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Quantifying multipartite nonlocality via the size of the resource
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The generation of (Bell-)nonlocal correlations, i.e., correlations leading to the violation of a Bell-like inequality,
requires the usage of a nonlocal resource, such as an entangled state. When given a correlation (a collection of
conditional probability distributions) from an experiment or from a theory, it is desirable to determine the extent
to which the participating parties would need to collaborate nonlocally for its (re)production. Here, we propose
to achieve this via the minimal group size (MGS) of the resource, i.e., the smallest number of parties that need
to share a given type of nonlocal resource for the above-mentioned purpose. In addition, we provide a general
recipe—based on the lifting of Bell-like inequalities—to construct MGS witnesses for nonsignaling resources
starting from any given ones. En route to illustrating the applicability of this recipe, we also show that when
restricted to the space of full-correlation functions, nonsignaling resources are as powerful as unconstrained
signaling resources. Explicit examples of correlations where their MGS can be determined using this recipe and
other numerical techniques are provided.
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I. INTRODUCTION

Quantum correlations that violate a Bell-type inequality
[1], a constraint that was first derived in the studies of
local-hidden-variable theories, were initially perceived only
as a counterintuitive feature that has no classical analog.
Following the discovery of quantum information science, these
bizarre correlations have taken the new role as a resource.
For instance, in the context of nonlocal games [2] (which
are closely related to the studies of interactive proof systems
in complexity theory; see, e.g., Ref. [3]), nonlocal, i.e.,
Bell-inequality-violating correlations are those that cannot be
simulated by shared randomness (SR). They are also well
known as an indispensable resource in quantum information
processing and communication tasks such as the reduction
of communication complexity [4], the distribution of secret
keys in a device-independent setting [5], as well as the
certification and expansion of randomness [6], etc. For a
comprehensive review on these and other applications, see
Ref. [7].

As in any other resource theory [8], the interconvertibility of
resources, and the possibility to substitute one by another in a
certain task are important ingredients that put our understand-
ing of these resources on a firm ground. Considerable effort
has been devoted to these questions in the bipartite setting—in
the cost of simulating quantum correlations using classical
communication [9] or certain “nonlocal boxes” [10], as well
as the interconvertibility between these different resources
[11,12] (see Ref. [7] for a review). However, relatively little
is known [13,14] in the multipartite scenarios, where other
interesting features are also present, such as the monogamy
of nonlocal correlations (see, e.g., Refs. [7,15] and refer-
ences therein) and the possibility of them being anonymous
[16].
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Thus far, prior investigations on multipartite nonlocal cor-
relations have focused predominantly on their m separability,
namely, the possibility to reproduce them when the parties
are separated into m groups [17]—specifically two groups
[18–23]—and where the usage of some nonlocal resource R is
only allowed within each group.1 While this has been a fruitful
approach for the detection of genuine multipartite nonlocality,
and hence genuine multipartite entanglement in a device-
independent setting [20,24–26], it is, however, not always
applicable to the detection of genuine multipartite nonlocality
among a subset of participating parties. To manifest this
shortcoming, let us consider a 4-partite correlation �P =
{P (�a|�x)} = {P (a1a2a3a4|x1x2x3x4)} of getting measurement
outcome (output) ai for the ith party given the measurement
setting (input) xi . A specific kind of biseparable correlation in
this scenario takes the form of

P (�a|�x) =
∑

λ

qλP
R
λ (a1a2|x1x2)PR

λ (a3a4|x3x4)

+
∑

μ

qμPR
μ (a1a3|x1x3)PR

μ (a2a4|x2x4)

+
∑

ν

qνP
R
ν (a1a4|x2x3)PR

ν (a2a3|x2x3), (1)

where PR
i (ajak|xjxk) is some 2-partite distribution allowed

by the resource R, while qλ,qμ, and qν are non-negative,
normalized weights. If �P cannot be written in the form of
Eq. (1), the production of this correlation clearly requires at
least three out of the four participating parties to collabo-
rate nonlocally via R. If, moreover, nonlocal collaboration
between three parties is sufficient, we see that �P is thus
biseparable, i.e., producible by parties separated into (convex
mixtures of) two groups; see Fig. 1. In other words, the

1However, we do assume that global shared randomness is available
for free in the resource theory of correlations.
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FIG. 1. (Color online) Schematic diagram showing a situation
where the conventional approach of nonbiseparability fails to detect
the multipartite nonlocality present in the correlation. Here, the
dashed lines joining the three circles symbolically represent the
nonlocal collaboration between the three parties. Since the fourth
party is only correlated with the rest through shared randomness, the
overall correlation is biseparable.

multipartite nonlocality contained in �P cannot be detected
by the conventional approach of detecting nonbiseparability.
Indeed, with the conventional (m-separability) approach, one
only makes a distinction between the number of groups, but
not the size, i.e., the number of parties involved in each
group.

To determine the extent to which participating parties would
need to collaborate nonlocally in a general scenario, it thus
seems more natural to quantify multipartite nonlocality in
terms of the minimal group size (MGS), i.e., the smallest
number of parties required to collaborate nonlocally in
reproducing some nonlocal correlation. Clearly, this approach
provides information complementary to the one of m separa-
bility on how R has to be distributed and/or shared among
the participating parties in order to reproduce some given
correlation. The aim of this paper is to give a state-of-the-art
exposition of this approach and to provide a general technique
for the construction of MGS witnesses.

The rest of this paper is structured as follows. In Sec. II, we
give a more formal introduction to the notion of MGS and the
closely related concept of k producibility; their connection to
the conventional notion of genuine multipartite nonlocality
is also discussed therein. Then in Sec. II A, we give an
exposition of some basic facts about the sets of correlations
that are k producible. After that, in Secs II B and II C, we
give examples of quantum-realizable correlations where their
characterization via the MGS approach is both natural and
explicit. In Sec. III, we provide a general recipe to construct
n-partite witness of non-k-producibility—i.e., witnesses certi-
fying MGS > k—starting from any given witness involving a
smaller number of parties. There, we also make a digression to
point out the universality of nonsignaling resource when one
is only concerned with the so-called full-correlation functions
[20]. Finally, we conclude with some possible future research
in Sec. IV. Proofs of the two theorems and one corollary given
in Sec. III are relegated to the Appendixes.

II. MINIMAL GROUP SIZE, k PRODUCIBILITY,
AND MULTIPARTITE NONLOCALITY

Formally, let us remind that an n-partite correlation
�P = {P (�a|�x)} is a collection of the conditional probability

distributions of getting outputs �a = (a1,a2, . . . ,an), given the
inputs �x = (x1,x1, . . . ,xn). In analogy with the studies of
multipartite entanglement [27], we say that �P is k producible
(or more precisely k-partite R producible) if

(1) �P can be decomposed into a convex mixture of products
of at most k-partite correlations, and

(2) each constituent correlation satisfies the constraints
defined by the resource R.2

As a basic example, we note that by definition, a correlation
�P is Bell-local (henceforth local) if

P (�a|�x) =
∑

λ

qλ

n∏

i=1

Pλ(ai |xi), (2)

for some choice of normalized weights qλ � 0 and some
constituent correlations Pλ(ai |xi). A local correlation is thus
1-producible, and hence producible by each party being alone
and sharing no nonlocal resource with the others. On the other
hand, correlation satisfying Eq. (1) is 2-producible whereas a
correlation �P satisfying

P (�a|�x) =
∑

λ

qλP
R
λ (a1a2a3|x1x2x3)PR

λ (a4|x4)

+
∑

μ

qμPR
μ (a1a2a4|x1x2x4)PR

μ (a3|x3)

+
∑

ν

qνP
R
ν (a1a3a4|x1x3x4)PR

ν (a2|x2)

+
∑

θ

qθP
R
θ (a2a3a4|x2x3x4)PR

θ (a1|x1) (3)

is 3-producible. A general 3-producible correlation, however,
may involve a convex combination of correlation of the form
of Eq. (1) and of Eq. (3). Obviously, k producibility implies
k′ producibility for all k′ > k. Using the above terminologies,
we thus say that �P is genuinely k-partite nonlocal3 or having
a MGS of k if �P is k producible but not (k − 1) producible.
For example, a 4-partite correlation that satisfies Eq. (1) but
not Eq. (2) is 2-producible but not 1-producible, and hence
genuinely 2-partite nonlocal. Similarly, a 4-partite correlation
that is 3-producible but not decomposable in the form of Eq. (1)
is genuinely 3-partite nonlocal.

