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Temporal percolation in activity-driven networks
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We study the temporal percolation properties of temporal networks by taking as a representative example the
recently proposed activity-driven-network model [N. Perra et al., Sci. Rep. 2, 469 (2012)]. Building upon an
analytical framework based on a mapping to hidden variables networks, we provide expressions for the percolation
time Tp marking the onset of a giant connected component in the integrated network. In particular, we consider
both the generating function formalism, valid for degree-uncorrelated networks, and the general case of networks
with degree correlations. We discuss the different limits of the two approaches, indicating the parameter regions
where the correlated threshold collapses onto the uncorrelated case. Our analytical predictions are confirmed
by numerical simulations of the model. The temporal percolation concept can be fruitfully applied to study
epidemic spreading on temporal networks. We show in particular how the susceptible-infected-removed model
on an activity-driven network can be mapped to the percolation problem up to a time given by the spreading rate
of the epidemic process. This mapping allows us to obtain additional information on this process, not available
for previous approaches.
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I. INTRODUCTION

The traditional approach of network science [1] to the study
of complex interacting systems is based in a mapping to a static
network or graph, in which nodes represent interacting units
and edges, standing for pairwise interactions, are fixed and
never change in time. This approach has been proven very
powerful, providing a unified framework to understand the
structure and function of networked systems [2] and to unravel
the coupling of a complex topology with dynamical processes
developing on top of it [3,4]. Many networks, however, are not
static, but have instead an evolving topology, with connections
appearing and disappearing with some characteristic time
scales. A static approximation is still valid when such time
scales are sufficiently large, such as in the case of the Internet
[5]. In other cases, however, this approximation is incorrect.
This is particularly evident in the case of social interactions
networks, which are formed by a sequence of contact or com-
munication events, lasting a certain amount of time, constantly
being created and terminated between pairs of individuals. The
recent availability of large amounts of data on social networks,
such as mobile phone communications [6], face-to-face social
interactions [7], or large scientific collaboration databases
[8], has spurred the interest in the temporal dimension of
social networks, leading to the development of new tools and
concepts embodied in the new theory of temporal networks
[9]. Key results of these efforts have been the observation
of the “bursty”, heterogeneous patterns of social contacts,
revealed by distributions of the time of contact between pairs
of individuals, the total time of contact for an individual, or
the gap times between consecutive interactions involving the
same individual, showing a heavy tailed form [6,7,10–13]. The
alteration of available edges, and their rate of appearance, also
has important effects on dynamical processes running on top
of temporal networks [14–24].

While the exact characterization of a temporal network
is given by the full ordered sequence of contacts (edges)
present in it at time t [9], this information is not always
easily available. Thus, sometimes one only has access to

coarse-grained information, in terms of an integrated network,
constructed by integrating the temporal information up to a
time T , in such a way that we consider the existence of an
edge between nodes i and j in the integrated version if there
was ever an edge in the contact sequence at any time t � T .
While these integrated representations for a fixed (in general
large) time have been since long a useful device to understand
network properties [25], less is known about the effect of the
integration time T in the structural properties of the integrated
network, an issue which has been recently shown to have
relevant consequences for dynamical processes [26]. In this
context, a particularly important piece of information is the
connectivity properties of the integrated network as a function
of time, and in particular the birth and evolution of a giant
component. Indeed, at a given instant of time t , a temporal
network can be represented by a single network snapshot,
which is usually very sparse, composed of isolated edges, stars,
or cliques. As we integrate more and more of those snapshots,
the integrated network will grow, until at some time Tp it will
percolate; i.e., it will possess a giant connected component
with a size proportional to the total number of individuals in
the network. The time of the first appearance of this giant
component is not only an important topological property of
integrated networks, but it is also relevant for the evolution
of dynamical processes, in the sense that any process with
a characteristic lifetime τ < Tp will be unable to explore a
sizable fraction of the network.

Here we will consider the temporal percolation properties
of the integrated form of temporal networks. In order to
be able to perform an analytical study, we will focus on
the recently proposed activity-driven-network model [8], a
temporal network model built on the observation that the
establishment of social interactions is driven by the activity
of individuals, urging them, with different levels of intensity,
to interact with their peers. Building on the mapping of the
integrated network ensuing from this model into the class of
network models with hidden variables [27,28], we compute
analytic expressions for the percolation time and the size
of the giant component of the integrated network. An added
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value of our approach is the possibility to extend the mapping
of epidemic spreading into percolation processes in static
networks [29] into the temporal case. Thus our results can be
extended to provide the epidemic threshold and the outbreak
size of the susceptible-infected-removed epidemic model [30].

