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Abstract
Genuine randomness can be certified fromBell tests without any detailed assumptions on theworking
of the devices withwhich the test is implemented. An important class of experiments for implement-
ing such tests is optical setups based on polarizationmeasurements of entangled photons distributed
from a spontaneous parametric down conversion source. Herewe compute themaximal amount of
randomness which can be certified in such setups under realistic conditions.We provide relevant yet
unexpected numerical values for the physical parameters and achieve four timesmore randomness
than previousmethods.

1. Introduction

Quantum systems have the potential to provide a strong formof randomness which cannot be attributed to
incomplete knowledge of any classical variable of the system. At the basis of such genuine randomness lies a
quantitative relation between the amount bywhich a Bell inequality is violated [1] and the degree of
predictability of the results of the test [2]. Intuitively, the violation of a Bell inequality certifies the presence of
nonlocal correlations [3], and in turn, this guarantees that the outcomes of themeasurements cannot be
determined in advance [4, 5]. Furthermore, this genuine randomness can be certifiedwithout any detailed
assumptions about the internal working of the devices used, that is, in a ‘device-independent’ fashion. Device
independence is advantageous since it provides immunity to attacks that exploit imperfections in the physical
implementation, towhich device-dependent protocols are susceptible [6]. For this reason, device-independent
randomness generation has recently receivedmuch attention [7–12].

An intense research effort has been devoted to the experimental realization of device-independent
randomness generation. A few years ago, Pironio et al [2] implemented thefirst proof-of-principle experiment.
It involved two entangled atomic ion qubits confined in two independent vacuumchambers separated by
approximately 1 m. This implementation, whichwas based on light–matter interaction,managed to certify 42
randombits over a period of onemonth.

The principal challenge for a device-independent randomness generation experiment is that itmust close
the detection loophole [13, 14], i.e. itmust provide a Bell inequality violationwithout post-selection on the data,
since otherwise violation can be faked by classical resources [15] and no genuine randomness can be guaranteed.
The detection loophole wasfirst successfully closed on several systems relying on light–matter interaction; see
for instance [16–18]. Very recently it has been closed in optical setups [19, 20], based on polarization
measurements of entangled photons distributed froma spontaneous parametric down-conversion (SPDC)
source. These optical implementations represent an important achievement as they enablemuch higher rates of
genuine randombits per time unit.

Given these experimental achievements, the natural question that arises is how to generate this genuine
randomness efficiently.What is themaximal amount of randomness that a given physical implementation
allows for? Andmost importantly, how should the relevant physical parameters of the setup be tuned to provide
such an optimal amount?Herewe answer these questions for the case of optical implementations based on
SPDC, forwhich a thorough physical characterization has been recently presented in [21].
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We start out by constructing a general framework andmethods for optimal randomness certification in Bell
experiments. The idea is to keep asmuch information as possible by avoiding any sort of binning of outcomes,
then to use themethods recently introduced in [7] to estimate randomness by constructing a device-
independent guessing probability optimized over all possible Bell inequalities, and finally to optimize the latter
quantity over all the tunable physical parameters of the experiment.We then narrow our focus to entirely optical
polarization-based implementations (e.g. [19, 20]).Wefirst characterize the realistic parameters of such Bell
setups and then apply ourmethods to determine optimal amounts of global and local randomness under
realistic conditions.We provide interesting bounds on the experimental parameters—some of them counter-
intuitive and perhaps unexpected—and certify up to four timesmore randomness thanwhat a standard analysis,
based on a binning of the outcomes and on theClauser–Horne–Shimony–Holt (CHSH) inequality [22], can
achieve [2].

2.Methods

Herewe describemethods that allow for optimal device-independent randomness certification. The general idea
consists of three stepswhich are given in box 1. Sincewe do notmake any physical characterization of the source
or the devices, the results are kept general and can be applied to any bipartite Bell experiment free of the
detection loophole (see [16–20]).

Box 1.General directions for optimal randomness certification.

