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ABSTRACT
This paper presents two approaches on detecting tremor in
patients with Parkinson’s Disease by means of a wrist-worn
accelerometer. Both approaches are evaluated in terms of
specificity and sensitivity as well as their applicability for a
real-time implementation. One approach is solely based on
the frequency distribution of a windowed time series, while
the second approach utilizes commonly employed features
found in the literature (e.g. FFT, entropy, peak frequency,
correlation). The two algorithms detect tremor at rest in
windowed time series. The effects of varying window lengths
and detection thresholds are studied. The results indicate
that an SVM with a linear kernel, in combination with the
frequency distribution, may already be enough to accurately
and reliably detect tremor in windowed time series. The
approach, after being trained with a first dataset of signals
obtained from 12 patients, achieved a sensitivity of 88.4%
and specificity of 89.4% in a second dataset from 64 PD
patients.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and medical science;
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms, Experimentation

Keywords
Tremor, inertial sensors, Support Vector Machines, learning,
accelerometer, Parkinson’s Disease

1. INTRODUCTION
Parkinson’s Disease (PD) is a chronic, progressive, neurode-
generative disorder [1, 12, 23] that has been first described
by James Parkinson in 1817 [16]. It affects the movement

of those suffering from the disease and it is typically char-
acterized by a loss of (motor) function, increased slowness
and rigidity. Despite radical advancements in medicine and
medical technology over the previous two centuries, reason
and cause of PD remain unknown [13, 23]. Most treatments
aim at reducing severity and frequency of motor complica-
tions. They do not cure or have been shown to slow the
progression of Parkinson’s [13].

Tremor at rest (also known as rest tremor or resting tremor)
is an easily (visually) recognized motor symptom of PD. It
typically manifests itself as an involuntary, unilateral (one-
sided) shaking of an extremity (e.g. hand, foot, etc.). In
general, extremities of the upper body are more affected
then those of the lower body [14, 23]. The shaking generally
occurs at a frequency between 4 - 6 Hz [12]. However, various
different frequencies can be found in literature [10] (e.g. 4 - 8
Hz [1] and 3 - 5 Hz [23]). This type of tremor is only present
when muscles are at rest, hence the name “tremor at rest”,
and dissolves during sleep as well as with action (i.e. volun-
tary movement of affected extremity) [14]. Tremor at rest
is a common symptom of PD and most people with Parkin-
son’s experience a shaking or trembling in one of their hands
at an early stage of the disease [23]. Furthermore, the ef-
fectiveness of therapeutic interventions (e.g. levodopa-based
medications) can be partially measured through tremor as-
sessment in PD patients. Thus monitoring of tremor in PD
patients is of main importance and has been widely stud-
ied [2, 3, 4, 8, 12, 9, 18, 17, 21, 24, 25]. The development
of small wearable sensor devices largely contributed to the
progress in this field.

This paper presents a new method for tremor detection
based on learning the spectral distribution of tremor and
non-tremor movements. The usage of spectral distribution
is compared to the usage of features that have been previ-
ously employed to characterize tremor. A literature review
on tremor detection through movement sensors is first pre-
sented. Then, results obtained for both feature sets are pro-
vided based on accelerometer signals obtained from 76 PD
patients. Movement signals were taken from the REMPARK-
project (Personal Health Device for the Remote and Au-
tonomous Management of Parkinson’s Disease) database [22].
This project aims at detecting various PD related symptoms
in real-time using inertial sensors. Thus, the approach de-
veloped in this paper is meant to satisfy a real-time imple-
mentation.
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Data collection from PD patients has taken place in 4 differ-
ent countries. In Spain, Dr. Àngels Bayes led the movement
signals gathering from Centro Médico Teknon in Barcelona.
Dr. Roberta Annicchiarico coordinated the data collection
in Rome, Italy. In Israel, signals were gathered under the
coordination of Dr. Hadas Lewy in Maccabi Healthcare Ser-
vices, Tel Aviv. Finally, signals gathered in Ireland were
coordinated by Prof. Gearóid ÓLaighin from National Uni-
versity of Ireland, Galway.