II. THE ACTIVITY-DRIVEN MODEL: DEFINITION
AND TOPOLOGICAL PROPERTIES

The activity-driven network model [8] is defined in terms
of N individuals (agents), each one endowed with an activity
ai , defined as the probability that she starts a social interaction
with other agents per unit time. The activity of the agents
is a random variable, extracted from the activity potential
distribution F (a). Focusing on the emergence of the integrated
network, dynamical creation of links follows an asynchronous
scheme [28]: Every time step �t = 1/N , an agent i is chosen
uniformly at random. With probability ai , the agent becomes
active and generates m links that are connected to m randomly
chosen agents. These links last for a period of time �t (i.e.,
are erased at the next time step). Finally, time is updated
t → t + �t .

The topological properties of the integrated activity-driven
network at time T have been studied in Ref. [28] by means of
a mapping to a hidden variables network model [27], which is
based on the connection probability �T (a,a′) that two nodes
with activity a and a′ are connected in the integrated network
at time T . For large N , this connection probability takes the
form [28]

�T (a,a′) = 1 − exp[−λ(a + a′)], (1)

where λ = T/N and we have set m = 1 to simplify calcula-
tions. The topological properties of the integrated network are
encoded in the propagator gT (k|a), defined as the probability
that a node with activity a has integrated degree k at time T , and
whose generating function ĝT (z|a) = ∑

k gT (k|a)zk satisfies
the general equation [27,28]

ln ĝT (z|a) = N
∑
a′

F (a′) ln[1 − (1 − z)�T (a,a′)]. (2)

From the propagator, the degree distribution of the integrated
network at time T is trivially given by

PT (k) =
∑

a

F (a)gT (k|a). (3)

In the limit of small λ or N � T with constant T , which we
assume from now on, the connection probability Eq. (1) can
be approximated as

�T (a,a′) � λ(a + a′). (4)

In this same limit λ → 0, Eq. (2) can be solved, leading to
a propagator with the form of a Poisson distribution with
mean T (a + 〈a〉). From it, we obtain an asymptotic degree
distribution [28]

PT (k) � 1

T
F

(
k

T
− 〈a〉

)
. (5)

Equation (5) encloses a fundamental property of the activity-
driven model, since it shows that the degree distribution of the
time-integrated network has the same functional form of the

injected activity potential distribution, which can be measured
in real-world social networks. This and other topological
properties, concerning degree correlations and clustering
spectrum, have been thoroughly described in Ref. [28].

III. GENERATING FUNCTION APPROACH
TO PERCOLATION

Percolation in random networks can be studied applying the
generating function approach developed in Ref. [31], which
is valid assuming the networks are degree uncorrelated. Let
us define G0(z) and G1(z) as the degree distribution and the
excess degree distribution (at time T ) generating functions,
respectively, given by [2]

G0(z) =
∑

k

PT (k)zk, G1(z) = G′
0(z)

G′
0(1)

. (6)

The size of the giant connected component, S, is then given by

S = 1 − G0(u), (7)

where u, the probability that a randomly chosen vertex is not
connected to the giant component, satisfies the self-consistent
equation

u = G1(u). (8)

The position of the percolation threshold can be simply
obtained by considering that u = 1 is always a solution
of Eq. (8), corresponding to the lack of giant component.
A physical solution u < 1, corresponding to a macroscopic
giant component, can only take place whenever G′

1(1) > 1,
which leads to the Molloy-Reed criterion [32]:

〈k2〉T
〈k〉T > 2, (9)

where 〈kn〉T = ∑
k knPT (k) is the nth moment of the degree

distribution at time T .
In the case of the activity-driven model, these moments

can be computed noticing, from Eq. (3), that 〈kn〉T =∑
a F (a)

∑
k kngT (k|a). Since the propagator has the form of

a Poisson distribution, the moments of the degree distribution
simply read as

〈kn〉T =
n∑

m=1

{
n

m

}
T mκm, (10)

where
{

n

m

}
are the Stirling numbers of the second kind [33]

and

κm =
∑

a

F (a)(a + 〈a〉)m =
m∑

i=0

(
m

i

)
〈ai〉〈a〉m−i . (11)