(1) Estimate themost general behaviourp, without any binning. (Sections 2.1 and 2.2)

(2) ConstructGp, the device-independent guessing probability optimized over all possible Bell inequalities. (Section 2.2)

(3)OptimizeGp over the parameters that can be adjusted in the experimental setup. (Section 2.4 and section 3)

2.1. Scenario
To begin, we recall the device-independent scenario [2, 7, 23]. Two parties, Alice and Bob, are located in two
secure laboratories fromwhich no unwanted classical information can leak out. At each round of the
experiment, they receive a quantum state ρAB from a source S and performon it one out ofmA (mB) possible
measurements = −x m0, 1 ,.., 1A ( = … −y m0, 1, , 1B ) and retrieve one out of oA (oB) possible outcomes

= … −a o0, 1, , 1A ( = −b o0, 1 ,.., 1B ).Wemake no other assumption on ρAB other than the fact that it is a
quantum state. In fact, ρAB could have any dimension, and could even be correlatedwith another quantum
system in the possession of amalicious eavesdropper eve4, such that ρ ρ= TrAB E ABE.

Moreover, Alice and Bob do not trust the devices they use tomeasure ρAB. These devices can be thought of as
measurements characterized by positive operator-valuedmeasures (POVMs)with elements ∣M{ }a x and ∣M{ }b y

acting on ρAB. Their probabilistic behaviour is given by Born’s rule

ρ= ⊗p ab xy M M( ) Tr . (1)a x b yAB
⎡⎣ ⎤⎦

There are a total ofm m o oA B A B such probabilities, which can be seen as the components of a vector
= ∣ ∈ p ab xyp { ( )} m m o oA B A B.We callp the behaviour associatedwith the quantum realizationQ defined by the

state ρAB and themeasurements with elements ∣M{ }a x and ∣M{ }b y . In all what follows, we consider that the
behaviourp that Alice and Bob observe is a perfect estimate, in the sense that it is assumed to be derived from an
asymptotic regime of infinitelymany copies.

2.2. Bounding the device-independent guessing probability
The optimal amount of randomness that Alice and Bob can certify from an observed quantumbehaviourp is
measured here by themin-entropy of the device-independent guessing probabilityGp [7], i.e. = −h Glog ( )p2 .
Considering that for some round of the experiment Alice and Bob have chosen and performed some

measurements =x x* and =y y* on ρAB, it can be shown thatG x y( *, *)p , the average probability that Eve
correctly guesses the output of Alice andBob boxes using an optimal strategy, is the solution to the following
conic linear program [7, 8]:

4
We consider that Eve is limited by the laws of quantummechanics.We also assume that the behaviour of the boxes is independent and

identically distributed fromone round to another, though, interestingly, the bound (3) has been proved secure under less demanding
assumptions (see [24]).
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The intuition behind this program is that whenever Eve obtains the output =e a b( *, *) she then guesses that
Alice’s (Bob’s) outcomewas a* (b*). Ourmotivation for definingGp according to (2) comes from the fact that
this expression corresponds to the relevant figure ofmerit of security proofs in several device-independent
cryptographic scenarios [24, 25]; in particular, this bound holds for the casewhere thememory of Eve is limited
in time, the so called bounded quantum storagemodel [24]. Thus, it follows that for our analysis any strategy z of
Eve can be seen as a POVMmeasurement witho oA B elements ∣M{ }e z that she applies on her reduced state
ρ ρ= TrE E ABE [7].

Eachpe is an un-normalized behaviour ‘prepared’ for Alice and Bob and conditioned on the outcome e of the
measurement with POVMelements ∣M{ }e z performed by Eve.Hence, the probability thatpe is prepared is the
probability that Eve obtains the corresponding outcome e, i.e. ρ∣ = ∣p e z M( ) Tr [ ]e zE . To be precise,

= ∣ ∈ p a b x yp { ( , , )}e e m m o oA B A B, and
∼
Q is the set of all such un-normalized quantumbehaviours. Thefirst

constraint in the program translates the fact that the behaviours pe should on average reproduce Alice andBob’s
observed behaviourp. The second constraint demands that every behaviour should be quantum5. The program
maximizes the success of Eve’s strategy over all possible ∣ = … − −e o op{ 0, , ( 1)( 1)}e

A B decompositions.

