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Abstract

We give an algorithm to compute the set of primitive elements for an embedding
dimension three numerical semigroups. We show how we use this procedure in the
study of the construction of L-shapes and the tame degree of the semigroup.
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1 Introduction

Let S be a numerical semigroup, that is, a submonoid of (N,+) with finite
complement in N (here N denotes the set of nonnegative integers). It is well
known that S is finitely generated as monoid: exists A ⊂ S finite such that
S = 〈A〉 = {

∑
a∈A λaa | λa ∈ N}. Moreover, there is a unique minimal

(with respect to set inclusion) A satisfying this condition, which is known as
minimal generating system. Suppose that A = {a1, . . . , an}. Then the monoid
morphism

ϕ : Nn → S, (x1, . . . , xn) 7→
n∑

i=1

xiai

is surjective, and so S is isomorphic as monoid to N
n/ kerϕ, where

kerϕ = {(x, y) ∈ N
n × N

n | ϕ(x) = ϕ(y)}.

The congruence kerϕ is a monoid too, and it is minimally generated by the set
of minimal (with respect to the order given by the Cartesian product) nonzero
elements of kerϕ \ {(0, 0)}, which we denote by I(kerϕ), (see [10, Chapter
8]). Let ei be the ith row of the n× n identity matrix. Then (ei, ei) is always
one of these minimal elements.

Define

Prim(S) = {ϕ(a) | (a, b) ∈ I(kerϕ) for some b 6= a},

which we call primitive elements of S.

In [4] an algorithm to compute I(kerϕ) is given, and so Prim(S). In this
work, we particularize this method to the very particular case when S is a
numerical semigroup with embedding dimension three (n = 3). Prior to this,
we present two examples where an improvement of this procedure is welcomed.

1.1 L-forms

Let S be a numerical semigroup minimally generated by {a1, . . . , an}. Given
k,m ∈ N, m 6= 0, we denote by [k]m the congruence class of k modulo m. The
Apéry set of m in S is Ap(S,m) = {s ∈ S | s−m /∈ S}. It is well known that
if m ∈ S \ {0}, then Ap(S,m) = {w0, . . . , wm−1} with wi = min([i]m ∩ S).

1 Supported by MTM2011-28800-C02-01 and 2009SGR1387
2 Supported by MTM2010-15595, FQM-343, FQM-5849 and FEDER funds
3 Supported by MTM2010-15595, FQM-343 and FEDER funds
4 Email: matfag@ma4.upc.edu
5 Email: pedro@ugr.es
6 Email: dllena@ual.es



Let [[i1, . . . , in−1]] be the unitary (n−1)-cube [i1, i1+1]×· · ·×[in−1, in−1+1]
in R

n−1. We label each cube with his weight i1a1+ . . .+ inan. And we say that
an equivalence class [m]an is represented by the corresponding related cubes
[[x1, . . . , xn−1]] with a1x1 + · · ·+ an−1xn−1 ≡ m (mod an).

Let us define the discrete cone of unitary cubes

∆(i1, . . . , in−1) = {[[j1, . . . , jn−1]] : 0 ≤ j1 ≤ i1, . . . , 0 ≤ jn−1 ≤ in−1}

for (i1, . . . , in−1) ∈ N
n−1, and the set of unitary cubes labeled with [m]an

Qm = {[[i1, . . . , in−1]] : [i1a1 + . . .+ in−1an−1]an = [m]an , (i1, . . . , in−1) ∈ N
n−1}.

The minimum weight of unitary cubes representing [m]an will be denoted by

Mm = min{i1a1 + . . .+ in−1an−1 : [[i1, . . . , in−1]] ∈ Qm}.

Definition 1.1 [Minimum Distance Diagram] AMinimum Distance Diagram,
H, related to the numerical semigroup S = 〈a1, . . . , an〉 is a set of an unitary
cubes in N

n−1 with the following three properties

(a) If X = [[x1, . . . , xn−1]], Y = [[y1, . . . , yn−1]] ∈ H represent the same equiva-
lence class, then X = Y .

(b) If [[x1, . . . , xn−1]] ∈ H, then x1a1 + . . .+ xn−1an−1 = Mx1a1+...+xn−1an−1
.