The ratio 〈k2〉T /〈k〉T is a monotonic, growing function of
T , and it will fulfill the condition Eq. (9) for T > T 0

p , defining
a percolation time

T 0
p = κ1

κ2
= 2〈a〉

〈a2〉 + 3〈a〉2
. (12)

This percolation time is independent of N , and thus guarantees
the fulfilment of the condition λ � 1 assumed in the derivation
of Eq. (4). We can obtain information on the size of the giant
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component S for T > T 0
p from Eqs. (6) and (3), using the

Poisson form of the propagator, which allows us to write the
simplified expressions

G0(u) =
∑

a

F (a)e−(1−u)T (a+〈a〉), (13)

G1(u) = 1

2〈a〉
∑

a

F (a)[a + 〈a〉]e−(1−u)T (a+〈a〉). (14)

From the self-consistent Eq. (8), setting δ = 1 − u, and solving
at the lowest order in δ > 0, we find, close to the transition,

δ � 2κ1

κ3T 2

(
T − T 0

p

T 0
p

)
, (15)

recovering the Molloy Reed criterion, Eq. (12), for the onset of
the giant component. Since the derivatives of G0(u) are finite,
we can obtain the size of the giant component S by expanding
Eq. (13) close to u = 1,

S � 1 − G0(1) + δG′
0(1) − δ2

2
G′′

0(1)

= 2κ2
1

κ3T

(
T − T 0

p

T 0
p

)
− 2κ2κ

2
1

κ2
3 T 2

(
T − T 0

p

T 0
p

)2

. (16)

Since Eq. (16) is obtained from a Taylor expansion for δ � 1,
we expect it to be valid only close to the percolation threshold.

In order to check the validity of the analytical results
developed above, we consider the concrete case of two
different forms of activity distribution, namely a uniform
activity distribution F (a) = a−1

max, with a ∈ [0,amax], and the
empirically observed case of power-law activity distribution
in social networks [8], F (a) � (γ − 1)εγ−1a−γ , a ∈ [ε,1],
where ε is the minimum activity in the system. In this last case,
we note that the analytical form of the activity distribution
is valid for small ε only in the limit of large N . Indeed, a
simple extreme value theory calculation [34] shows that, in a
random sample of N values ai , the maximum activity scales
as min{1,εN1/(γ−1)}. Therefore, when performing numerical
simulations of the model, one must consider systems sizes
with N > Nc = ε1−γ in order to avoid additional finite-size
effects. In the case of performing simulations for system with
small sizes N < Nc, for example to study the finite-size effects
on the percolation threshold (see next section), we used a
deterministic power law distribution to avoid the cutoff effect
on the maximum value of the activity due to a random sampling
of values.

Figure 1 shows the giant component size S of the activity
driven network as a result of numerical simulations for both
uniform and power-law activity distributions. In Fig. 1(a) we
compare S with the analytical approximation Eq. (16), as
well as with the result of a direct numerical integration of
Eqs. (7) and (8), for uniform activity and power-law activity
with exponent γ > 3. In both cases we observe an almost
exact match between numerical simulations and the numerical
integration of the generating function equations, and a very
good agreement with the analytical approximation in the
vicinity of the percolation threshold. Figure 1(b), on the other
hand, focuses on power-law activity distributions with an
exponent smaller than 3. In this case we additionally plot a
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FIG. 1. (Color online) Rescaled giant component size S/N as
a function of the rescaled time T/T 0

p for activity-driven networks.
(a) Uniform (amax = 0.01) and power-law (γ = 3.5, ε = 0.01)
activity distributions, compared with the numerical integration of the
generating function equations (continuous line) and the theoretical ap-
proximation Eq. (16) (dashed line). The inset shows the details close
to the percolation threshold Tp . (b) Power-law activity distribution
with γ = 2.5, ε = 10−2, and ε = 10−3. The peaks of the variance of
the giant component size, σ (S)2, and the susceptibility of the cluster
size, χ (s), are plotted with continuous and dashed lines, respectively.
Percolation threshold Tp is plotted with the dotted line for reference.
Results are averaged over 102 runs, network size N = 107.

numerical estimation of the percolation threshold as given by
the peak of both the variance of the giant connected component
size S, σ (S)2 = 〈S2〉 − 〈S〉2, and the susceptibility of the
cluster size, χ (s) = ∑S−1

s=2 s2ns , where ns is the number of
clusters of size s. From this figure we can see that the numerical
percolation threshold strongly deviates in this case from the
theoretical prediction Eq. (12), deviation that increases when
the distribution cutoff ε becomes smaller.