The programpresented in (2) is in general intractable due to the lack of a precise characterization of
∼
Q , but

semi-definite programming (SDP) relaxations similar to the ones presented in [26] can be used tu put bounds
onGp. One then defines a convergent hierarchy of convex sets having a precise characterization and being such

that ⊇ ⊇ ⊇∼ ∼ ∼
Q Q Q...1 2 [7, 26]. This hierarchy approximates the quantum set

∼
Q from the outside, and thus one

can relax the difficulty of the problem (to the order k) by replacing
∼
Q in (2) by

∼
Qk. The solutionG k

p of the kth SDP

program sets an upper bound on the guessing probabilityGp, which in turn sets a lower bound = −h Glog ( )k k
p2

on the number h of global randombits that are certified fromp and from themeasurements x y( *, *).
It is worthmentioning that themethods presented so far can be adapted straightforwardly for local

randomness evaluation. In this case, the situation is considered fromAlice’s perspective, for example, and a

program equivalent to (2) is derived to obtain the local guessing probabilityG x( *)p . Computationally speaking,
local randomness is appealing as the number of POVMelements of Eve’s strategies gets reduced fromo oA B to oA.

The bound presented in (2) is obtained for afixed pair of settings. Actually, these settings are pre-established
before the Bell test is implemented and can even be considered as public knowledge. In [8], a technique to

averageG x y( *, *)p over all possible settingswas introduced and shown to be advantageous (with respect to the
fixed settings technique). However, to our knowledge, all existing device-independent cryptographic protocols
are based on thefixed settings technique. Furthermore, averaging over all the outcomes implies that the
eavesdropper can only share classical correlationswith Alice and Bob; instead, herewe assess a stronger scenario
inwhich Eve’s system can even be entangledwith the users. For this reasonwefix the settings that generate
randomness, although, in the future perspective, it would be very relevant to look for a bound on the device-
independent guessing probabilityGp which is independent of x

* and y*.

To conclude this section notice that the optimal Bell inequality which yieldsG k
p can be accessed from the dual

formulation of (2). The advantage with respect to previousmethods (which assess the problem via afixed Bell
inequality, e.g. [2]) has been found to be significant in both [7] and [8–10].

2.3. Keeping asmuchdata as possible
In section 2.2we discussed how to quantify themaximal amount of randomness available for Alice and Bob
froman observed behaviourp. Still, there are several degrees of freedom inp that can be further optimized to
provide evenmore randomness.More precisely, tailoring these degrees of freedomalways leads to different
behaviours, which in turn yields different—and hopefully higher—amounts of randomness.We can distinguish
two types of such degrees of freedom; those that require adjustments in the experimental setup (e.g. increasing
the efficiency of the detectors), and thosewhich do not.Herewewill deal with the latter, and leave the former for
section 2.4.

In particular, the numbers of outcomes oA and oB can be adjustedwithoutmuch experimental effort. All Bell
experiments so far, which havemanaged to close the detection loophole, have relied violation of theCHSH
inequality [22] (or similar ones [27]). This assumes the local observation of two outcomes per party. However,

5
Abehaviourp is said to be quantumwhenever there exists a realizationQ (i.e. a quantum state +measurements) which reproduces p

through Born’s rule (1).

3
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in addition to the two good outcomes, loss and imperfections lead to events where no detector clicks, resulting in
a third outcome per party; thismeans that a local binning process was applied in all these experiments to reduce
the size of the original behaviour to two outcomes.

It is intuitive to expect thatmore randomness can be certifiedwhen binning strategies are avoided; any
binning strategy represents a loss of potentially useful information. Still, it could be the case that the amount of
certifiable randomness would not get diminished for some particular binning.Our results in section 4 show that
this is not the case in general. In fact, in appendix Awe explicitly showhow any binning strategy applied to
CHSHcorrelationswith inefficient detectors will systematically decrease the amount of certifiable randomness.
Hence, to certify optimal amounts of randomness, Alice and Bobmust ensure that the number of outcomes oA
and oB is kept as high as possible.

2.4. Taking experimental parameters into account
The observed quantumbehaviourp possesses physical degrees of freedom that can be adjusted in the
experimental setup to produce higher amounts of randomness. The solution of (2) can beminimized over all the
possible realistic values that such parameters (whichwe label) can take. In this way, the optimal amount of
randomness that can be certified to the order k is the solution of:

=( ) ( )
( )

G x y G x y

G x y k

*, *
min

*, * ,

s.t. *, * solves the th SDP of (2).
(3)

k k

k

p

p

⎧
⎨⎪

⎩⎪

In particular, notice that this programoptimizesG x y( *, *)k
p over the number ofmeasurementsmA andmB,

which are implicit quantities in (see also section 4.1).