A few other remarks are now in order. First, the above
definition can be seen as a generalization of existing notions
of genuine k-partite nonlocality for an n = k-partite scenario

2For example, ifR refers to a quantum resource, then the constituent
correlation must be producible by performing local measurements on
some quantum state.

3To conform with existing terminologies in the literature, when R
refers to a quantum resource, we say that �P must have arisen from
a genuinely k-partite entangled state instead of �P exhibits genuine
k-partite nonlocality.
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[23] to an n-partite scenario where n � k. It is worth noting that
the question of whether a given correlation �P can be produced
by having at most k parties in one group (k producibility) is not
completely independent from the question of whether �P can
be produced by separating the n parties into at least m groups
(m separability). For instance, a k-producible correlation �P is
m separable for some m � � n

k
�; likewise, if �P is m separable,

it is also k producible for some k � � n
m

�. Thus, the smallest
n for which these descriptions become inequivalent is n = 4.
Finally, any multipartite correlation that cannot be produced
by SR, or equivalently that is nonlocal [cf. Eq. (2)], or not
1-producible, is genuinely k-partite nonlocal for some k � 2.

A. Characterization of the sets of k-partite R-producible
correlations

While the bulk of the above discussion is independent of
the choice of the nonlocal resource R, it is worth reminding
some features that are pertinent to specific resources. In this
context, four commonly discussed nonlocal resources R are
(1) Q: (local measurements on) an entangled quantum state of
unrestricted Hilbert space dimension; (2)NS: a post-quantum,
but nonsignaling [11,28] resource;4 (3) T [22,23]: a time-
ordered, one-way classical signaling resource;5 and (4) S [18]:
a Svetlichny resource.6 Note that each resource R above is
strictly stronger than the preceding one(s), in the sense that
R can be used to produce all correlations arising from the
preceding resource(s) [22,23]. As a result, we have the strict
inclusion relations,

L ⊂ Q ⊂ NS ⊂ T ⊂ S, (4)

with L being a local resource, provided by SR alone. Hence,
a correlation �P that is k-partite Q producible is also a
member of the set of k-partite R-producible correlations
(henceforth denoted byRn,k) forR ∈ {NS,T ,S}. Conversely,
a correlation that is not in Sn,k is also not in Rn,k for
R ∈ {Q,NS,T }; see Fig. 2. Formally, these implications are
summarized as follows:

�P ∈ Qn,k ⇒ �P ∈ Rn,k for all R ∈ {NS,T ,S}, (5a)

�P 	∈ Sn,k ⇒ �P 	∈ Rn,k for all R ∈ {Q,NS,T }. (5b)

More generally, we note that independent of the nonlocal
resourceR ∈ {Q,NS,T ,S}, the setRn,k is convex. Moreover,
for the case when R ∈ {NS,T ,S}, Rn,k is even a convex

4Such a resource only allows correlations where their marginal
distributions for any subset of parties are independent of the input of
the complementary subset of parties.

5The correlations allowed by such a resource is referred to as time-
ordered bilocal in Ref. [22].

6The Svetlichny resource allows the parties in a group to use any
joint strategy and hence to produce any correlation that is only
constrained by the normalization of probabilities. In some cases, such
a resource can be realized by allowing multiple rounds of classical
communications among the parties but in others, such a resource
may not have a well-defined physical meaning; see Refs. [22,23] for
a discussion.

LnQn,k

NSn,k

Tn,k

Sn,k

FIG. 2. (Color online) Schematic diagram showing the inclusion
relations of the various sets of Rn,k; cf. Eqs. (4) and (5). The smallest
of these sets is Ln [depicted as the (brown) rectangle], followed
by Qn,k [depicted as the (green) oval], followed by NSn,k [with
boundary marked by the (magenta) dashed-dotted line], followed
by Tn,k [with boundary marked by the (blue) dashed line]. Finally,
the k-producible Svetlichny set Sn,k is represented by the outermost
(black) solid polygon.

polytope [23], i.e., a convex set having only a finite number
of extreme points [29] and thus can be equivalently specified
through a finite number of Bell-like inequalities (correspond-
ing to the facets of the respective polytope). Determining if
a given correlation �P is inside Rn,k , and hence producible
by the respective resource can thus be decided via a linear
program [30], or through the violation of one of those Bell-like
inequalities defining the polytope. In the simplest 2-input,
2-output scenario where R = NS , the set NS3,2 has been
completely characterized in Ref. [23] whereas a superset of
NS4,2 has also been characterized in Ref. [31] (see also
Ref. [32]). If R = Q, i.e., a quantum resource, then the set
Rn,k is no longer a convex polytope. Determining if a given
�P is in Qn,n−1 can nonetheless be achieved by solving a

hierarchy of semidefinite programs [30] described in Ref. [24].
More generally, determining if any given �P is in Qn,k can
be achieved—to some extent—by solving a variant of the
hierarchy of semidefinite programs described in Ref. [26] (see
Ref. [33] for details).

However, regardless of R, it is generally formidable to
solve the aforementioned linear or semidefinite programs by
brute force even on a computer for relatively simple scenarios.
Implications such as those summarized in Eq. (5) are thus
useful to bear in mind for subsequent discussions. For example,
if �P violates an n-partite Svetlichny inequality—a Bell-like
inequality that holds for a general Svetlichny resource—then
it is not (n − 1) producible for all R. In other words, the
correlation �P exhibits genuine n-partite nonlocality (and hence
can only be produced, if at all, by a genuinely n-partite
entangled state) and has an MGS of n. A generic correlation
�P , evidently, will have an MGS that depends on the resource

under consideration, as we now illustrate by explicit examples
in the following subsections.
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B. An example of a genuinely 3-partite NS nonlocal
correlation in a 4-partite scenario

The Greenberger-Horne-Zeilinger (GHZ) state [34] be-
tween n parties is defined as follows:

|GHZn〉 = 1√
2

(|0〉⊗n + |1〉⊗n), (6)

where |0〉 and |1〉 are, respectively, the eigenstate of the Pauli
matrix σz with eigenvalue +1 and −1. Consider the following
equal-weight mixture of three parties sharing |GHZ3〉 and one
party holding |−〉:

ρ = 1
4 (|GHZ3〉〈GHZ3| ⊗ |−〉〈−| + �) , (7)

where |−〉 is the eigenstate of the Pauli matrix σx with
eigenvalue −1, and we have used � to denote similar terms
which must be included to ensure that the expression involved
is invariant under arbitrary permutation of parties. This
quantum state could be prepared, for instance, by distributing
uniformly randomly |GHZ3〉 to any of the three parties and |−〉
to the remaining one. By construction, ρ does not have genuine
4-partite entanglement. Hence, any correlation �P derived by
performing local measurement on ρ must be a member of Q4,3

and by Eq. (5a), also R4,3.
Now, consider the case where all parties measure the

following dichotomic observables,

A0 = B0 = C0 = D0 = −
√

3

2
σx + 1

2
σy,

A1 = B1 = C1 = D1 = −
√

3

2
σx − 1

2
σy.