IV. EFFECT OF DEGREE CORRELATIONS ON THE
TEMPORAL PERCOLATION THRESHOLD

The origin of the disagreement for the case of power-
law activity distribution with γ < 3 can be traced back to
the effect of degree correlations in the integrated networks
generated by the activity-driven model. Indeed, as stated
above, the generating function technique makes the explicit
assumption of lack of degree correlations [31]. However, the
integrated activity-driven network has been shown [28] to
exhibit degree correlations, as measured by an average degree
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of the neighbors of the vertices of degree k, k̄nn
T (k) [35], being

a decreasing function of k. Another, global measure of degree
correlations can be defined in terms of the Pearson correlation
coefficient r between the degree of a node and the mean degree
of its neighbors [36], taking the form

r = 〈k〉∑
k k2k̄nn(k)P (k) − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2
. (17)

We can easily evaluate the sum
∑

k k2k̄nn
T (k)PT (k) by applying

the hidden variable formalism presented in Sec. II. Inserting
in Eq. (17) the first moments of the degree distribution as
obtained from Eq. (10), the coefficient r in the limit of large
N reads

rT = −
(
σ 2

a

)2

κ1κ2

T
+ κ1κ3 − κ2

2

, (18)

where σ 2
a = 〈a2〉 − 〈a〉2 is the variance of the activity dis-

tribution. Both the decreasing functional form of k̄nn
T (k) and

the negative value of r (since κ1κ3 > κ2
2 for any probability

distribution with a positive support) indicate the presence of
disassortative correlations [36] in the integrated activity-driven
networks, correlations whose amplitude is modulated by σ 2

a .
In order to take into account the effect of degree correlations

let us consider the general problem of percolation in a
correlated random network [37]. The effects of the degree
correlations are accounted by the branching matrix

Bkk′ = (k′ − 1)P (k′|k), (19)

where P (k′|k) is the conditional probability that a node with
degree k is connected to a node with degree k′ [35]. The
percolation threshold is determined by the largest eigenvalue
1 of the branching matrix Bkk′ through the condition 1 = 1.
If the network is uncorrelated, 1 reduces to the ratio of the first
two moments of the degree distribution, 0

1 = 〈k2〉/〈k〉 − 1,
thus recovering the Molloy-Reed criterion Eq. (9).

In activity-driven networks we can compute the largest
eigenvalue 1 in the limit of small λ by applying the hidden
variables mapping from Sec. II. In fact, the conditional
probability PT (k′|k) of the integrated network at time T can
be written as [27]

PT (k′|k) = N

PT (k)

∑
a,a′

gT (k − 1|a′)F (a′)
�T (a′,a)

k̄T (a)

×F (a)gT (k|a), (20)

where k̄T (a) = N
∑

a F (a)�T (a,a′) [28]. From here, the
branching matrix takes the form

Bkk′ = (k′ − 1)

[
pk′−1 + pk−1

kpk

(k′pk′ − 〈k〉pk′−1)

]
, (21)

where we write PT (k) as pk for brevity. Assuming that the
branching matrix is irreducible, and given that it is nonnegative
[see Eq. (19)], we can compute its largest eigenvalue by
applying Perron-Frobenius theorem [38] and looking for a
principal eigenvector vk with positive components. Using the
ansatz vk = 1 + αpk−1/kpk , we obtain that, in order to be an

eigenvector, the following conditions must be fulfilled:

1 =〈k〉T +α
∑

k

(k − 1)p2
k−1

kpk

,

1α =〈k2〉T −〈k〉T − 〈k〉2
T + α〈k〉T

(
1 −

∑
k

(k − 1)p2
k−1

kpk

)
.

One can see that
∑

k(k − 1)p2
k−1/kpk � 1, in the limit of large

N . Thus we obtain the equation for 1

1(T )2 − 〈k〉T 1(T ) − 〈k2〉T + 〈k〉2
T + 〈k〉T = 0. (22)

By using the form of the moments of the degree distribution
given by Eq. (10), we solve Eq. (22). Excluding the nonphys-
ical solution 1 < 0, one finally finds the largest eigenvalue1

of the branching matrix as

1(T ) = (
√

〈a2〉 + 〈a〉)T . (23)

From here, the percolation threshold in activity-driven net-
works follows as

Tp = 1√
〈a2〉 + 〈a〉

. (24)