3. Realistic optical implementations

Themethods presented above are general and can be adjusted to any bipartite Bell experiment.We focus and
describe in the following the architecture of optical implementations based on polarizationmeasurements of
entangled photons distributed from an SPDC source (see figure 1), whichwas thoroughly analysed in [21]. The
source is characterized by three adjustable quantities: two squeezing parameters g1 and g2 and a total number of
modes N ontowhich the photonsmay be distributed. Eachmode locally splits into two orthogonal
polarizations. In terms of bosonic creation operators, the un-normalized state produced by S is given by [21]:

∏ −
=

⊥ ⊥g a b g a bexp tanh ( ) tanh ( ) 0 , (4)
k

N

k k k k

1
1

† †
2

† †⎡⎣ ⎤⎦

where∣ 〉0 is the vacuum state associated to the N4 bosonic operators … …⊥ ⊥a a b b, , , , ,N N1
† †

1
† † , and the a-modes

(b-modes) are distributed toAlice (Bob).
All the different types of losses including detectors inefficiencies aremodelled, without loss of generality, by

two beam-splitters (not shown infigure 1) placed at any point between the users and the source. The
transmittance η of these beam-splitters is the overall detection efficiency of the experiment.

Figure 1.Experimental setup for optical Bell experiments based on SPDC.
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Themeasurements are performedwith polarizing beam-splitters (PBS) and half-wave plates (HWP) and
quarter-wave plates (QWP)which allow splitting the orthogonalmodes along arbitrary directions [19–21]. Each
measurement u is fully characterized by two angles θ ϕ( , )u u defining a projection in the Bloch sphere. Each of the
parties holds two detectors, which do not resolve photon number. Hence, for each detector only the outcomes
‘0=no click’ and ‘1= click’ can be distinguished, and themaximal number of local outcomes (without binning)
is = =o o 4A B .

4. Results

In this sectionwe apply themethods presented in section 2 to the optical setup described in section 3.

4.1. Constructing , p andG
Considering that Alice and Bob respectively performmA andmBmeasurements, the experiment is characterized
by + +m m4 2( )A B physical parameters, which are:N, g1, g2, η,θ1

A,ϕ1
A, ... ,θm

B
B
andϕm

B
B
. All of these parameters

are adjustable within some range of realistic values, except ηwhich, as discussed above, represents themain
restriction for an optical implementation.Hence, the adjustable parameters read:

 θ ϕ θ ϕ= …( )N g g, , , , , , , . (5)n n1 2 1
A

1
A B B

B B

The analytic expression ofp as a function of and η is atfirst only computed for the firstmeasurements of

Alice and Bob, θ ϕ( , )1
A

1
A and θ ϕ( , )1

B
1
B . In this case consists of seven parameters, i.e.

 θ ϕ θ ϕ= N g g( , , , , , , )1 2 1
A

1
A

1
B

1
B . Since the number of outcomes are kept as high as possible ( = =o o 4A B ),

this expression is obtained by solving a linear systemof × =4 4 16 equations; 15 of these equations correspond
to the ‘no-click’ probabilities of all the detectors, which can be found in the supplementarymaterial of [21]. The
remaining equation is a normalization condition.

Next, this expression (obtained only for the firstmeasurements) is generalized for arbitrary m m( , )A B . One
only needs to concatenate all the individual behaviours:

η θ ϕ θ ϕ= ⩽ ⩽ ⩽ ⩽{ }( )N g g i m j mp p , , , , , , , 1 and 1 . (6)i i j j1 2
A A B B

A B

In particular, all the individual behaviours have the same analytical structure as the behaviour obtained for the
firstmeasurements, and hence one only needs to substituteθ θ← i1

A A,θ θ← j1
B B,ϕ ϕ← i1

A A andϕ ϕ← j1
B B for

each i and j in (6). This yields the desiredm m o oA B A B-sized quantumbehaviour (see section 2.1).
Finally, it is necessary to set realistic limits on ; otherwise, theminimization in (3) is unbounded.We let

⩽ ⩽ − ⩽ ⩽N g g1 100, 1 2 , 1 21 2 (corresponding to about 4.3 dB of squeezing) andwe let all the
measurement angles vary in a π2 -length interval.

