more time of the total scheduling period 
Ti without reporting any improvement in the cost function, i.e., 
in the latency of the worst-case user. Thus, for a given value 
of d, the optimum scheduled time for the k-th user is given by 
(16) with equality. 

The optimum solution consists, then, in solving the 
following problem: 

min ,

,
, , ,

,

ˆfind      max 1

1 ˆ        s.t.   (1 ) [ ] .

i i k
k

i k
i k i k i k i

i kk

d d d n

q n d d n T
R

(19) 
The previous problem can be solved by applying any 

standard algorithm for solving non-linear equations, taking 
into account that the restriction decreases monotonically in d. 
In this case, for example, the nested intervals algorithm is a 
good choice since it assures convergence with exponential 
speed [20]. 



 

If *
, [ ]i k ik t n T , with *

, [ ]i kt n  the optimal value of the 
time allocated to k-th user in the n-th scheduling period of the 
i-th stage, then problem (15) has a non-unique optimum 
solution. In this case, we propose a concrete optimum solution 
that consists in identifying the user producing the worst 
latency, i.e., the user k1 such that 

1min ,
ˆ1

i i kd d n . 
Then we allocate the time needed for that user to achieve the 
minimum latency, which is 

1 1 1

*
, , ,[ ] [ ] /i k i k i kt n q n R , and 

finally, we subtract from the scheduling time this quantity: 

1 1, ,[ ] /i i i k i kT T q n R . Once this is done, the same procedure 
is applied to the rest of the users iteratively. The complete 
algorithm is described in detail in Table II. 

 
TABLE II 

 

SCHEDULING PROCEDURE  
 

1: define 1,2, ,K K, K, , iT  is the scheduling time 

2: calculate: 
,min ,

ˆ1
i k i kd d n  

3: calculate: 
,min minmax

i i kk K
d d  

 

4: calculate 
,

,
, min min

,

1
i i k

i k
i k

i kk K
x q n d d

R
 

5: if ix T  

6: find d such that 
,

,
, min

,

1
i k

i k
i k i

i kk K
q n d d T

R
 

 

7: set 
,

,*
, , min

,

1[ ]
i k

i k
i k i k

i k
t n q n d d k K

R
 

8:  go to step 15 

9: else 

10:  find 1k K  such that 
, 1

min mini k i
d d  

11:  set 
1 1 1

*
, , ,[ ] [ ] /i k i k i kt n q n R  

12:  set 1K K k  and 
1 1, ,[ ] /i i i k i kT T q n R  

13:  go to step 3 

14: end if 
15: end algorithm 

V. SIMULATION RESULTS  
In order to evaluate the performance of the scheduler, we 

have considered a detection application that compares an 
audio signal with size 262.144 kBytes captured by the 
terminal with N=20 patterns by performing cross-correlations. 
Such application requires around 337 cycles per byte [21].  

We have considered that the same number of bits is sent in 
the UL and the DL. The maximum transmission power for 
both the MT and the BS is 100 mW. The MT processor 
corresponds to a commercial model (Nokia N900) that 
performs 650 Mcycles per Joule when operating at 600 MHz 
[5]. It is assumed that the remote processor is twice faster than 
the local one (i.e., 1.2 GHz). The values of the constants in the 
energy model are ,tx kk 18 and ,rx kk 2.86 mW/Mbps. 
Finally, the value of  in (7) is 1, and the scheduling times 
are UL DLT T 1 ms as in LTE [22], and PT 20 ms [23]. 

We have considered 5 MT’s that offload this application to 
the same small cell BS. The request arrival to the UL queue 
follows a Poisson distribution with a mean rate of one audio 
signal per second. The channels gains are assumed to be 

,1 ,1UL DL 17.5 dB for the first user and 19 dB for the 
other users.  

Fig. 4 shows the estimated average latency per user at each 
one the three queues for a specific energy saving (40%).  

Fig. 5 shows the actual average latency experienced by the 
users to process completely a signal as a function of the 
energy saving factor  (see eq. (12)) with respect to the local 
computation. It is important to remark that the latency is the 
sum of the latencies experienced through the three queues. 
The figure compares the performance of the algorithm 
proposed in Table II (i) with two different algorithms: all the 
scheduling period is allocated to the user with more 
bits/instructions waiting in the queue (ii), or with more signals 
waiting to be transmitted/processed (iii). As expected, we 
observe that in all cases the average latency to process a signal 
is higher as the target energy saving increases. For a particular 
energy saving, we can see that the average latency obtained 
with the proposed algorithm (i) is significantly lower than the 
obtained with the other ones, especially if we compare it with 
(ii), where the improvement is around 35%. Note also that for 
a given target latency (for instance 350 ms), the energy saving 
that we can achieve with our algorithm (i) is much higher than 
with the algorithms (ii) and (iii). 

 
Fig. 4. Estimated average latency for an energy saving of 40%. 

 

  
Fig. 5. Actual average total latency per signal versus the target energy saving 

factor . 

Fig. 6 shows the empirical cumulative density function 
(CDF) of the latency per signal obtained with the three 
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algorithms for a specific energy saving (40%). We observe 
that the proposed algorithm shows a better performance not 
only in terms of average latency, but also in terms of jitter. 
Note also that, although user 1 has the worst channel, its 
experienced latency is closer to the other users’ latencies with 
our algorithm than with the other two strategies. 

Fig. 6. CDF of the actual average total latency per signal for an energy 
saving of 40%. 

VI. CONCLUSIONS

We have developed a scheduling strategy for multiuser 
offloading systems where the resources are allocated under the 
objective of minimizing the average experienced latency of 
the worst case user. We have seen that our algorithm obtain 
good results even if we force a high reduction in the energy 
spending of the offloading process with respect to the case of 
performing all the computations locally.  

We leave as open problem for future research the 
generalization of the proposed approach by including 
admission control policies to avoid, for instance, that one user 
degrades severely the performance of the others; and the 
formulation and solution of the single scheduler managing 
jointly the queues of the three stages for benchmark purposes. 
Another issue to be considered as a future work is the 
consideration of applications that can be split so that some 
subprocesses of the applications can run at the MT whereas 
other subprocesses can run in parallel at the BS. 
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