(8)

It can be shown that that the resulting correlation �P violates
the following Bell inequality which must be satisfied by all
correlations from NS4,2 [31]:

I = − 12 〈A0〉 − 3 〈A1〉 − 2 〈A0B0〉 + 6 〈A0B1〉
− 3 〈A1B1〉 + 13 〈A0B0C0〉 − 3 〈A1B0C0〉
− 11 〈A1B1C0〉 + 14 〈A1B1C1〉 + 22 〈A0B0C0D0〉
− 15 〈A0B0C0D1〉 − 10 〈A1B1C0D0〉
− 7 〈A1B1C1D0〉 + 21 〈A1B1C1D1〉 + �

NS4,2

� 105, (9)

giving a quantum value of 117.8827. This implies that the
correlation �P is also genuinely 3-partite nonlocal, or having
an MGS of 3 for R ∈ {Q,NS}.

Interestingly, it can be shown that �P does not lie in
any of the 3-partite NS-producible sets corresponding to
a fixed partition. This, together with the fact that �P is
3-partite NS producible means that the generation of �P
requires classical mixtures of different partitions of the four
participating parties into two groups, one of them containing
three parties and sharing an NS resource. It is also worth
noting that all tripartite marginal correlations of �P are
verifiably 1-producible (hence satisfying the complete set of
Bell inequalities for this scenario given in Ref. [35]). In other
words, although �P is genuinely 3-partite NS nonlocal, this
3-partite nonlocality cannot be revealed by studying each of

the four tripartite marginal correlations individually. Neither
can this multipartite nonlocality be manifested by analyzing
the biseparability of the 4-partite correlation since this more
conventional approach cannot distinguish correlation of the
form of Eq. (1) and those of the form of Eq. (3).

In the above example, we were able to determine the
MGS of the correlation for the quantum, and a general
nonsignaling resource. For the Svetlichny resource, we could
also show—by solving some linear program—that the very
same correlations is inside the set S4,2, and thus only exhibits
an MGS of 2. However, due to the computational complexity
involved in solving the corresponding linear program for the
one-way signaling resource T , we were not able to determine
precisely its MGS. Apart from correlations that violate an
n-partite Svetlichny inequality (in which case MGS = n

for all resources) or correlations that are local (in which
case MGS = 1), one may thus wonder if there exist other
n-partite correlations �P which have an MGS that can be fully
characterized for all the different resources. We now provide
examples of this kind in the next section.

C. A family of n-partite examples with fully characterized MGS

In Ref. [16], it has been shown that if all n parties either
measure the σx or the σy observable on the n-partite state
|GHZn〉, Eq. (6), the resulting correlation has an MGS of � n

2 �
for R ∈ {NS,T ,S} whenever n is odd or n

2 is even. On the
other hand, if we restrict ourselves to a quantum resource, then
for all odd n � 3, it follows from the result of Ref. [16] that the
corresponding MGS is n, demonstrating a large gap between
the size of the resource required to reproduce these correlations
when using a quantum and a post-quantum nonsignaling (or
a classical but signaling) resource. To prove these results, a
general NS biseparable decomposition of the aforementioned
correlation was provided [16] for arbitrary partitioning of
the n parties into two groups, thus establishing that these
correlations are � n

2 � producible for R ∈ {NS,T ,S}. Then to
prove that these correlations are not (� n

2 � − 1) producible for
the same set of resources, it was shown in Ref. [16] that except
for even n with odd n

2 , these correlations are not 3-separable,
i.e., cannot be reproduced by a separation of the n parties
into three groups. As for R = Q, an MGS = n for odd n

[16] follows from the fact that the corresponding correlation
violates a device-independent witness for genuine n-partite
entanglement [20,24] constructed from the Mermin-Ardehali-
Belinskii-Klyshko (MABK) Bell expression [36,37]. In the
case of even n, the result recently established in Ref. [33]
(based on earlier work of Ref. [38]) allows one to conclude
that the above-mentioned GHZ correlations have an MGS of
at least n − 1 (for R = Q).

III. WITNESSING NON-k-PRODUCIBILITY USING
BELL-LIKE INEQUALITIES

Evidently, as discussed in Sec. II, Bell-like inequalities
are very useful tools for determining (or at least lower
bounding) the MGS of a given correlation by certifying its
non-k-producibility. For example, all Bell-like inequalities that
have been derived—based on the nonbiseparability approach
[18–23]—to detect genuine n-partite nonlocality can be used
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as witnesses for non-(n − 1)-producibility for the respective
resources. It is, however, unrealistic to hope to find all such
Bell-like inequalities by solving the polytope describing the
convex set Rn,k even for relatively small n and k. But all
is not lost and in this section, we recall from Ref. [39] the
technique of lifting—originally developed for Bell inequalities
that witness Bell-nonlocality—and show that it can also be
used to construct Bell-like inequality for arbitraryRn′,k (where
n′ > n and R ∈ {Q,NS}) starting from any given Bell-like
inequality for Rn,k . Before that, let us first make a digression
and point out the usefulness of a nonsignaling resource in
simulating a general correlation.

A. All extremal full-correlation functions can be simulated
with nonsignaling strategies

In an n-partite, m-input, �-output Bell scenario, the set of
full-correlation functions defined in Ref. [20] consists of the
following �mn joint conditional probability distributions:

{P ([a�x]� = r)}�−1
r=0, (10a)

where [X]� := X mod �,

P ([a�x]� = r) =
∑

�a
P (�a|�x) δ∑

i ai mod �, r , (10b)

and δa,b is the Kronecker delta of a and b. Note that due
to the normalization conditions, only (� − 1) mn of these
joint conditional probability distributions are independent.
Moreover, in the case where there are only two possible
outcomes, i.e., � = 2, it is easy to see that the above definition
of full-correlation functions is equivalent to the conventional
one defined by the expectation value of the product of ±1
outcomes.

We now present a mathematical fact about the space of
correlations spanned by the set of full-correlation functions
defined in Eq. (10).

Theorem 1. When restricted to the set of full-correlation
functions given in Eq. (10), all extremal strategies achievable
by an n-partite Svetlichny resource Sn are also achievable
using an n-partite nonsignaling resource NSn. Thus, in the
subspace spanned by full-correlation functions, the three sets
of correlations Sn,Tn, and NSn become identical.

One can find the proof of this theorem in Appendix A.
Let us remember that the Svetlichny resource is the most
powerful nonlocal resource, and is only constrained by the
normalization of probability distributions. In other words,
Sn is basically the set of normalized n-partite correlations.
The importance of Theorem 1 is that when restricted to
the set of coarse-grained measurement statistics represented
by the set of full-correlation functions, cf. Eq. (10a), one
also cannot make a distinction between NSn and the set of
normalized conditional probability distributions. Note that for
binary-outcome full-correlation functions arising from the Bell
singlet state, the coincidence betweenS2 andNS2 was already
anticipated from the results of Ref. [10]. In fact, an alternative
proof of Theorem 1 for the special case of binary-outcome
full-correlation functions can be found, e.g., in Theorem 12 of
Ref. [40].