The remainder of this work is structured as follows: Section
2 describes related work with respect to tremor detection in
time series, Section 3 provides a general description of the
authors’ approach to detect tremor, while Section 4 presents
detailed information on the data collection and experiments.
Section 5 shows the obtained results and, finally, Section
6 summarizes the contributions of this paper and presents
future work.

2. RELATED WORK ON TREMOR DETEC-
TION THROUGH INERTIAL SENSORS

Recently, microelectromechanical systems (MEMS) technol-
ogy has contributed to develop miniaturized sensors that
are capable of continuously monitoring human movement.
This way, MEMS technology has opened up new possibil-
ities to study PD and other movement disorders. Given
the development of successful machine learning techniques,
computer science and artificial intelligence communities are
paying more attention to the accurate classification of PD
motor symptoms.

The approaches followed by recent publications may be di-
vided into two phases. First, signals obtained by MEMS
sensors are represented by features that are expected to pro-
vide a good characterization of tremor presence or absence.
Then, the feature-based representation is used as input for a
machine learning technique, typically a supervised learning
classifier.

In the feature extraction phase, common approaches rely
on spectral features [2, 4, 8, 9, 18, 21, 24, 25] given the
frequency nature of tremor [10, 15]. Further commonly em-
ployed features are Shannon’ information features [4, 8, 9,
18], signal entropy [4, 8], as well as first and second-order
statistics [8].

Das et al. [8] applied feature extraction to six seconds win-
dows. They determined mean, energy, high frequency en-
ergy content, correlation and frequency domain entropy as
well as a five bin histogram representation of the spectral
contents over all three axes of the accelerometer.

Basu [4] obtained the following measurements from an ac-
celerometer located at the hand in order to characterize
tremor: mean frequency, power at peak frequency, mean
power in the jth wavelet band, entropy, sample entropy
and mean value obtained of the cell values of a recurrence
matrix (following Recurrent Quantification Analysis proce-
dure). The mean recurrence rate was useful in order to quan-
tify the cyclical behavior of the tremor’s dynamic system.

Salarian et al. [20] used spectral analysis techniques to find
regions within the frequency range of resting tremor (i.e.

3.5Hz-7.5Hz). In a later study by Salarian et al. [21], the
data stream was divided into windows with a length of three
seconds to which the Burg method [5] was applied. Addi-
tionally a meta-analysis was introduced to remove isolated
segments that were classified to exhibit tremor or tremor-
like behavior (e.g. a single segment with tremor surrounded
by none-tremor segments). This approach resulted in an
increased sensitivity but slightly decreased specificity.

Most machine learning techniques used to classify the ex-
tracted features as tremor or non-tremor are supervised learn-
ing techniques like neural networks (NNs) [2, 3, 7, 12, 19]
and support vector machines (SVMs) [3, 17]. However, other
techniques have also been employed. For instance, Das et
al. [8] used an SVM-Multiple Learning approach and Rigas
et al. [18] used hidden Markov models to detect tremor
episodes.

Finally, tremor has been studied through different sensor lo-
cations. A wrist accelerometer is the most common location
[4, 9] although multiple accelerometers on ankles and waist
[8, 18] have also been used. In this paper, an accelerometer
on the wrist is used as well.

Since REMPARK algorithms are desired to be implemented
in an online way, it is necessary to distinguish those ap-
proaches that would allow an online implementation on a
micro controller from those approaches that do not. Re-
garding related works, Mutual Information [9] and recurrent
matrices are signal features which are not implementable in
real-time given the resources needed to compute them. The
remaining features, first and second order statistics, entropy
and frequency spectra are computable in real-time.

