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Demands are one of the most uncertain parameters in water distribution network models. A 
good calibration of the model demands leads to better results when using the model for any 
purpose. A demand pattern calibration methodology that uses a priori information has been 
developed for calibrating the behavior of demand groups. In cities, similar demand behaviors 
are distributed all over the network, contrary to smaller villages where demands are clearly 
sectorised in residential neighborhoods, commercial zones and industrial sectors. In this work, 
demand pattern calibration has a final use for leakage detection and isolation. Detecting a 
leakage in a pattern that covers nodes spread all over the network makes the isolation 
unfeasible. Besides, demands in the same zone may be more similar due to the common 
pressure of the area rather than for the type of contract. A demand pattern calibration 
methodology is applied to a real network with synthetic non-geographic demands for 
calibrating geographic demand patterns. The results are compared with a previous work where 
the calibrated patterns were the original non-geographic ones. 
 
INTRODUCTION 
 
Water distribution network models are widely used by water companies. The availability of a 
good calibrated model is a key factor when applying methodologies using it. Generally, pipes 
roughness and nodal demands are calibrated. Savic et. al. [6] reviewed the water distribution 
network calibration problem. 
 
Sanz and Pérez [4] proposed a demand calibration methodology based on [7] and [8]. The 
Singular Value Decomposition (SVD) of the sensitivity matrix was used for the calculation of 
the calibrated parameters correction in an iterative scheme. Nodal demands where estimated 
through the calibration of demand patterns. The definition of these demand patterns was based 
in the consumers’ types of contract, which were spread all over the network.  
 
Leakage isolation methodologies [3] can be applied to the calibrated model. Nevertheless, the 
calibration process cannot be used directly for isolating leakages as the estimated parameters 
are not defined geographically. This work proposes the calibration of geographic demand 
patterns as a first approach for a future leakage isolation methodology. Results obtained with 
synthetic data are compared with the ones in [4]. 
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METHODOLOGY 
 
Generalized inverse problem 
The objective of the calibration problem is to find the parameter vector x that minimizes the 
errors Ԑ=ym-yp, where ym and yp are the vectors of measured and predicted values, respectively. 
In non-linear systems, a correction in the parameters ∆x is calculated iteratively and used to 
correct the parameter vector x, as detailed in Eq. 1. 
 
𝑆 · ∆𝑥 = 𝜀  
𝑥𝑟+1 = 𝑥𝑟 + 𝜌 · Δ𝑥𝑟 (1) 
 
where S is the sensitivity matrix that relates errors in predictions with errors in the models 
parameters; r is the current iteration; and ρ is a parameter to control the step size. The iterative 
scheme is continued until a termination criterion is achieved. 
 
Singular value decomposition 
The SVD is capable of solving under-, over-, even- or mixed-determined problems with no rank 
conditions in S, as explained by Menke [2]. The SVD of matrix S is 
 
𝑆 = 𝑈 · Λ · 𝑉𝑇 (2) 
 
where U is an m x m matrix of orthonormal singular vectors associated with the m observed 
data; V is an n x n matrix of orthonormal singular vectors associated with the n system 
parameters; and Λ is an m x n matrix of the singular values of S. The SVD is used to solve Eq. 1 
as shown in Eq. 3. 
 
∆𝑥 = 𝑉Λ−1𝑈𝑇 · 𝜀 (3)  
 
The V matrix is also used for the estimation of the covariance matrix ϒ2 of the parameter space. 
 
Υ2 = 𝑉 𝜎2

Λ2
𝑉𝑇 · 𝜀 (4)  

 
where σ2 is the variance of the measurements, considered to be the same for all sensors. The 
diagonal elements of ϒ are estimates of the uncertainty (standard error) of the estimated 
parameters. 
 
Demand calibration in water distribution networks 
The application of this calibration methodology to water distribution networks consists in 
estimating the nodal demands of the network in order to minimize the error on the available 
measurements. Both pressure and flow sensors are considered, so the sensitivity matrix for each 
type of measurement has to be computed. Cheng and He [1] proposed the calculation of the 
sensitivity matrix from the system energy and mass continuity equations. The correction of 
demands ∆D depending on head prediction errors ∆H can be computed as seen in Eq. 5. 
 