4.2.Optimal randomness formA=mB = 2
Optimal randomness is retrieved from (3) upon optimization of all adjustable parameters, which include the
number ofmeasurements in the experiment. OptimizingGk overmA andmB is of particular relevance for the
setup that we consider as distinct rotation directions of the incomingmodes can be achieved by adjusting the
HWPandQWP, i.e. without the need of further experimental resources. Still, to illustrate the performance of
ourmethodswe consider here the simplest case = =m m 2A B .

Wefind6 thatwhenever the parties are restricted to =o 2bin outcomes,more global randomness is certified
when no specific Bell inequality is considered. This was to be expected following section 2.2 and the line of
research of [7–9] (see dashed and dotted curves infigure 2).However, we improve considerably this expected
result by suppressing the binning of the outcomes and letting o=4, as we explained in section 2.3 (solid curve in
figure 2). Forη = 1ourmethods certify 0.74 bits of global randomness per source use, four timesmore than the
0.19 bits that are certified from theCHSH inequality (we provide the Bell inequality that certifies this
improvement in appendix B). The numerical values of the optimal parameters are given infigure 3 for several
values of η. Intuitively, the ratio =t g gtanh ( ) tanh ( )1 2 quantifies the degree of entanglement of the source, as
(4) shows. Forη = 1optimal randomness is obtained from a ‘maximally entangled’ state, i.e. =t 100%, but as η
decreases t also decreases. This was to be expected for the lower values of η, where nonlocality can only be
certifiedwith non-maximally entangled states [27]. Interestingly, forη ≈ 1 the optimalmeasurements are not
similar to the ones that intuitivelymaximize the violation of theCHSH inequality on twomaximally entangled
qubits (e.g. they are notmutually unbiased); see appendix B for the exact expressions. That is, the optimal
measurements for optimal randomness certification are not the same as thosemaximizing theCHSH violation.

6
All our results were obtained at the order = +k 1 AB. This corresponds to an intermediate stage ⊇ ⊇∼ ∼ ∼

+Q Q Q1 1 AB 2; see [26] for details.
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The number ofmodes attains themaximal value that we allow (N=100)whenever η is greater than
−2 2 2. For η smaller than this value, the singlemode caseN=1 is sufficient to obtainmaximal randomness;

this fact was noticed in [21] for themaximization of theCHSH inequality violation. Finally, we have found that
the improvement obtainedwhen increasing the number ofmodes beyond≈25 is very small.

4.3.Optimal randomnesswithmore than twomeasurements
Our next goal is to seewhether deployingmoremeasurements yields an improvement in the number of random
bits. In the previous subsectionwe considered the case = =m m 2A B ; however, by adjusting theHWPand
QWP located in front of their PBS, Alice andBob canmeasure their incoming subsystem along any arbitrary
polarization direction of the Bloch sphere. These adjustments can thus be obtainedwith relatively low
experimental cost, themain drawback being a non-negligible increase in the amount of statistical data (the size
of the observed behaviourp increases withm mA B).

Our results in table 1 showthatmoremeasurements certifymore randomness, even in scenarios forwhich a
binning strategyhad tobe considered and couldnotbe fully optimizeddue to computational limitations.The time
required to solve (3) becomes large as thenumberofmeasurements increases, since the total numberof SDPvariables
describing thebehaviourspe in (2) increases as m m( )A B

2. The increase is less dramaticwhen local randomness is
certified e.g. fromAlice’s perspective, as there areonly oA (insteadofo oA B) SDPmatrices in (2) for each choiceof .

In particular, with fourmeasurements per party we certify 0.557 local randombits. This is three timesmore
than the amount that is certified from theCHSH inequality (≈0.17 bits) under the same considerations.

4.4. Experimentswith only one detector per side
The setup depicted infigure 1 has been hitherto central in our analysis as it captures the general architecture for
Bell experiments with entangled photons. Unfortunately, state-of-the-art superconducting detectors, i.e. those
which achieve detection efficiencies above 70%and thus enable a true Bell violationwithout post-selection,
represent an extremely high experimental cost nowadays.

Figure 2.Global randomness for the case = =m m 2A B . For the three curves, the parameters are optimized at each point, as
explained in section 2.4. The solid curves are themin-entropy of the solution of program (3) for = =o o 4A B (optimal) and for

= =o o 2A B (binning). The dashed and dotted curves were obtained following the binning strategy presented in [21].