3. TREMOR DETECTION: PROPOSED AP-
PROACHES

This section describes two complementary tremor detection
approaches that will be evaluated on signals obtained from
76 patients.

As described in the related work section, frequency distri-
bution and frequency related features are commonly used to
characterize tremor in acceleration signals. The frequency
behavior of tremor is illustrated in Figure 1 and Figure 2,
which show the frequency distribution of signals obtained
from a wrist-worn sensor by a patient. It is clearly observ-
able that frequencies at 4 Hz to 6 Hz appear when tremor is
present, and these frequencies are not observed when tremor
is absent, which agrees with current literature [15]. Given
the main frequency behavior of tremor, tremor could be the-
oretically detected uniquely by means of frequency charac-
teristics. However, many other features have been used in
the literature. Thus, in order to measure the impact of non-
frequency features in the accurate detection of tremor, two
approaches are defined. On the one hand, the first method
will only employ frequency features while, on the other hand,
the second approach will also utilize non-frequency features
that were previously used in the literature (see Section 2).
The specific list of features is given in Table 1.

Following the methods analyzed in Section 2, both approaches
will be composed of two-phases in order to determine if
tremor is present in a certain time window. The two steps



Table 1: Commonly utilized features in tremor de-
tection.

Index Features
001-064 FFT (raw, no filtering)
065-066 Peak frequency and it’s amplitude
067-068 Median and mean amplitude
069-084 Sum of every two-adjacent amplitudes
085-116 Sum of every four-adjacent amplitudes
117-120 Sum of first, second and third harmonic
121-136 Histogram (bins: 0,1,2,3,. . . ,15)
137-140 Correlation between acceleration signal
141-142 Entropy of signal

are briefly outlined below. The necessary parameter tuning
is described in Section 4.

• Feature extraction phase: Features are defined de-
pending on the approach used: frequency features alone
or combined with those listed in Table 1. Frequency
from three axes must be obtained, and their ampli-
tudes are summed up without taking into account the
amplitude of the zero-frequency harmonic. Thus de-
pendence on the sensor’s orientation is avoided.

• Learning phase: An SVM is trained to distinguish
tremor and non-tremor windows based on the chosen
feature set.

Since a real-time implementation of the most successful ap-
proach is envisioned, time windows must be short so that
a low-consuming microprocessor is capable to analyze its
frequency content. Consequently, both methodologies are
likely to produce false positives (e.g. a single segment with
tremor surrounded by non-tremor segments). These ap-
proaches are also likely to produce short non-tremor seg-
ments among tremor detections (i.e. while tremor is actually
present). Thus, similarly to the approach by Salarian et al.
[21], it was decided to add a meta-analysis to enhance the
reliability of the proposed approaches by removing isolated
segments that were classified to exhibit tremor or tremor-like
behavior.

The employed meta-analysis considers the algorithm’s out-
puts in a set of n consecutive windows s1, . . . , sn that cover
a period of t seconds, where si = 1 if tremor is present and
si = 0 if tremor is absent. These outputs are aggregated
into a value denoted as p that represents the probability of
having tremor in the period of t seconds: p =

∑ si
n
. Finally,

a t-seconds period is considered as tremor if the probability
p is greater than a certain threshold 0 ≤ thp ≤ 1.

4. EXPERIMENTS
4.1 Data Collection
In this study, movement signals were recorded for devel-
opment of a real-time tremor detection algorithm. During
data collection, all participants wore a set of body-mounted
sensors. In total four sensors in two devices were located
on each of the patients. One device was placed around
the waist and recorded data from a triaxial accelerometer,

Figure 1: Frequency distribution for individual win-
dows of a patient with tremor. Frequency compo-
nents around 5 - 6 Hz are clearly observable when
tremor is present.