We can understand the results of Fig. 1 by comparing the
ratio of the exact threshold Tp with the uncorrelated value T 0

p ,

Q = Tp − T 0
p

T 0
p

= σ 4
a

2〈a〉(
√

〈a2〉 + 〈a〉)3
. (25)

In the case of a uniform activity distribution, we have Q =
13/

√
3 − 15/2 � 5.5 × 10−3, and therefore the temporal per-

colation threshold is given with very good accuracy by the
uncorrelated expression. For a power-law activity distribution,
the ratio Q depends simultaneously on the exponent γ and
the minimum activity ε. Thus, for γ < 3, we have that
Q ∼ ε(γ−3)/2, which diverges for ε → 0, indicating a strong
departure from the uncorrelated threshold. For γ > 3, on the
other hand, Q becomes independent of ε, and it goes to 0 in
the limit of large γ . In the case γ = 3.5 and ε = 0.01, for
example, we obtain Q � 1.6 × 10−2. This implies an error of
less than 2% in the position of the percolation threshold as
given by the uncorrelated expression, explaining the good fit
observed in Fig. 1(a).

In Fig. 2 we show the ratio Q as a function of the exponent γ
of a power-law distributed activity potential for different values
of ε, computed from numerical simulations by evaluating the
percolation threshold from the peak of the variance of the giant
component size, σ (S)2. The numerical result is compared with
the analytical prediction given by Eq. (25). In this figure one
can see that, although numerical and analytical results are
in quite good agreement, they still do not exactly coincide
for γ < 3. This is due to the presence of finite-size effects,
which have not been taken into account in the percolation
theory developed. We can consider the finite-size effects on

1From Eq. (23) one can find α = σ 2
a

(
√

〈a2〉+〈a〉)
T > 0, confirming the

validity of the proposed ansatz for vk .
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FIG. 2. (Color online) Ratio Q, defined in Eq. (25), as a function
of the exponent γ of the activity potential F (a) ∼ a−γ , for ε =
10−2 and ε = 10−3. We compare Q as obtained by estimating the
percolation threshold Tp from the peak of the variance of the giant
component size, σ (S)2, by means of a numerical simulation of a
network with size N = 107 (symbols), with the prediction of Eq. (25)
(lines). The results of numerical simulations are averaged over
102 runs.

the percolation time Tp(N ) in a network of size N by putting
forward the standard hypothesis of a scaling law of the form

Tp(N ) = Tp + AN−ν . (26)

In Fig. 3 we plot the rescaled numerical thresholds [Tp(N ) −
Tp]/Tp estimated by the peak of the variance of the giant com-
ponent size, σ (S)2, as a function of the network size N . We can
observe that the numerical thresholds Tp(N ) asymptotically

103 104 105 106 107 108

N

10-2

10-1

(T
p(N

) -
 T

p)/T
p

103 104 105 106 107 108

N

10-2

10-1

100

(T
p(N

) -
 T

p)/T
p

ε = 10−2

ε = 10−3

FIG. 3. (Color online) Finite-size scaling of the percolation
threshold as estimated by the peak of the variance of the giant
component size, σ (S)2, for a network with power-law activity
distribution with γ = 2.5 (main) and γ = 3.5 for different values of ε.
We plot [Tp(N ) − Tp]/Tp as a function of N , finding a scaling of the
form of Eq. (26), plotted with dashed lines, with the same exponent
ν = 0.34 ± 0.01 for γ = 2.5 and ν = 0.34 ± 0.02 for γ = 3.5. The
results are averaged over 102 runs.

tend to the theoretical prediction Tp by following the scaling
law of Eq. (26), with a very similar exponent ν � 0.34 ± 0.02,
and different values of the prefactor A depending on the
values of γ and ε. We also checked (data not shown) that the
other method to measure the percolation threshold, through
the susceptibility of the clusters size χ (s), follows the same
scaling law, with the same exponent ν and a slightly different
prefactor A.

V. APPLICATION TO EPIDEMIC SPREADING

The concept of temporal percolation can be applied to
gain understanding of epidemic processes on activity-driven
temporal networks [8]. Let us focus on the susceptible-
infected-removed (SIR) model [30], which is the simplest
model representing a disease that confers immunity and that
is defined as follows: Individuals can be in either of three
states, namely susceptible, infected, or removed. Susceptible
individuals acquire the disease by contact with infected
individuals, while infected individuals heal spontaneously be-
coming removed, which cannot contract the disease anymore.
On a temporal network, the SIR model is parametrized by the
rate μ (probability per unit time) at which infected individuals
become removed, and by the transmission probability β

that the infection is propagated from an infected individual
to a susceptible individual by means of an instantaneous
contact.