Figure 3.Optimal parameters for different values of η. t is the ratio between gtanh ( )1 and gtanh ( )2 , while =g g gmax ( , )1 2 .N
always reaches 100. Blue (Red): optimalmeasurements for Alice (Bob) in the Bloch sphere representation. All these quantities were
obtained after solving program (3).

6
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This situation can be alleviated (the cost can be reduced by half) by realizing that a Bell test can still be carried
onwith the use of only one detector on each armof the experiment [19, 20]. Given the techniques that we have
shown so far, it is interesting to see how the optimal amount of randomness is affected. For afixed overall
detection efficiency η, howdoes the optimal amount of randomness that can be certified in an experiment with
only one detector compare to the optimal amount of randomness that can be certifiedwith two detectors?

The statistics of an experiment with only one detector are straightforwardly obtained from the statistics of an
experiment with two detectors (thosewhichwe presented in 4.1). As discussed in 3 the possible local outcomes
of an experiment with two detectors are 00, 01, 10 and 11where the first (second) number labels the outcome of
thefirst (second) detector‘0=no click’ and ‘1= click’. Then, applying the local binning
 = → ′ → ′ → ′ → ′{00 0 , 01 0 , 10 1 , 11 1 }1Det onAlice and Bob’s sides yields the statistics of the experiment
without the second detector.

We observe that for η ≲ 0.8 no disadvantage occurs if the second detector is removed: the optimal amount of
local and global randomness than can be certified in both cases is∼ × −6 10 4 bits. On the other hand, as η
becomes close to 1 removing a detector negatively affects the optimal amount of randomness: forη = 1 the
optimal amount of local (global) randombits certifiedwith two detectors is ≈0.45 (≈0.73) bits, while with only
one detector the optimal amount is≈0.31 (≈0.34) bits.

5.Discussion

Summarizing, in the present article we have explicitly shown the benefits of optimizing randomness in a Bell
experiment over all possible inequalities, and the negative consequences that occurwhen information is lost
through a binning of the resulting outcomes.We carefully analysed and characterized optical setups based on
SPDC and certified up to four timesmore randomness when all of the physical parameters were optimized.

To put it in a nutshell, here are the important facts to be aware of in order to retrieve optimal amounts of
randomness from an optical Bell implementation based on SPDC (and their experimental cost):

(1)Keep thewhole statistics and avoid binning the outcomes. (No cost.)

(2)Use asmany polarizationmeasurements as possible. (Small cost.)

(3)Use many modes to distribute the entangled photons. (High cost in principle, but keep in mind that more than
≈25modes will provide little improvement.)

(4)Forη ≈ 1, the optimalmeasurements for randomness extraction are not the ones thatmaximize the violation
of theCHSH inequality. (No cost.)

(5)Forη ≲ 0.8 it is enough touse a singlemode todistribute entanglement anduse a single detectorper side. (No cost.)

Wehope that this workwill be useful for the future development of Bell-type randomness generation
experiments.

Note added: while finishing this work, we became aware of another Bell-type randomness generation setup
based on SPDC,which, interestingly, considers other type ofmeasurements [29]. For this setup aCHSH
optimization—as in [21]—was derived; it could be interesting to apply ourmethods to derive the optimal
amount of randomness that this recent experimental setup based on SPDC allows for.
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Table 1. Local randomness certified for different scenarios for η = 1. The scenario specifies the
couple m m( , )A B . The * symbol is usedwhen full optimizationwas not possible, and instead:
(i) the optimizationwas only carried over the number ofmodes, with = =g g 0.11 2 ; (ii) the
measurements were inspired from the chained inequality [28] and (iii) we considered 3 out-
comes per party by locally binning the ‘no click–no click’ and the ‘click–click’ outcomes.