It is also worth noting that the definition of full-correlation
functions is not unique, nevertheless, numerous Bell-like
inequalities can be written in terms of the correlation functions
defined in Eq. (10); see e.g., Ref. [20]. In this regard, note also
the following corollary of Theorem 1, which allows us to
relate Bell-like inequalities for NSn,k with those of Rn,k for
R ∈ {T ,S}.

Corollary 1. Let IR
n,k be a tight, full-correlation Bell-like

inequality that holds for R ∈ {T ,S}, i.e.,

IR
n,k :

∑

�x

�−1∑

r=0

βr
�xP ([a�x]� = r)

Rn,k

� BR
n,k, (11)

and there exists P (�a|�x) ∈ Rn,k such that inequality (11)
becomes an equality, then there also exists P (�a|�x) ∈ NSn,k

such that inequality (11) becomes an equality. In other words,

∑

�x

�−1∑

r=0

βr
�xP ([a�x]� = r)

NSn,k

� BR
n,k, (12)

is also a tight, full-correlation Bell-like inequality that holds
for R = NS .

The proof of the above corollary can be found in Appendix
B. The corollary tells us that if we restrict ourselves to Bell-
like inequalities that only involve linear combination of full-
correlation functions, Eq. (10), then we cannot distinguish
between correlations that are k producible with respect to any
of the resource R ∈ {NS,T ,S}. In other words, for any given
n and k and in the subspace of measurement statistics spanned
by the set of full-correlation functions, cf. Eq. (10), the three
sets of correlations NSn,k,Tn,k , and Sn,k become identical. It
is worth bearing this fact in mind in order to appreciate the
generality of the upcoming theorem.

B. Lifting of Bell-like inequalities

The lifting of Bell inequalities was first discussed by Pironio
in Ref. [39]. Essentially, it is a technique that allows one to
extend any (facet-defining) Bell inequality of a given scenario
to a more complex scenario (involving more parties and/or
inputs and/or outputs). In this work, we are only interested in
the lifting of Bell-like inequalities to a scenario involving more
parties. In this case, a lifted Bell inequality corresponds to a
witness of nonlocality where the nonlocal behavior of a subset
of, say n, of the parties becomes apparent after conditioning on
a specific combination of measurement settings and outcomes
from the complementary subset of h parties.7

More concretely, let us denote a specific combination of
the measurement settings and measurement outcomes of the h

parties, respectively, by �s and �o. It can then be shown that if
the (n + h)-partite correlation P (�a,�o|�x,�s) is 1-producible (and

7This particular kind of lifting has been applied to show, for instance,
a stronger version of Bell’s theorem; see, e.g., Ref. [41].
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nonvanishing8), so is the conditional distribution given by

P̃ |�o,�s(�a|�x) = P (�a,�o|�x,�s)∑
�a P (�a,�o|�x,�s)

. (13)

An immediate implication of this is that a Bell inequality that is
defined for an n-partite scenario can be trivially extended to any
(n + h)-partite scenarios by considering specific measurement
settings �s and outcomes �o for the h parties.

As an example consider the well-known Clauser-Horne-
Shimony-Holt [42] Bell inequality applicable to a scenario
involving two parties, each performing two binary-outcome
measurements:

1∑

x1,x2,a1,a2=0

(−1)a1+a2+x1x2P (a1a2|x1x2)
L
� 2. (14)

Lifting this inequality to the scenario of three parties and with
the third party getting a specific measurement outcome o3

given the specific measurement setting s3 gives the following
lifted CHSH Bell inequality:

1∑

x1,x2,a1,a2=0

(−1)a1+a2+x1x2P (a1a2o3|x1x2s3) − 2P (o3|s3)
L
� 0.

(15)

Lifting the CHSH Bell inequality to an arbitrary number of n >

2 parties can be carried out analogously. In Ref. [39], it was
shown that such a procedure not only generates a legitimate
Bell inequality but even one that preserves the facet-defining
property of the original Bell inequality.

C. A general recipe for the construction of non-k-producible
witnesses

We shall now demonstrate how lifting may be used as a
general technique for the construction of Bell-like inequalities
for Rn′,k starting from one for Rn,k where n′ is an arbitrary
integer greater than n and R is a resource that respects the
nonsignaling constraints. To this end, we note that, without loss
of generality, a (linear) Bell-like inequality for a nonsignaling-
respecting Rn,k can always be written in the form of

In =
∑

�a,�x
β �a

�x P (�a|�x)
Rn,k

� 0, (16)

where β �a
�x is some real-valued function of �a and �x. Our main

observation is that the lifting of In to a scenario involving
arbitrary n′ > n parties is also a legitimate Bell-like inequality
for Rn′,k , as summarized more formally in the following
theorem.

Theorem 2. If In is a Bell-like inequality satisfied by all
correlations in Rn,k ∈ {Q,NS}, i.e., Eq. (16) holds for all
P (�a|�x) ∈ Rn,k , then

In+h =
∑

�a,�x
β �a

�x P (�a,�o|�x,�s)
Rn+h,k

� 0, (17)

8If the distribution vanishes, the conditional distribution given in
Eq. (13) is ill-defined.

meaning that the lifted inequality holds for all P (�a,�o|�x,�s) ∈
Rn+h,k where h � 1, while �o and �s refer, respectively, to
arbitrary but fixed combination of measurement outcomes and
measurement settings for the h additional parties.

A proof of this theorem can be found in Appendix C.
Clearly, one can see Theorem 2 as a partial generalization
of the results presented in [39] from Rn,1 to Rn,k whenever
R ∈ {Q,NS}. As for R ∈ {T ,S}, we know from Corollary
1 and Theorem 2 that any full-correlation Bell-like inequality
valid for Rn,k can also be lifted as a Bell-like inequality for
NSn′,k in the extended scenarios. Unfortunately, the theorem
in general does not apply to the signaling resource S (as well
as T ). To see this, consider the tripartite Svetlichny inequality
(written in the form given in [20]):

IS,3 =
∑

�x,�a
β �a
S,3,�x P (a1a2a3|x1x2x3) − 4

S3,2

� 0, (18a)

β �a
S,3,�x = (−1)

∑
i ai+�

∑
i xi−1

2 �. (18b)

If Theorem 2 were to be applicable for a Svetlichny
resource, we would expect, for instance, that the following
inequality,

IS,4 =
∑

�x,�a
β �a
S,3,�x P (a1a2a3,o4 = 0|x1x2x3,s4 = 0)

− 4
∑

�a
P (a1a2a3,o4 = 0|x ′

1x
′
2x

′
3,s4 = 0) � 0, (19)

to hold true forS4,2 and for some arbitrary choice of x ′
1,x

′
2,x

′
3 =

{0,1}. One can, however, easily verify that this is not the case.
For instance, with x ′

1 = x ′
2 = x ′

3 = 0, the Svetlichny strategy
from S4,2,

a1 = 1 − δx1,1δx2,1, a2 = 1,

a3 = a4 = 1 − δx3,1δx4,0,
(20)

gives vanishing contribution to the second term in Eq. (19) but
an overall value of 4 for IS,4, clearly violating inequality (19).

Despite the above remark, let us stress once more that there
is still wide applicability of Theorem 2. For example, each
of the Bell-like inequalities obtained for NS3,2 and NS4,2 in
Refs. [23,31] can now be used to construct witnesses showing
MGS � 3 (for the NS resource) for an arbitrary number
of parties. Thanks to Corollary 1, the families of k-partite
Svetlichny inequalities obtained in Refs. [19,20] can similarly
be extended to detect genuine NS k-partite nonlocality in
an arbitrary n > k partite scenario. Likewise, each device-
independent witness for genuine k-partite entanglement ob-
tained in Refs. [20,24,25] can now be applied to witness gen-
uine k-partite entanglement in an arbitrary n > k partite sce-
nario. Of course, it remains to show that Bell-like inequalities
generated with the help of Theorem 2 could indeed be useful,
and this is what we shall show next with a very simple example.