𝐵𝐶𝐵𝑇(𝐻𝑝 + ∆𝐻) = (𝐷𝑝 + ∆𝐷) 
𝐵𝐶𝐵𝑇∆𝐻 = ∆𝐷  
∆𝐻 = 𝐴−1∆𝐷 (5) 



where B is the incidence matrix of the network; C is the non-linear matrix depending on the 
pipes roughness, lengths, diameters and hydraulic gradient; Hp is the predicted head vector; Dp 
is the predicted nodal demand vector; and A=BCBT. Similarly, the correction of demands ∆D 
depending on flow prediction errors ∆Q can be calculated as 
 
(𝑄𝑝 + ∆𝑄) = 𝐶𝐵𝑇(𝐻𝑝 + ∆𝐻) 
∆𝑄 = 𝐶𝐵𝑇∆𝐻  
∆𝑄 = 𝐶𝐵𝑇𝐴−1∆𝐷 (6) 
 
where Qp is the predicted flow vector. Matrices Amh and Amf are generated by selecting the rows 
of A-1 and CBTA-1 respectively, corresponding to the measured heads and flows. Merging both 
matrices and adding a water balance equation, the whole system is defined (Eq. 7). Weights are 
added in order to unify units, and SVD is used to compute ∆D. 
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The calibration of thousands of nodal demands with only few measurements leads to an under-
determined system of equations. A new parameterization can be done by associating each nodal 
demand to a determined behavior (demand pattern). The weight of each demand within its 
pattern (base demand) is obtained from billing. The new parameterization is defined as 
 
𝐷(𝑡) = 𝐵𝐷𝑀 · 𝑇𝑃𝑀 · 𝑃(𝑡) · 𝑞𝑖𝑛(𝑡) (8) 
 
where BDM is the Base Demand Matrix, a diagonal n x n matrix containing the base demand 
values of each node; TPM is the Type of Pattern Matrix, an n x k matrix associating each initial 
parameter (nodal demand) to a unique new parameter (demand pattern); P(t) is a vector 
containing k patterns at sample t; and qin(t) is the total inflow of the network. Eq. 7 can now be 
defined depending on the pattern correction ∆P. 
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Eq. 9 includes the system equations for a single time instant. Additional equations from other 
samples can be added if similar boundary conditions in the system are considered, reducing the 
uncertainty on the calibrated parameters. Notice that these additional equations do not increase 
the rank of the system, but filter uncertainties in it. 
 
CASE STUDY 
 
The calibration methodology explained in the previous section is applied to a real network with 
synthetic data. The network is a District Metered Area (DMA) situated in the Barcelona 
neighborhood of Nova Icaria. It is composed by 3455 pipes and 3377 junctions. The water is 
provided from a transport network through two pressure reduction valves. Pressure and flow is 
monitored at both water inlets with a sample time of one hour. The structure of the network is 
depicted in Fig. 1. 



 
Figure 1. Nova Icaria water distribution network model with non-geographic patterns 

 
A synthetic demand model based on Eq. 8 has been generated. Real billing data have been used 
to set the base demands of the synthetic model. Next, ten patterns have been defined, 
representing different types of contracts: industrial, restaurant, commercial, etc. A unique 
pattern has been assigned to each nodal demand. Subsequently, a random noise N(0,0.1·di(t)) 
has been added to each demand at each sample, where di(t) is the consumption of node i at 
sample t without noise. As a 95% of the demand is within the 1.96σ boundaries, the added noise 
can be up to approximately a 20% of the expected demand value. An example of two nodal 
demands with and without noise is depicted in Fig. 2. 
 
In this work, two different calibration approaches have been used. The first one consists in the 
calibration of the contract-based patterns, which are spread all over the network with a non-
geographic distribution, as seen in Fig. 1. This distribution is the one used to generate the 
synthetic data. On the other hand, the second approach calibrates the same number of patterns, 
but defined using the information provided by the sensitivity matrix. The description of this 
methodology is presented in [5]. The resulting patterns have a geographic distribution (Fig. 3) 
due to the inclusion of topographic information in the generation of the sensitivity matrix. 

 
Figure 2. Example of two noisy nodal demands generation 
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Figure 3. Geographic patterns and sensor distribution 

 
A pressure sensor selection process for distributing the most sensitive sensors is performed for 
each approach. This sensor selection methodology is based in the information density matrix 
analysis detailed in [5]. In this work only pressure measurements are considered, as the 
company experts assessed that this type of sensors are the most used in water distribution 
networks for their lower cost and greater confidence when compared with flow sensors. A 
random noise N(0,0.001m) has been added to the sensors measurements in order to simulate the 
uncertainty of the real sensors. The sensors locations for both approaches are depicted with a 
star marker in Fig. 1 and Fig. 3. 
 
A comparison of the accumulated consumed water of each pattern for both approaches is 
summed up in Table 1. Notice that the non-geographic distribution has a dominant pattern 
consuming five times more than the second one. On the other hand, the geographic distribution 
has a progressive reduction on the patterns consumption, with the highest pattern consuming 
twice the water of the second one. 
 