(c) If [[x1, . . . , xn−1]] ∈ H, then ∆(x1, . . . , xn−1) ⊆ H.

Minimum distance diagrams were used first in the computation of dis-
tances in weighted and non-weighted Cayley digraphs ([8,9]). These diagrams
tesellate the R

n−1 space (so they are also named tiles). When n = 3 they are
well known as L-shaped tiles and many works appeared in the bibliography
([1,6]) on Cayley digraphs and numerical semigroups. Less is known of generic
tiles when n ≥ 4, with the exception of some particular cases ([7,9]).

An important property of minimum distance diagrams is that the Apéry
set Ap(S, an) = {w(x1, . . . , xn−1) : [[x1, . . . , xn−1]] ∈ H} where H is any
minimum distance diagram related to the semigroup S. When n = 3, several
applications have been given using this fact, for instance efficient algorithms
for the computation of the Frobenius number and the genus of numerical
semigroups.
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Fig. 1. Minimum distance diagram related to 〈4, 9, 11〉



Example 1.2 Consider S = 〈4, 9, 11〉, then Figure 1 shows a minimum dis-
tance diagram related to S. The labels of the cubes are their weights.

Now let S = 〈5, 7, 11, 13〉. Then Figure 2 shows a minimum distance
diagram H related to S, labeled with weights also. The labels of the cubes
also form the Apéry set Ap(S, 13).

Fig. 2. Minimum distance diagram related to 〈5, 7, 11, 13〉

Given s ∈ S, define Z(s) = ϕ−1(s) as the set of factorizations of s in S
(actually in terms of {a1, . . . , an}). We study the number of different L-forms
of S in terms of the factorizations of some elements in the Apéry set of an.
For n = 3 there are at most two L-forms, but this is not the case for n > 3.
For instance, for 〈5, 7, 11, 13〉, we have
gap> LFormsOfNumericalSemigroup(NumericalSemigroup([5,7,11,13]));

[[[0,0,0],[1,0,0],[0,1,0],[2,0,0],[0,0,1],[1,1,0],[0,2,0],[3,0,0],[1,0,1],[2,1,0],[1,2,0],[0,3,0],[0,0,2]],

[[0,0,0],[1,0,0],[0,1,0],[2,0,0],[0,0,1],[1,1,0],[0,2,0],[3,0,0],[1,0,1],[2,1,0],[1,2,0],[0,3,0],[3,1,0]],

[[0,0,0],[1,0,0],[0,1,0],[2,0,0],[0,0,1],[1,1,0],[0,2,0],[3,0,0],[1,0,1],[2,1,0],[1,2,0],[2,0,1],[0,0,2]],

[[0,0,0],[1,0,0],[0,1,0],[2,0,0],[0,0,1],[1,1,0],[0,2,0],[3,0,0],[1,0,1],[2,1,0],[1,2,0],[2,0,1],[3,1,0]]]

The implementation has been performed using the numericalsgps ([5])
GAP package.

In the above representation, each L-form is given by a list containing a fac-
torization for each of the elements in Ap(S, 13) with respect to the semigroup
〈5, 7, 11〉. Thus, in order to compute all possible L-forms, we first compute
Ap(S, 13), which has 13 elements, and then we compute for each of these
elements its set of factorizations in 〈5, 7, 11〉; finally we have to find a fac-
torization for each element and arrange the chosen factorizations coherently
with the definition of L-form. In this example we see that the eleven first
elements are always the same, while those at the end change: [0, 3, 0] can be
replaced with [2, 0, 1], whilst [0, 0, 2] with [3, 1, 0]. This is due to the fact that
21 = 3 · 7 = 2 · 2 + 1 · 11 and 22 = 3 · 5 + 1 · 7 = 2 · 11. Notice that these
two elements, 21 and 22, are primitive elements that belong to the Apéry set.
The L-shape in Figure 2, corresponds to the last element in the list.