D. An example where a lifted Bell-like inequality
can be used to determine MGS

Consider the following four-partite mixed state:

ρ = v |GHZ3〉〈GHZ3| ⊗ |0〉〈0| + (1 − v)
1

23
⊗ |1〉〈1|, (21)
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where v ∈ (0,1], and |0〉,|1〉 are again the eigenstates of σz.
Since ρ is biseparable, regardless of which local measure-
ments are performed on ρ, the resulting correlations must be
in Q4,3 and thus having MGS � 3 for all R [cf. Eq. (5a)].
Clearly, from Eq. (21), we see that the entanglement of ρ

lies entirely within the first three subsystems. Let us denote
these systems by A,B, and C, respectively. For v � 1

5 , it
is known that the tripartite reduced density matrix ρABC =
v |GHZ3〉〈GHZ3| + (1 − v) 1

23 is separable [43] and thus not
capable of violating any Bell inequalities. Nonetheless, in what
follows, we shall show that a lifted Bell-like inequality can
indeed be used to show that a certain correlation derived from
ρ indeed exhibits MGS = 3 for all v 	= 0, thus showing that the
generation of such a correlation quantum mechanically indeed
requires at least tripartite entanglement.

To this end, consider now the following dichotomic observ-
ables,

A0 = σx, A1 = σy,

B0 = 1√
2

(σx − σy), B1 = 1√
2

(σx + σy), (22)

C0 = −σy, C1 = σx,

and the tripartite Svetlichny inequality given in Eq. (18). It is
known that by measuring the local observables {Ai,Bi,Ci}i=0,1

given in Eq. (22) on |GHZ3〉, one obtains correlation �P that
violates IS,3 maximally.

Note that by Corollary 1 and the fact that Eq. (18) is a
full-correlation Bell-like inequality, we know that inequality
(18) still holds and can be saturated even if we now consider
only correlations in NS3,2, i.e.,

INS,3 =
∑

�x,�a
β �a
S,3,�x P (a1a2a3|x1x2x3) − 4

NS3,2

� 0. (23)

Lifting the inequality INS,3 to the specific case where the
fourth party performs the zeroth measurement and getting the
zeroth outcome, one obtains the inequality:

I
|s4=o4=0
NS,3 =

∑

�x,�a
β �a
NS,3,�xP (a1a2a3,o4 = 0|x1x2x3,s4 = 0)

− 4P (o4 = 0|s4 = 0)
NS4,2

� 0. (24)

Let us now identify the zeroth measurement of the fourth
party by σz and the zeroth outcome by a successful projection
onto the eigenstate |0〉. Together with the measurements
specified in Eq. (22), one finds that for all 0 < v � 1,
the resulting correlation derived from ρ must also violate
inequality (24). To see this, it suffices to note that (i) for v 	= 0,
the probability of successfully projecting the fourth system
onto |0〉 is strictly greater than zero and (ii) conditioning on a
successful projection, the conditional state for ABC is simply
|GHZ3〉 which, as mentioned above, violates INS,3 inequality
maximally. The aforementioned correlation thus exhibits MGS
stronger than that allowed inNS4.2 which, by Eq. (5b), implies
that it has MGS � 3 for all R ∈ {Q,NS}. Combining this
with the biseparability of ρ mentioned above, we see that this
particular correlation has exactly MGS = 3.

IV. CONCLUSION

To investigate the extent to which participating parties
would need to collaborate nonlocally in a nonlocal game (or
equivalently in a Bell-type experiment), we have introduced
the notion of minimal group size (MGS), i.e., the smallest
number of nonlocally correlated parties required to reproduce
a given nonlocal correlation �P . We believe that this more
general notion of genuine multipartite nonlocality inspired
by k producibility [27] from the studies of multipartite
entanglement will be a fruitful approach towards a better
understanding of multipartite nonlocality.

As an illustration, we presented, in a four-partite scenario,
some genuine tripartite nonlocal correlation where the multi-
partite nonlocality cannot be detected through the conventional
m-separability approach. Nonetheless, as first demonstrated in
Ref. [16], and further elaborated in this paper, the biseparabil-
ity approach can in some cases provide tight lower bound on
MGS. In fact, for the family of n-partite correlations presented
in Ref. [16], it was even found that their MGS for a quantum
resource is n whereas that for a general nonsignaling (or even
an unrestricted signaling) resource is � n

2 �, giving an increasing
gap between their MGS as n increases. Could there be a bigger
gap between the MGS of a nonlocal correlation with respect
to a quantum resource and a general (non)signaling resource?
In particular, does there exist a multipartite nonlocal quantum
correlation which requires genuine n-partite entangled state
for its production but nonetheless only an MGS of 2 if one
is allowed to exploit a signaling, or even a nonsignaling but
post-quantum resource? The answer to these questions would
certainly shed light on how quantum entanglement helps in a
different aspect of communication complexity, namely, how
many communicating parties we can replace by quantum
entanglement.

We also demonstrated how the technique of lifting [39]—
originally presented in the context of Bell inequality (for
1-producibility)—can be applied to generate new MGS wit-
nesses starting from one involving a smaller number of parties.
This generalizes partially the result of Ref. [39] and provides
a useful recipe for the construction of MGS witnesses (with
respect to a nonsignaling, e.g., a quantum resource) for an
arbitrary n-partite scenario. Moreover, we have found that for
the complete list of 185 facet-defining Bell-like inequalities of
NS3,2 given in Ref. [23], the corresponding MGS witnesses
of NS4,2 generated from lifting still correspond to a facet
[29] of the polytope in the more complex scenario. Likewise,
when these 185 lifted inequalities, as well as the 13 479
facet-defining inequalities obtained in Ref. [31] are lifted to the
5-partite scenario, it can again be verified that they correspond
to facets of the NS5,2 polytope. Based on these observations,
we conjecture that—as with standard Bell inequalities—
the procedure of lifting, when applied to a facet-defining
inequality of NSn,k , also generates a facet of NSn′,k in the
extended scenario involving n′ > n parties.

Unfortunately, a naive application of lifting to signaling
resources generally does not always result in legitimate MGS
witnesses in the extended scenario. Nevertheless, the possibil-
ity to simulate all possible full-correlation functions [20] using
only nonsignaling resources—as we show in Appendix A—
allows us to apply the recipe to Bell-like inequalities originally
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derived for Svetlichny resources [18–20] and construct MGS
witnesses for nonsignaling resources in any extended scenario.
It is also conceivable that an analogous witness-generating
technique may be found for signaling resources, a problem
that we shall leave for future research.

Evidently, on top of Bell-like inequalities that one may
construct using the aforementioned technique, it is natural
to ask if there exists a simple family of non-k-producible
witnesses for an arbitrary number of parties. In this regard, we
note that a family of such witnesses for a quantum resource
(as well as a general nonsignaling resource) has recently been
identified [33]. Similar results for other resources, especially
one that is either optimal (in the sense of being facet defining)
for the respective convex polytope, or one that involves a
small number of terms to be measured experimentally, would
certainly be desirable.