Figure 2: Frequency distribution for individual win-
dows of a patient without tremor.

magnetometer and gyroscope at 200 Hz. The other device
recorded data from a triaxial accelerometer worn around the
wrist, similarly to a regular watch. Latter sensor transmit-
ted accelerometer data sampled at 80 Hz to the waist sensor
via Bluetooth, where all measurements were stored in a μSD
card. In this study, only the wrist device is considered. Once
the signals were recorded, a clinician labeled the signals and
provided the presence or absence of tremor in each limb.

Participants were video recorded while they performed a set
of scripted activities as well as unscripted activities in their
own home / apartment (i.e. once in a clinically OFF state
and once in a clinically ON state) [22]. Labeling was done
by medical professionals using the recordings as reference.
Sensor signals and video recordings were synchronized by
means of an abrupt translation of the sensor while it was
visible in the video recording. Only a subset of the signals
was used, namely those after the sensors were successfully
placed on the patient and right up to the point where the
sensors were taken off. Thus parts of the signal at the begin-



ning (before initial synchronization point) and ending (after
final synchronization point) are removed as they cannot be
utilized (and do not contain usable information).

Patients who participated had a clinical diagnosis of Idio-
pathic Parkinson’s disease according to the UK Parkinson’s
Disease Society Brain Bank [11]. The experimental proto-
col was approved by the corresponding local Ethics Review
Committee and patients gave signed informed consent.

4.2 Tremor Detection Algorithms
The time series are resampled to 40Hz and divided into
equally sized windows, each window having a length of 3.2
seconds (i.e. 128 samples) and a 50% overlap (i.e. a new
window every 64 samples or 1.6 seconds). A set of features
(e.g. FFT, peak frequency and amplitude, entropy, etc.) is
calculated for each window. A complete set of these features
can be reviewed in Table 1.

Only those windows in which all data samples are labeled as
tremor or non-tremor, are utilized for training (i.e. windows
containing multiple labels are discarded during training).
Furthermore, the selection of windows is restricted to those
that do not have missing data (e.g. due to communication
problems). This constraint was employed as a mere precau-
tion. An analysis revealed that this was the case in less than
1% of recorded samples.

Three non-overlapping datasets (i.e. training, holdout and
testing dataset) are used to train, optimize and test the
tremor detection approaches. An SVM is trained using the
training dataset and the libSVM library [6]. The best ker-
nel, weighting, cost and gamma values were determined.
The weighting parameters are used to balance tremor and
non-tremor classes. The cost and gamma parameters were
systematically evaluated (i.e. 0.001, 0.01, . . . , 100, 1000)
depending on the chosen kernel (i.e. RBF kernel or linear
kernel). Their optimal values were found through a stratified
ten-fold cross-validation. However, instead of averaging the
accuracy of the training set, the maximum geometric mean
(i.e.

√
sensitivity ∗ specificity) is used to select the optimal

cost and gamma parameters for the final SVM models. The
performance of each SVM model is determined by means of
the test dataset. However, the restrictions of the training
dataset do not apply to these datasets. Patients that do not
have any tremor labels or contained only non-tremor labels
were automatically relabeled as non-tremor (i.e. the entire
patient is relabeled).

In total, four conditions were evaluated: two kernels (i.e.
RBF and linear) and two feature sets (i.e. FFT only and
FFT + other commonly employed features). Additionally,
their performance on varying levels of granularity is evalu-
ated for t = 15, 30, 45, 60 seconds. The original labeling
was automatically refined such that a corresponding (aggre-
gated) label for each aggregated window is determined. If
at least one tremor label is among the labels, then the ag-
gregated label is set to tremor as well. Otherwise the aggre-
gated label is set to non-tremor. Values used for thp, which
establishes the minimum probability to consider a period of
t seconds as tremor, are: 0, 0.1, . . . , 0.9, 1. The SVMs’ pre-
dicted labels are used to determine the probability of tremor
p (see Section 3).

The training dataset is used to train the SVMs in distin-
guishing tremor and non-tremor frequency distributions /
windows. The holdout dataset is utilized to optimize the ag-
gregated window length t as well as the threshold thp that is
required to detect tremor. Finally, the test dataset is used to
determine the overall performance of the presented tremor
detection algorithm.