SCENARIO (2, 2) (3, 2) (3, 3) (4, 3) (4, 4) (5, 5)

Total SDP variables 1348 3340 8392 15 748 29 620 ∼105

Local randombits 0.454 0.459 0.519* 0.523* 0.557* N/A
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AppendixA. CHSHcorrelationswith inefficient detection

Herewe show that it is always advantageous to keep the ‘no-click’ outcome in aCHSH test with inefficient
detection. Assume that at each round of the experiment Alice and Bob receive a perfect singlet, i.e. amaximally
entangled state of two qubits, onwhichwith equal probability Alicemeasuresσz andσx, while Bobmeasures
σ σ+( ) 2z x and σ σ−( ) 2z x . If themeasurement processes have non-unit η efficiency, the possible outcomes
that the users observe are 0, 1 and 2 (here the outcome two labels the no-click outcome). Under the assumption
that losses occur independently, the observed quantumbehaviour can bewritten as

η η
η η

η η
η η

η η η η
η

=

−

− ⋮

− − −

⋯ ⋱

η

c s

s cp

(1 )

2
(1 )

2
(1 )

2

(1 )

2
(1 )

(A.1)

2 2

2 2

2

with = ±c s, (2 2 ) 8. In this expression each of the 4 blocks describes the joint probability ∣P a b x y( , , ) for a
choice ofmeasurements of Alice andBob. Thefirst block corresponds to = =x y( 0, 0) and so on. Blocks 2 and
3 are equal to block 1, while a swap between c and s transforms block 1 into block 4. For each choice of x, any
physical binning is a deterministicmap from the outcomes = = =a a a{( 0, 1, 2)} into the binned outcomes

′ = ′ =a a( 0, 1), and the same applies to each choice of ywith b. Up to local relabelings, there are only three
relevant binning strategies (threeways to bin a local trit to a bit) which are, with a slight abuse of notation,
 = → ′ → ′ → ′{0 0 , 1 1 , 2 0 },′ = → ′ → ′ → ′{0 0 , 1 1 , 2 1 } and″ = → ′ → ′ → ′{0 0 , 1 0 , 2 1 }. How-
ever,″ is not relevant as it erases all non-local data. Hencewe are left with two local binning strategies which in
turn generate four possible quantumbehaviours for Alice and Bob:



 

η η η
η η

η
η η

η

η η
η η

η
η η

η η

=

+ − + −

+ − ⋮

⋯ ⋱

=

+ −

+ − + − ⋮

⋯ ⋱

′ ′

c s

s c

c s

s c

p

p

1
(1 )

2
(1 )

2

;

(1 )

2
(1 )

2
1

(A.2)

2 2

2 2

2 2

2 2

and



 

η
η η

η η

η η
η η

η
η η

η

η η η
η η

=

+ − + −

+ − ⋮

⋯ ⋱

=

+ −

+ − + − ⋮

⋯ ⋱

′

′

c s

s c

c s

s c

p

p

(1 )

2
1

(1 )

2

;

(1 )

2

1
(1 )

2

. (A.3)

2 2

2 2

2 2

2 2

Notice from (A.2) that whenever Alice and Bob apply the same binning strategy the two resulting probability
distributions have the same values up to a permutation of the elements. The same occurs in (A.3)whenever they
apply a different binning. It is therefore sufficient to evaluate the optimal randomness available from p and
from ′p , for example. Infigure A1 we plot the percentage bywhich the guessing probability for these quantum
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behaviours is increasedwith respect to the guessing probability obtained from ηp .Wefind that for any

η− < <2 2 2 1 it is always advantageous to keep the no-click outcome.

Appendix B. Bell inequality and relevant parameters expressions

As explained in themain text, the dual formulation of (2) yields the expression of the Bell inequality that certifies
the optimal amount randomness [7]. It is therefore possible to retrieve the Bell inequality associated to the

optimal parameters. Onefirst solves the program (3) for η fixed; this yields some optimal parameters = *.

Then one comes back to solve the dual programof (2) using as input p( *). In theCollins–Gisin
parametrization, the 7 × 7Bell inequality which certifies 0.74 bits of global randomness (see section 4.2) is:

=

− −
− −

− −
− −

− −
− −

η=
+I

1 8.02 8.18 8.18 8.11 12.38 12.37
8.02 8.07 8.13 8.13 8.11 7.11 7.11
8.18 8.13 2.80 6.68 7.53 19.63 20.54
8.18 8.13 6.68 2.80 7.53 20.54 19.64
8.11 8.11 7.53 7.53 7.98 7.77 7.77

12.37 7.11 19.64 20.54 7.77 3.92 6.71
12.37 7.11 20.54 19.64 7.77 6.71 3.92

, (B.1)1
1 AB

and the optimal parameters which enable this realization are (cf (5)):

 = (100, 0.084, 0.084, 2.088, 1.116, 1.473, 1.117, 1.36, 1.117, 1.976, 1.116). (B.2)
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