Finally, let us stress that while we have discussed MGS
mostly in the context of reproducing certain nonlocal correla-
tions, these values for the post-quantum nonsignaling resource,
as well as for signaling resources also provide insight on the
difficulty in reproducing certain correlations using quantum
resources. In this sense, evaluation of the MGS for a given
correlation may give an indication on how difficult it is to
produce certain Bell-inequality violating correlations in the
laboratory: The larger the value of MGS, the more systems
need to be entangled together in their generation.
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APPENDIX A: PROOF THAT ALL FULL-CORRELATION
FUNCTIONS ARE ATTAINABLE USING

A NONSIGNALING RESOURCE

Our goal here is to give a proof that when restricted to
the (� − 1) mn-dimensional space of full-correlation functions
defined by Eq. (10), the set of legitimate correlations coincides
with that achievable by a nonsignaling resource NSn. To
this end, it is worth remembering that the set of normalized
correlations in this space is precisely the set of correlations
achievable by the Svetlichny resource Sn. To prove the desired
result, it is then sufficient to show that all extreme points of Sn

in this space are also achievable using NSn.
Proof. First, let us note that all extremal strategies of these

full-correlation functions are deterministic functions of the
joint inputs �x, i.e., they are defined by specifying for each
given �x, the corresponding sum of outputs modulo �. In other
words, for each of these extremal strategies and for each given

�x, we have

P ([a�x]k = r) = δr,f (�x), (A1)

where f (�x) is some deterministic, r-value function of �x. Dif-
ferent extremal strategies of Sn in this space then correspond
to different choices of f (�x). To prove Theorem 1, it is then
sufficient to find a nonsignaling strategy that gives Eq. (A1)
for an arbitrary choice of f (�x).

Let us first illustrate how this works in the scenario of n = 2.
Consider the following normalized probability distribution:

P (a1a2|x1x2) = 1

�
δa1+a2 mod � , f (x1,x2). (A2)

Note that (regardless of x1 and x2) for each a1—due to the
Kronecker delta—there is one, and only one value of a2 such
that the right-hand side of Eq. (A2) is nonvanishing, likewise
for a2. As a result, the corresponding marginal distributions
are given by

P (a1|x1x2) =
∑

a2

1

�
δa1+a2 mod � , f (x1,x2) = 1

�
,

P (a2|x1x2) =
∑

a1

1

�
δa1+a2 mod � , f (x1,x2) = 1

�
.

(A3)

Both these marginal distributions are independent of the input
of the other party and hence the distribution given in Eq. (A2)
satisfies the nonsignaling constraints. From these observations
and Eq. (10b), it is also easy to see that the nonsignaling
distribution given in Eq. (A2) satisfies Eq. (A1). We have thus
shown that in the above-mentioned subspace of full-correlation
functions, the extremal strategy of S2 can also be achieved by a
nonsignaling correlation. More generally, for arbitrary n � 2,
it is easy to verify that the following distribution,

P (�a|�x) = 1

�n−1
δ∑

i ai mod � , f (�x), (A4)

is nonsignaling, giving a uniform n′′-partite marginal distri-
bution of �−n′′

, and satisfies Eq. (A1). In other words, we
have proved that the extremal strategy of Sn in the subspace
of full-correlation functions can always be achieved using a
nonsignaling strategy. �

APPENDIX B: PROOF OF COROLLARY 1

Here, we give a proof of Corollary 1. For concreteness, we
shall provide a proof for R = S. The case for R = T follows
from the inclusion relations given in Eq. (4).

Proof. Given inequality (11), the inclusion relations of
Eq. (4) immediately imply that inequality (12) holds true for
all P(�a|�x) ∈ NSn,k . It thus remains to show that there also
exists P (�a|�x) = PNS

0 (�a|�x) ∈ NSn,k such that the inequality
(12) is saturated, i.e.,

∑

�x

�−1∑

r=0

βr
�xP

NS
0 ([a�x]� = r) = BS

n,k. (B1)
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By assumption, there exists extremal P (�a|�x) = P S (�a|�x) ∈
Sn,k such that inequality (11) is saturated, i.e.,

∑

�x

�−1∑

r=0

βr
�xP

S ([a�x]� = r) = BS
n,k. (B2)

From the definition of the full-correlation function, Eq. (10b),
and the assumed k producibility of the correlation, we have

P S ([a�x]� = r) =
∑

�a
P S (�a|�x) δ[a�x ]�,r

=
∑

�a

G∏

i=1

P S (�a[i]|�x[i]) δ[a�x ]�,r , (B3a)

where P S (�a[i]|�x[i]) refers to the ith constituent distribution,
which is at most k partite. Denote the sum of the outputs in the
j th group by a�x[j ] ; we can then further rewrite P S ([a�x]� = r)
as

G∏

i=1

∑

�a[i]

P S (�a[i]|�x[i]) δ[
∑

j [a�x[j ] ]�]�,r ,

=
G∏

i=1

∑

�a[i]

�−1∑

r [i]=0

P S (�a[i]|�x[i])δ[a�x[i] ]�,r [i] δ[
∑

j [a�x[j ] ]�]�,r . (B3b)

Note that for each �x[i], due to the Kronecker delta δ[a�x[i] ]�
,r [i] ,

there is only one term in the sum over r [i] that contributes
nontrivially. Swapping the order of the sums gives

G∏

i=1

�−1∑

r [i]=0

∑

�a[i]

P S (�a[i]|�x[i])δ[a�x[i] ]�,r [i] δ[
∑

j [a�x[j ] ]�]�,r ,

=
G∏

i=1

�−1∑

r [i]=0

∑

�a[i]

P S (�a[i]|�x[i])δ[a�x[i] ]�,r [i] δ[
∑

j r [j ]]�,r ,

=
G∏

i=1

�−1∑

r [i]=0

P S ([a�x[i] ]� = r [i]) δ[
∑

j r [j ]]�,r , (B3c)

which means that P S ([a�x]� = r) factorizes into a (linear
combination of) product of full-correlation functions for each
group P S ([a�x[i] ]� = r [i]). By Theorem 1, there is no loss of
generality in replacing the constituent distribution from the
ith group P S (�a[i]|�x[i]) by some nonsignaling distributions
PNS

0 (�a[i]|�x[i]) such that they agree at the level of the full-
correlation functions, i.e.,

P S ([a�x[i] ]� = r [i]) = PNS
0 ([a�x[i] ]� = r [i]) ∀ i,r [i]. (B4)

Substituting this back into Eq. (B3) and then Eq. (B2), we thus
obtain Eq. (B1) by identifying

PNS
0 ([a�x[i] ]� = r [i]) =

∑

�a

G∏

i=1

PNS (�a[i]|�x[i]) δ[a�x ]�,r . (B5)

�
An immediate consequence of the above corollary is

that any full-correlation Bell-like inequality for Sn,k , such
as those derived in Refs. [18–20], is also valid and tight
for NSn,k .

APPENDIX C: PROOF OF THEOREM 2

We now provide a proof of Theorem 2.
Proof. By assumption, the following expression holds

true:

In =
∑

�a,�x
β �a

�x P (�a|�x)�0, (C1)

for all P (�a|�x) ∈ Rn,k , and our goal is to show that

In+h =
∑

�a,�x
β �a

�x P (�a,�o|�x,�s)
Rn+h,k

� 0, (C2)

for arbitrary h � 1 and all fixed choices of �o and �s. We will
show that this is the case by reductio ad impossibilem.