5. RESULTS
The SVMs’ performance on a window-granularity for both
approaches can be reviewed in Table 3. The contents are
based on the holdout dataset, which contained acceleration
signals from 8 PD patients (see Table 2). There, it can
be seen that the best performance is achieved using only
frequency related features in combination with a RBF ker-
nel. This resulted in 84.6% sensitivity and 98.0% specificity.
On the other hand, including the rest of features does not
seem to affect the overall sensitivity and specificity. Nei-
ther seems the use of a linear kernel, as opposed to a RBF
kernel, to negatively affect sensitivity and specificity. How-
ever, results show that using all features with a linear kernel
results in a lower accuracy than only using the frequency
features. Since training and holdout datasets do not over-
lap, this lower specificity implies that learning from non-
frequency distribution features provokes false positive cases.
Thus, in the linear kernel case, frequency features seem to
provide a better generalization.

Considering the envisioned working environment (i.e. mi-
cro controller), it was decided that the ‘linear kernel with
frequency features’ case performed accurate enough with no
major deviations in terms of sensitivity and specificity (see
Table 3). Regardless of the employed kernel (i.e. linear or
RBF) and number of features (i.e. 64 or 142), the geometric
mean measure shows a similar level of performance. Thus
the simplest approach was chosen (i.e. using a linear kernel,
train frequency distribution and optimization by geometric
mean).

Regarding the parameter tuning, the impact of window ag-
gregation t and threshold thp are measured in Figure 3 in
terms of the geometric mean between specificity and sen-
sitivity. A value of zero for t means that no aggregation is
done. This case provides the worst case, as no meta-analysis
is performed to reduce false positives and false negatives.
Optimal performance is obtained for any t ≥ 30 seconds.
According to Figure 3 , the best value for thp is shown to
be among 40% and 70%, which is reasonably close to 50%,
meaning that at least half of the windows in the period of t
seconds must be considered as tremor in order to accept the
complete period to have the symptom.

The chosen approach (i.e. linear kernel with frequency fea-
tures with t = 30 and thp = 40%) results in 88.4% sensitivity
and 89.4% specificity on the test dataset. More detailed in-
formation can be found in Table 4 and Table 5. They show
the results of each individual patient in the test dataset. If
averaged across all patients (i.e. equal weight for all pa-
tients), the sensitivity and specificity result in 85.9% and
89.3% respectively. Without the meta-analysis, the sensi-
tivity and specificity further drop down to 84.6% and 85.6%
respectively (i.e. regardless of whether the patients’ number
of windows is considered or not). Results for the remaining



Figure 3: Geometric mean optimization matrix for
the ‘linear kernel with frequency distribution fea-
tures’ configuration.

Table 2: Number of windows in each dataset. Num-
bers for the holdout and test dataset correspond to
those after automatic relabeling was applied.

Training Holdout Test
Tremor windows 717 111 2339
Non-tremor windows 1379 14645 80884
Undefined windows 3805 0 0
Discarded windows 121 503 11897
Patients in ON state 3 10 63
Patients in OFF state 6 6 64
Patients (total) 4.5 8 63.5

three configurations can be reviewed in Table 6.

The same configuration yields to a sensitivity and specificity
of 89.5% and 89.7% (respectively) when the analysis is ap-
plied to recordings on OFF state. In ON state, a specificity
of 88.9% was achieved. The sensitivity may be neglected
due to its relatively small weight (i.e. 7 samples). Similar
results for the remaining three configurations can be found
in Table 7.

Results show that a real-time implementation of the pro-
posed approach is feasible. However, in the experiments,
signals obtained while patients did not wear the system,
that is, in the beginning and end of the experiments, were
rejected. In order to avoid false positives during these situ-
ations in a real-time daily use of the proposed approach, a
courtesy period of, for instance, 10 minutes after switching
on the tremor device could be used. Similarly, the last 10
minutes before switching it off could be rejected.