We can approach the behavior of the SIR model on activity-
driven networks by extending the mapping to percolation
developed in Ref. [29] into the temporal case. To do so, let
us consider first a modified SIR model in which individuals
stay in the infected state for a fixed amount of time τ . We define
the transmissibility Tij as the probability that the infection is
transmitted from infected individual i to susceptible individual
j . Considering that contacts last for an amount of time
�t = 1/N , the transmissibility can be written as

Tij (β,τ ) = 1 − (1 − βpij )τN , (27)

where pij = (ai + aj )/N2 is the probability that individuals i

and j establish a contact in any given time step �t [28]. In the
limit of large N , we can thus write

Tij (β,τ ) = 1 − exp

(
− βτ [ai + aj ]

N

)
. (28)

From here we can deduce the form of the transmissibility when
healing is not deterministic but a Poisson process with rate μ.
In this case, the probability that an infected individual remains
infected a time τ is given by the exponential distribution
P (τ ) = μe−μτ . Therefore, we can write [29]

Tij (β,μ) =
∫ ∞

0
Tij (β,τ )P (τ ) dτ

= 1 −
(

1 + β

μ

ai + aj

N

)−1

� β

μ

ai + aj

N
(29)

in the limit of large N . If we consider the process of infection
as equivalent to establishing a link between infected and
susceptible individuals and we compare this expression with
Eq. (4), we can see that the SIR process can be mapped to the
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creation of the integrated network in the activity-driven model
up to a time T = β/μ. The epidemic threshold will be given
by the existence of a finite cluster of recovered individuals,
and therefore will coincide with the temporal percolation
threshold; i.e., (

β

μ

)
c

= Tp. (30)

The temporal percolation threshold given by Eq. (24) recovers
the epidemic threshold obtained in Ref. [39] using a mean-field
rate equation approach.2 A particular benefit of this percolation
mapping is the fact that it makes accessible the calculation of
explicit approximate forms for the size of epidemic outbreaks,
Eq. (16) (valid however in certain limits), which are not easily
available in mean-field approximations [8,39].

VI. SUMMARY AND CONCLUSIONS

In this work we have studied the time evolution of the
connectivity properties of the integrated network ensuing from
a sequence of pairwise contacts between a set of fixed agents,
defining a temporal network. We have focused in particular in
the onset of the giant component in the integrated network,
defined as the largest set of connected agents that have
established at least one contact up to a fixed time T . The onset
of the giant component takes place at some percolation time Tp ,
which depends on the details of temporal network dynamics.
Considering in particular the recently proposed activity-driven
model [8], and building upon the mapping of this temporal
network on a network model with hidden variables [28], we are
able to provide analytical expressions for the percolation time.
Assuming lack of degree correlations in the initial evolution
of the integrated network, the application of the generating

2Notice that in Ref. [39] the per capita infection rate β ′ = 2〈a〉β is
used.

function formalism [31] allows us to obtain an explicit general
form for the temporal percolation threshold, as well as analytic
asymptotic expressions for the size of the giant component in
the vicinity of the threshold. These expressions turn out to
be in good agreement with numerical results for particular
forms of the activity distribution imposing weak degree
correlations. For a skewed, power-law distributed activity
F (a) ∼ a−γ , the uncorrelated results are still numerically
correct for large values of γ . When γ is small, however, strong
disagreements arise. Applying a percolation formalism for
correlated networks [37], we are able to obtain the analytical
threshold Tp. For γ > 3, the correlated threshold collapses
onto the uncorrelated result, which thus provides a very
good approximation to the exact result. For small γ < 3, the
percolation threshold as obtained by numerical simulation of
large networks is in very good agreement with the analytical
prediction.

The study of the percolation properties of integrated tempo-
ral networks opens in our view new interesting venues of future
research, related in particular to the properties of dynamical
processes running on top of them and to the coupling of their
different time scales. One such application in the context of
epidemic spreading is the study of the SIR model, which we
have shown can be mapped to a temporal percolation problem
in activity-driven networks, thus providing explicit forms
(albeit valid in certain limits of weak degree correlations) for
the size of epidemic outbreaks in this class of systems. Another
interesting application concerns the percolation properties of
more realistic variations of the activity-driven model, such as
the one proposed in [40].
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