The calibration methodology has been applied to calibrate 24 hours demand patterns. Five days 
of data (weekdays) have been used. It is considered that all five days have similar pattern values 
at each hour, so the extra data used would minimize the uncertainty due to the system non-
linearity, demand inherent noise and sensors precision. 
 

Table 1. Patterns water consumption for each approach 
 

Pattern ID A B C D E F G H I J 

Non-
Geographic 40.7% 8,7% 8,1% 7,9% 7,3% 6,3% 5,8% 5,4% 5,3% 4,1% 

Geographic 37% 18,2% 12,7% 9,4% 7,6% 5,6% 4,6% 2% 1,5% 1% 

3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38

x 10
4

8.2

8.25

8.3

8.35

8.4

x 10
4

X coordinate (m)

Y
 c

oo
rd

in
at

e 
(m

)

 

 

A
B
C
D
E
F
G
H
I
J
Sensors



RESULTS 
 
This section presents the calibration results when using the methodology on the synthetic 
network. Although results are obtained in a simulated scenario, the comparison is performed 
with the same indicators than in a real case: predicted pressures, estimated accumulated 
demand, and uncertainty in calibrated patterns. 
 
A first comparison between the predicted and measured pressures is done. No figures are shown 
because in both cases (non-geographic and geographic) the maximum error on predicted 
pressures is very low (2 cm).  
 
The second analysis consists in comparing the accumulated water consumptions of the 
calibrated patterns with the assumed ones. These consumptions are obtained from the sum of 
the accumulated demands of all nodes belonging to the same pattern. The assumed accumulated 
demand of a node is obtained from billing, while the calibrated one can be computed with the 
estimated pattern values. Fig. 4 represents the normalized accumulated pattern consumptions 
obtained from the assumed values and the calibrated ones. It is interesting to see how the 
geographic patterns accomplish precisely with the assumed values, while the non-geographic 
calibration generates higher errors. 
 
The third indicator to be compared is the uncertainty in the calibrated patterns. High 
uncertainties are not desired because changes in patterns due to faults in the network would not 
be observed unless these changes fall outside the confidence intervals. Fig. 5 depicts the 
calibrated pattern values for the non-geographic (columns 1 and 2) and geographic (columns 3 
and 4) patterns. It can be seen that a high uncertainty appears in all patterns of the non-
geographic case excepting the one with highest consumption. On the other hand, uncertainties 
of the geographic calibration are lower, keeping the pattern shape visible.  
 
Finally, it can be seen also in Fig. 4 that in the non-geographic calibration negative pattern 
values appear, which will not be accepted. That does not happen in the geographic calibration. 
 

 
Figure 4. Normalized accumulated pattern consumptions 
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Figure 5. Calibrated patterns for non-geographic and geographic pattern distribution 

 
CONCLUSIONS 
 
This work is part of an underdevelopment thesis which main objective is to calibrate demands 
in water distribution networks while discerning between leakage appearance and demand 
evolution. Complementary works explaining parameterization, sampling design and calibration 
methodologies are cited and used as a base for the comparison presented in this work. 
Geographic allocation of patterns is desired for the leakage isolation objective. Non-geographic 
distribution of patterns makes unfeasible the isolation of a fault observed through a non-
expected calibrated pattern value.  
 
First, a brief review of the calibration methodology has been presented. A real network with 
synthetic data has been used to compare the results when considering geographic and non-
geographic demand pattern distribution. The synthetic data used simulates a reality with a non-
geographic demand distribution. The comparison between both approaches has been performed 
using the same indicators than in a real case: sensors pressures, accumulated pattern demand 
and uncertainty in calibrated values. 
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The results obtained when applying the calibration methodology show that both models have 
nearly perfect pressure predictions, although five samples from different weekdays have been 
used to calibrate each pattern value. However, the conservation of the accumulated consumed 
demand of each pattern and the uncertainty in the calibrated pattern values are better in the 
geographic distribution.  
 
The better results obtained with the geographic approach can be explained by the effect of 
patterns changes in sensors. In the geographic distribution, each sensor is highly sensitive to a 
unique pattern, reducing the uncertainty in the calibrated values. However, in the non-
geographic case each sensor is affected by nearly all patterns. This fact introduces uncertainty 
in the calibrated model. 
 
As a main conclusion, the geographic pattern calibration generates better results. Besides, it is 
suitable for the final objective of detecting and isolating leakages. Furthermore, it has been seen 
that the indicators used to compare both scenarios give an estimation of the goodness of the 
calibration results. 
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