The first problem we encounter is when we try to obtain the Apéry set when



a4 is “big”. We have some evidences that the L-shapes are determined by the
set Prim(〈a1, a2, a3〉) ∩ Ap(S, a4) (and for this we do not need to determine
the Apéry set, since we only have to filter those primitive elements s with the
condition s − a4 6∈ S). With this approach our execution times passed from
hours to a bunch of seconds.

1.2 The tame degree

Let x = (x1, . . . , xn) ∈ Z(s) be a factorization of s ∈ S = 〈a1, . . . , an〉. We
define its length as |x| =

∑n

i=1
xi. If y = (y1, . . . , yn) is another factorization,

we denote by x∧ y = (min{x1, y1}, . . . ,min{xn, yn}). The distance between x
and y is defined as

d(x, y) = max{|x− (x ∧ y)|, |y − (x ∧ y)|},

that is, the maximum of the lengths of the factorizations once we remove the
common part of x and y.

An N -chain, with N ∈ N, of factorizations joining x with y is a sequence
x1, . . . , xk ∈ Z(s) such that: x1 = x, xk = y, and for all i, d(xi, xi+1) ≤ N .

The catenary degree of s, c(s), is the minimum of the N ∈ N, such that for
any two factorizations of S there exists anN -chain joining them. The catenary
degree of S is the supremum of the catenary degrees of all the elements of S,
and we denote it by c(S). This supremum is indeed a maximum, that is, it is
reached in a particular element of S.

The tame degree of s is the minimum N ∈ N such that whenever s−ai ∈ S
for some i ∈ {1, . . . , n}, for any x ∈ Z(s), there exists y = (y1, . . . , yn) ∈ Z(s)
such that d(x, y) ≤ N . The tame degree of s is denoted by t(s), and the tame
degree of S, as occurs with the catenary degree, it is defined as the supremum
(once more a maximum in our setting) of the tame degrees of the elements of
S, and we denote it by t(S).

In [1], formulas for c(S), for the case n = 3 (embedding dimension three)
are presented in terms of the parameters of any of the L-shapes associated
to S. For arbitrary embedding dimension we know ([3]) that the catenary
degree of S is attained in the elements that are used to construct a minimal
presentation of S (which is a minimal generating set of kerϕ as a congruence).
In contrast to this, the tame degree is attained in the primitive elements of
S, which as we have seen above are those that appear related to the minimal
generating set of kerϕ as a monoid.

A minimal presentation of S is generic if in all its elements every minimal
generator of S appears. In this case, c(S) = t(S) (see [2]). For n = 3, S
has a generic presentation if and only if it is not symmetric (where symmetric



means that x ∈ Z \ S implies F(S)− x ∈ S, with F(S) the Frobenius number
of S; see for instance [11, Chapter 9]). In general, c(S) ≤ t(S), and thanks to
the study of the primitive elements in embedding dimension three, we have
been able, with C. Viola, to characterize those embedding dimension three
numerical semigroups for which the inequality is strict ([12]).

2 Computing primitive elements for embedding dimen-

sion three numerical semigroups

As we have seen above, primitive elements are of great help for the computa-
tion of L-shapes and the tame degree. In this section we sketch how we have
particularized the general procedure explained in [4] to the particular case of
embedding dimension three. So assume in what follows that S is minimally
generated by {n1, n2, n3}. Associated to the kernel congruence of ϕ (defined
in the introduction), we define the subgroup of Z3

M = {(x1 − y1, x2 − y2, x3 − y3): ((x1, x2, x3), (y1, y2, y3)) ∈ kerϕ}

(see [10] for more details on this subgroup).

The method proposed in [4], starting from a basis of M , constructs all pos-
sible combinations by changing the sign of its elements, and then “saturates”
these sets Let us precise the concept of saturation a bit more.

Definition 2.1 Let (x1, . . . xn) and (y1, . . . yn) be in Z
n. We write (x1, . . . xn) ⊑

(y1, . . . yn) if xiyi ≥ 0 and |xi| ≤ |yi| for all i ∈ {1, . . . , n}.

A set A of Zn is saturated if for any ai, aj ∈ A there exists ah ∈ A such
that ah ⊑ ai + aj .

We study the saturation process of Bs = {(0, n3/g,−n2/g), (g,−y2, y3)},
which is a base of M , where g = gcd(n2, n3).