Suppose the converse, namely, that there exists some choice
of �o,�s, and h such that for some P (�a,�o|�x,�s) ∈ Rn+h,k ,

∑

�a,�x
β �a

�x P (�a,�o|�x,�s) > 0. (C3)

By linearity of the expression and the requirement that
P (�a,�o|�x,�s) ∈ Rn+h,k , the above inequality implies that there
exists some correlation,

P (�a,�o|�x,�s) =
G∏

i=1

PR(�a[i],�o[i]|�x[i],�s[i]), (C4)

such that

∑

�a,�x
β �a

�x

G∏

i=1

PR(�a[i],�o[i]|�x[i],�s[i]) > 0, (C5)

where PR(�a[i],�o[i]|�x[i],�s[i]) refers to the ith constituent dis-
tribution (from the ith group), and as with P (�a,�o|�x,�s),
we have used �o[i] and �s[i] to indicate, respectively, the
(possibly empty) outcome and setting string that are
fixed in PR(�a[i],�o[i]|�x[i],�s[i]). Note that the assumption of
P (�a,�o|�x,�s) ∈ Rn+h,k implies that each constituent distribution
is at most k partite and their respective size ni sums up to n + h,
i.e.,

∑G
i=1 ni = n + h.

Evidently, since inequality (C5) is strict and that
PR(�a[i],�o[i]|�x[i],�s[i]) � 0 for all �a[i] and �x[i], it must be the
case that

∑

�a[i]

PR(�a[i],�o[i]|�x[i],�s[i]) > 0, (C6)

for all �x[i] that contribute nontrivially in the left-hand side of
Eq. (C5). In fact, since the left-hand side of inequality (C6)
can also be obtained by performing the appropriate sums of
Eq. (C4),

∑

�a,�o[j ]|j 	=i

P (�a,�o|�x,�s) =
∑

�a,�o[j ]|j 	=i

G∏

�=1

PR(�a[�],�o[�]|�x[�],�s[�])

=
∑

�a[i]

PR(�a[i],�o[i]|�x[i],�s[i]), (C7)

we see that by the nonsignaling nature of P (�a,�o|�x,�s), the very
last expression of Eq. (C7) must also be independent of �x[i].
Hereafter, we shall simply write these marginal distributions
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as

PR(�o[i]|�s[i]) =
∑

�a[i]

PR(�a[i],�o[i]|�x[i],�s[i]). (C8)

Hence, from inequality (C6), we see that the conditional
distributions,

P̃ |�o[i],�s[i]
(�a[i]|�x[i]) = PR(�a[i],�o[i]|�x[i],�s[i])

PR(�o[i]|�s[i])
, (C9)

are well defined for all �x[i] and satisfy the normalization
condition

∑
�a[i] P̃ |�o[i],�s[i]

(�a[i]|�x[i]) = 1. With some thought, one
can also see that the conditional distribution defined in
Eq. (C9) also inherits the property of the defining distribution,
i.e., satisfying the constraint defined by R. For instance, if

PR(�a[i],�o[i]|�x[i],�s[i]) admits a quantum representation, so does
P̃ |�o[i],�s[i]

(�a[i]|�x[i]).
Dividing inequality (C5) by

∏
i P

R(�o[i]|�s[i]) and using
Eq. (C9), we obtain

∑

�a,�x
β �a

�x

G∏

i=1

P̃ |�o[i],�s[i]
(�a[i]|�x[i]) > 0. (C10)

As mentioned above, for all i, the conditional distribution
P̃ |�o[i],�s[i]

(�a[i]|�x[i]) is a legitimate distribution with respect
to the resource R and cannot be more than k partite,
i.e,

∏G
i=1 P̃ |�o[i],�s[i]

(�a[i]|�x[i]) ∈ Rn,k . Hence, inequality (C10)
implies that the original inequality In can be violated by
correlation inRn,k , which contradicts our very first assumption
that In is a legitimate Bell-like inequality for Rn,k . �
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[35] C. Śliwa, Phys. Lett. A 317, 165 (2003).