6. CONCLUSIONS AND FUTURE WORK
This paper proposed two different approaches in order to
evaluate the impact of using non-frequency features in tremor
detection by using a wrist-worn accelerometer. Results on
76 patients show that features obtained from the literature

Table 3: Results for parameter tuning on holdout
dataset.

Kernel RBF RBF Linear Linear
Features Freq. All Freq. All
Features 64 142 64 142
Length 30 30 30 45
Threshold 70.0% 70.0% 70.0% 70%
Sensitivity 84.6% 84.6% 84.6% 80.0%
Specificity 98.0% 97.0% 97.3% 97.1%
# of SVs 295 496 428 397

Table 4: Results for patients with tremor in the test
dataset (thp = 40%, t = 30 SECONDS).

Patient Sens. Spec.
P01 100,0% 95,6%
P02 100,0% n/a
P03 83,3% 89,2%
P04 75,0% 65,0%
P05 100,0% n/a
P06 78,6% n/a
P07 64,7% n/a

Table 5: Results for patients without tremor in the
test dataset (thp = 40%, t = 30 SECONDS).

Patient Spec Patient Spec.
P08 96,4% P37 96,5%
P09 100,0% P38 98,4%
P10 100,0% P39 87,3%
P11 100,0% P40 86,9%
P12 100,0% P41 83,1%
P13 100,0% P42 94,2%
P14 92,6% P43 95,8%
P15 100,0% P44 99,3%
P16 75,0% P45 93,4%
P17 87,1% P46 98,9%
P18 92,6% P47 95,0%
P19 100,0% P48 93,3%
P20 98,3% P49 85,4%
P21 98,5% P50 85,1%
P22 92,4% P51 84,7%
P23 77,2% P52 93,4%
P24 82,9% P53 83,5%
P25 88,9% P54 95,5%
P26 78,9% P55 96,8%
P27 94,5% P56 71,1%
P28 96,7% P57 91,2%
P29 83,0% P58 70,2%
P30 90,9% P59 79,3%
P31 87,7% P60 90,4%
P32 65,9% P61 95,8%
P33 59,6% P63 93,3%
P34 78,0% P64 91,8%
P35 79,7% P65 88,4%
P36 96,4%

review, presented in Section 2, do not necessarily increase
accuracy (see Table 4. and Table 5. ). Moreover, results



Table 6: Averaged results for all configurations.

Without meta-analysis
With meta-analysis
(thp=40%, t=30sec.)

Sens. Spec. Acc. Sens. Spec. Acc.
RBF+Freq. 84.2% 88.0% 87.9% 92.0% 92.0% 92.0%
RBF+All 87.1% 84.3% 84.3% 93.8% 88.0% 88.1%
Linear+Freq. 84.6% 85.6% 85.4% 88.4% 89.4% 89.4%
Linear+All 86.5% 85.5% 85.5% 92.9% 89.7% 89.7%

Table 7: Results by motor state for all configurations.
In OFF state In ON state

Sens. Spec. Acc. Sens. Spec. Acc.
RBF+Freq. 92.4% 94.5% 94.4% 85.7% 89.9% 89.9%
RBF+All 94.3% 90.6% 90.8% 85.7% 85.9% 85.9%
Linear+Freq. 89.5% 89.7% 89.7% 71.4% 88.9% 88.9%
Linear+All 93.3% 89.2% 89.4% 85.7% 89.9% 89.9%
# of samples 105 1921 2026 7 2474 2483

show that a linear kernel may be enough to accurately detect
tremor. Thus, it is concluded that frequency features enable
reasonably accurate tremor detection. As future work, the
approach based on frequency distribution features and an
SVM with a linear kernel will be optimized in order to ob-
tain a real-time implementation.
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