Definition 2.2 Let x = (x1, x2, x3) ∈ Z
3. The signature of x, sg(x), is the

tern formed by the signs of x1, x2 and x3. Zero is assumed to have both
positive and negative sign.

Remark 2.3 If the signatures of a and b coincide, then the sum is comparable
with both elements, that is, sg(a) = sg(b) implies a ⊑ a + b and b ⊑ a + b.
Hence, in order to “saturate” we must consider taking elements with different
signature.

Remark 2.4 In order to check if an element is incomparable with the rest,
we simply have to compare it with those having its same signature.



Thus, two elements are incomparable with respect to ⊑ if either they
have different signatures, or they have the same signature and some of their
coordinates increase while other decrease (in absolute value).

We start with Bs, whose elements are

x0 = (0, n3/g,−n2/g) = (0,+,−), x1 = (g,−y2, y3) = (g,−,+).

Since they have different signature, by Remark 2.3 their addition is a possible
new candidate for the saturation. We obtain

a1 = x0 + x1 = (g, n3/g − y2, y3 − n2/g) = (g,+,−).

This new element has the same signature as x0 but the first coordinate is
larger, while the other two are smaller in absolute value. Hence by Remark
2.4, we obtain a new incomparable element that we add to the saturation of
Bs.

We denote by Ai the ith step in the saturation of A. We write A = Bs,
and thus A1 = {x0, x1, a1}.

Lemma 2.5 In the saturation process, while there is no element with signa-
ture (+,−,−) , only a new element will be added. If ai = ai−1 + aj, then
ai+1 = ai + aj if sg(ai) = sg(ai−1); or ai+1 = ai + ai−1 if sg(ai) = sg(ai−1).

When the first element with signature (+,−,−) appears, two new elements
are added in the next saturation step.

Lemma 2.6 If ai is the first element with signature (+,−,−), then b1 =
ai + aj y c1 = ai + ai−1 are incomparable with the preceding a’s.

Then, after the ith step, we will start adding elements b2 and c2 raising from
b1 and c1, respectively, where b2 = b1+aj , or b2 = b1+ai; while c2 = c1+ai−1,
or c2 = c1 + ai.

The following lemma asserts that bx + cy is comparable, and thus we do
not add it in any saturation.

Lemma 2.7 Let bx be an incomparable element obtained from b1 (that is,
adding to b1 either aj or some previous bi), and let cy be another incomparable
element obtained from c1 (that is, adding ai−1 or some previous cj). Then
ai ⊑ bx + cy.

Theorem 2.8 The primitive elements of S = 〈n1, n2, n3〉 can be computed as
follows. Start with Bs = {(0, n3/g,−n2/g), (g,−y2, y3)} and applying twice
the division algorithm first with n3/g and y2, and then with n2/g and y3, we
obtain two list of elements in which the second coordinate will decreasing until



we reach (n3/g2, 0,−n1/g2) where g2 = gcd(n1, n3), and in the second list the
third coordinate will be decreasing until we obtain (n2/g3,−n1/g3, 0) where
g3 = gcd(n1, n2). Both list will have the same elements until ai is attained,
and then we will get the series of b’s and c’s.

According to the procedure presented in [4], we must saturate Bs and
B−s = {(0, n3/g,−n2/g), (−g, y2,−y3)}, but this last set is already saturated.

Example 2.9 Take S = 〈17, 31, 41〉.

x0 = (0, 41,−31), x1 = (1,−27, 20),

a1 = (1, 14,−11), a2 = (2,−13, 9), a3 = (3, 1,−2) = 82, a4 = (5,−12, 7)

a5 = (8,−11, 5), a6 = (11,−10, 3), a7 = (14,−9, 1), a8 = (17,−8,−1),

c1 = (31,−17, 0),

b1 = (20,−7,−3), b2 = (23,−6,−5), b3 = (26,−5,−7), b4 = (29,−4,−9)

b5 = (32,−3,−11), b6 = (35,−2,−13), b7 = (38,−1,−15), b8 = (41, 0,−17).

One of the advantages of this procedure is that from the output one can
easily compute a minimal presentation for S.
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