012121-10

http://dx.doi.org/10.1137/S0097539797324886
http://dx.doi.org/10.1137/S0097539797324886
http://dx.doi.org/10.1137/S0097539797324886
http://dx.doi.org/10.1137/S0097539797324886
http://dx.doi.org/10.1103/PhysRevLett.92.127901
http://dx.doi.org/10.1103/PhysRevLett.92.127901
http://dx.doi.org/10.1103/PhysRevLett.92.127901
http://dx.doi.org/10.1103/PhysRevLett.92.127901
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://arxiv.org/abs/arXiv:1409.5531
http://dx.doi.org/10.1103/PhysRevLett.91.187904
http://dx.doi.org/10.1103/PhysRevLett.91.187904
http://dx.doi.org/10.1103/PhysRevLett.91.187904
http://dx.doi.org/10.1103/PhysRevLett.91.187904
http://dx.doi.org/10.1137/080723909
http://dx.doi.org/10.1137/080723909
http://dx.doi.org/10.1137/080723909
http://dx.doi.org/10.1137/080723909
http://dx.doi.org/10.1103/PhysRevLett.94.220403
http://dx.doi.org/10.1103/PhysRevLett.94.220403
http://dx.doi.org/10.1103/PhysRevLett.94.220403
http://dx.doi.org/10.1103/PhysRevLett.94.220403
http://dx.doi.org/10.1103/PhysRevA.71.022101
http://dx.doi.org/10.1103/PhysRevA.71.022101
http://dx.doi.org/10.1103/PhysRevA.71.022101
http://dx.doi.org/10.1103/PhysRevA.71.022101
http://dx.doi.org/10.1103/PhysRevA.72.052312
http://dx.doi.org/10.1103/PhysRevA.72.052312
http://dx.doi.org/10.1103/PhysRevA.72.052312
http://dx.doi.org/10.1103/PhysRevA.72.052312
http://dx.doi.org/10.1103/PhysRevLett.95.140401
http://dx.doi.org/10.1103/PhysRevLett.95.140401
http://dx.doi.org/10.1103/PhysRevLett.95.140401
http://dx.doi.org/10.1103/PhysRevLett.95.140401
http://dx.doi.org/10.1155/2010/293245
http://dx.doi.org/10.1155/2010/293245
http://dx.doi.org/10.1155/2010/293245
http://dx.doi.org/10.1155/2010/293245
http://dx.doi.org/10.1103/PhysRevLett.107.020401
http://dx.doi.org/10.1103/PhysRevLett.107.020401
http://dx.doi.org/10.1103/PhysRevLett.107.020401
http://dx.doi.org/10.1103/PhysRevLett.107.020401
http://dx.doi.org/10.1007/978-3-642-35656-8
http://dx.doi.org/10.1007/978-3-642-35656-8
http://dx.doi.org/10.1007/978-3-642-35656-8
http://dx.doi.org/10.1007/978-3-642-35656-8
http://arxiv.org/abs/arXiv:1303.5942
http://dx.doi.org/10.1098/rspa.2008.0149
http://dx.doi.org/10.1098/rspa.2008.0149
http://dx.doi.org/10.1098/rspa.2008.0149
http://dx.doi.org/10.1098/rspa.2008.0149
http://dx.doi.org/10.1103/PhysRevA.73.012112
http://dx.doi.org/10.1103/PhysRevA.73.012112
http://dx.doi.org/10.1103/PhysRevA.73.012112
http://dx.doi.org/10.1103/PhysRevA.73.012112
http://arxiv.org/abs/arXiv:cond-mat/0611001
http://dx.doi.org/10.1007/s11128-009-0161-6
http://dx.doi.org/10.1007/s11128-009-0161-6
http://dx.doi.org/10.1007/s11128-009-0161-6
http://dx.doi.org/10.1007/s11128-009-0161-6
http://dx.doi.org/10.1103/PhysRevLett.112.100401
http://dx.doi.org/10.1103/PhysRevLett.112.100401
http://dx.doi.org/10.1103/PhysRevLett.112.100401
http://dx.doi.org/10.1103/PhysRevLett.112.100401
http://dx.doi.org/10.1103/PhysRevLett.113.210403
http://dx.doi.org/10.1103/PhysRevLett.113.210403
http://dx.doi.org/10.1103/PhysRevLett.113.210403
http://dx.doi.org/10.1103/PhysRevLett.113.210403
http://dx.doi.org/10.1103/PhysRevLett.113.130401
http://dx.doi.org/10.1103/PhysRevLett.113.130401
http://dx.doi.org/10.1103/PhysRevLett.113.130401
http://dx.doi.org/10.1103/PhysRevLett.113.130401
http://dx.doi.org/10.1103/PhysRevLett.103.090503
http://dx.doi.org/10.1103/PhysRevLett.103.090503
http://dx.doi.org/10.1103/PhysRevLett.103.090503
http://dx.doi.org/10.1103/PhysRevLett.103.090503
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevLett.88.170405
http://dx.doi.org/10.1103/PhysRevLett.88.170405
http://dx.doi.org/10.1103/PhysRevLett.88.170405
http://dx.doi.org/10.1103/PhysRevLett.88.170405
http://dx.doi.org/10.1103/PhysRevLett.89.060401
http://dx.doi.org/10.1103/PhysRevLett.89.060401
http://dx.doi.org/10.1103/PhysRevLett.89.060401
http://dx.doi.org/10.1103/PhysRevLett.89.060401
http://dx.doi.org/10.1103/PhysRevA.71.042329
http://dx.doi.org/10.1103/PhysRevA.71.042329
http://dx.doi.org/10.1103/PhysRevA.71.042329
http://dx.doi.org/10.1103/PhysRevA.71.042329
http://dx.doi.org/10.1103/PhysRevLett.106.020405
http://dx.doi.org/10.1103/PhysRevLett.106.020405
http://dx.doi.org/10.1103/PhysRevLett.106.020405
http://dx.doi.org/10.1103/PhysRevLett.106.020405
http://dx.doi.org/10.1103/PhysRevA.83.022316
http://dx.doi.org/10.1103/PhysRevA.83.022316
http://dx.doi.org/10.1103/PhysRevA.83.022316
http://dx.doi.org/10.1103/PhysRevA.83.022316
http://dx.doi.org/10.1088/1751-8113/45/12/125301
http://dx.doi.org/10.1088/1751-8113/45/12/125301
http://dx.doi.org/10.1088/1751-8113/45/12/125301
http://dx.doi.org/10.1088/1751-8113/45/12/125301
http://dx.doi.org/10.1103/PhysRevLett.108.100401
http://dx.doi.org/10.1103/PhysRevLett.108.100401
http://dx.doi.org/10.1103/PhysRevLett.108.100401
http://dx.doi.org/10.1103/PhysRevLett.108.100401
http://dx.doi.org/10.1103/PhysRevLett.109.070401
http://dx.doi.org/10.1103/PhysRevLett.109.070401
http://dx.doi.org/10.1103/PhysRevLett.109.070401
http://dx.doi.org/10.1103/PhysRevLett.109.070401
http://dx.doi.org/10.1103/PhysRevA.88.014102
http://dx.doi.org/10.1103/PhysRevA.88.014102
http://dx.doi.org/10.1103/PhysRevA.88.014102
http://dx.doi.org/10.1103/PhysRevA.88.014102
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevA.83.062123
http://dx.doi.org/10.1103/PhysRevA.83.062123
http://dx.doi.org/10.1103/PhysRevA.83.062123
http://dx.doi.org/10.1103/PhysRevA.83.062123
http://dx.doi.org/10.1103/PhysRevLett.111.030501
http://dx.doi.org/10.1103/PhysRevLett.111.030501
http://dx.doi.org/10.1103/PhysRevLett.111.030501
http://dx.doi.org/10.1103/PhysRevLett.111.030501
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1088/1751-8113/47/42/424014
http://dx.doi.org/10.1088/1751-8113/47/42/424014
http://dx.doi.org/10.1088/1751-8113/47/42/424014
http://dx.doi.org/10.1088/1751-8113/47/42/424014
http://arxiv.org/abs/arXiv:1411.7385
http://dx.doi.org/10.1103/PhysRevLett.65.3373
http://dx.doi.org/10.1103/PhysRevLett.65.3373
http://dx.doi.org/10.1103/PhysRevLett.65.3373
http://dx.doi.org/10.1103/PhysRevLett.65.3373
http://dx.doi.org/10.1016/S0375-9601(03)01115-0
http://dx.doi.org/10.1016/S0375-9601(03)01115-0
http://dx.doi.org/10.1016/S0375-9601(03)01115-0
http://dx.doi.org/10.1016/S0375-9601(03)01115-0


QUANTIFYING MULTIPARTITE NONLOCALITY VIA THE . . . PHYSICAL REVIEW A 91, 012121 (2015)

[36] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990); M. Ardehali,
Phys. Rev. A 46, 5375 (1992).

[37] S. M. Roy and V. Singh, Phys. Rev. Lett. 67, 2761 (1991); A.
V. Belinskiı̆ and D. N. Klyshko, Phys. Usp. 36, 653 (1993);
N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A 246, 1
(1998).

[38] K. Nagata, M. Koashi, and N. Imoto, Phys. Rev. Lett. 89, 260401
(2002).

[39] S. Pironio, J. Math. Phys. 46, 062112 (2005).

[40] M. T. Quintino, Master thesis, Universidade Federal de Minas
Gerais, 2012.

[41] J.-D. Bancal, S. Pironio, A. Acı́n, Y.-C. Liang, V. Scarani,
and N. Gisin, Nature Phys. 8, 867 (2012); T. J. Barnea, J.-D.
Bancal, Y.-C. Liang, and N. Gisin, Phys. Rev. A 88, 022123
(2013).

[42] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.
Rev. Lett. 23, 880 (1969).

[43] W. Dür and J. I. Cirac, Phys. Rev. A 61, 042314 (2000).

012121-11

http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevLett.67.2761
http://dx.doi.org/10.1103/PhysRevLett.67.2761
http://dx.doi.org/10.1103/PhysRevLett.67.2761
http://dx.doi.org/10.1103/PhysRevLett.67.2761
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1103/PhysRevLett.89.260401
http://dx.doi.org/10.1103/PhysRevLett.89.260401
http://dx.doi.org/10.1103/PhysRevLett.89.260401
http://dx.doi.org/10.1103/PhysRevLett.89.260401
http://dx.doi.org/10.1063/1.1928727
http://dx.doi.org/10.1063/1.1928727
http://dx.doi.org/10.1063/1.1928727
http://dx.doi.org/10.1063/1.1928727
http://dx.doi.org/10.1038/nphys2460
http://dx.doi.org/10.1038/nphys2460
http://dx.doi.org/10.1038/nphys2460
http://dx.doi.org/10.1038/nphys2460
http://dx.doi.org/10.1103/PhysRevA.88.022123
http://dx.doi.org/10.1103/PhysRevA.88.022123
http://dx.doi.org/10.1103/PhysRevA.88.022123
http://dx.doi.org/10.1103/PhysRevA.88.022123
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevA.61.042314
http://dx.doi.org/10.1103/PhysRevA.61.042314
http://dx.doi.org/10.1103/PhysRevA.61.042314
http://dx.doi.org/10.1103/PhysRevA.61.042314



