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In 1959, Aharonov and Bohm1 
predicted that the wave packet of a 
charged particle could acquire an 

electromagnetic-induced phase, despite 
never actually feeling any magnetic 
force. This explains why, for example, 
placing a solenoid between the two arms 
of an electronic interferometer would 
modify the interference phase profile. 
The mathematical explanation of this 
puzzling effect relies on the interaction 
of the charged particle with the vector 
potential, which may be present even in 
regions with vanishing magnetic field. 
Writing in Nature Physics, Ido Kaminer 
and colleagues2 propose a way of testing 
an analogous Aharonov–Bohm effect in 
free space — that is, without any potentials 
or fields.

The vector potential in question is 
a gauge-dependent quantity, namely 
a mathematical construct whose form 
is not uniquely defined. Physical 
quantities — such as the electromagnetic 
field — need to be gauge invariant, and for 

this reason the Aharonov–Bohm effect in 
the interferometer example can be more 
accurately described as arising from a 
non-vanishing enclosed magnetic flux. 
Recently, the possibility of creating artificial 
gauge potentials (Box 1) for ultracold 
atoms trapped in optical lattices offered an 
alternative way to test the Aharonov–Bohm 
effect experimentally.

Kaminer et al.2 took a very different 
approach by doing away with the need 
for gauge potentials and fields. This 
rather counterintuitive tactic relies on the 
construction of special solutions to the 
Dirac equation describing the relativistic 
propagation of wave packets. These 
solutions have two important properties: 
their transverse shape is invariant, and 
they are self-accelerating along a curved 
trajectory. Self-accelerating wave packets 
were first introduced in optics, where they 
are known as Airy beams. They propagate, 
shape unchanged, along a parabolic 
trajectory and, due to interference, the wave 
packet accelerates itself.

Kaminer et al.2 constructed a family of 
shape-invariant solutions describing self-
accelerating electrons, or more generally, 
spin-1/2 fermions. The self-acceleration led 
to the accumulation of a phase, analogous 
to the Aharonov–Bohm effect, but in free 
space. The generation of such solutions 
requires the preparation of designed initial 
wave packets, which should be feasible in 
various experimental set-ups. One could 
imagine preparing a wave packet — for, 
say, an atom — by trapping it in the ground 
state of an appropriately designed optical 
trap and then releasing it from the trap 
while simultaneously applying a short laser 
pulse to imprint the desired initial phase 
pattern. With holographic masks, one 
can imprint practically any phase pattern 
on demand.

The effect predicted by Kaminer et al.2 
turns out to be equivalent to a change of 
the particle’s proper time. In other words, 
as the particle accelerates its ‘internal clock’ 
ticks faster or slower during different stages 
of the propagation. This suggests a way 
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No more fields
A self-accelerating electronic wave packet can acquire a phase akin to the Aharonov–Bohm effect, but in the 
absence of a magnetic field.
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Abelian gauge fields. The simplest way to 
understand the concept of artificial gauge 
fields is to consider atoms in a rotating trap. 
In a rotating frame of reference, the atoms 
feel a Coriolis force that is mathematically 
equivalent to the Lorentz force acting on 
charged particles in a magnetic field. This 
is great in principle, but rather limited in 
practice. Recently, many experiments have 
focused on creating artificial gauge fields in 
optical lattices. This works by considering 
a particle (dark blue circle) hopping or 
tunnelling (dashed arrow) between the 
sites of a two-dimensional square lattice. 
If a ‘magnetic field’ (B) were to pierce the 
lattice, the wave function of the particle 
would acquire an Aharonov–Bohm phase 
(φAB) equal to the flux of the field through 
the elementary square plaquette (thick 
blue square). In the standard experiment, 
the tunnelling probability amplitudes are 
real and positive, leading to the spread of 
the wave function. By using appropriately 
designed laser-assisted tunnelling, or lattice 

shaking and modulations, one can induce 
a complex tunnelling amplitude with a 
phase that realizes a ‘synthetic’ Aharonov–
Bohm effect. In practice, hopping in the 
horizontal direction is induced by a laser 
running-wave in the vertical direction 
whose phase is ‘imprinted’ onto the 
hopping amplitude.

Non-Abelian gauge fields. The concept 
of non-Abelian gauge fields can be 
intuitively explained by considering the 
tunnelling of a particle (dark red circle) in 
a square lattice. Suppose that the particle 
now has an internal structure (see top 
right; for example, a spin or just a few 
internal states). In this case, tunnelling 
may lead to coherent transformation of 
internal states. The tunnelling probability 
amplitudes are now expressed by a unitary 
matrix describing the transitions of the 
particle from one site to another with the 
simultaneous change of internal states. 
When a particle goes around an elementary 

plaquette (red square) it acquires not only 
a phase, but in general undergoes a unitary 
transformation of its internal structure. 

Box 1 | Abelian and non-Abelian artificial gauge fields. 
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of using designed wave packets to mimic 
fundamental relativistic effects, such as 
time dilation or length contraction. And 
time dilation can, in turn, be exploited to 
prolong the lifetime or otherwise affect the 
decay of unstable particles. Kaminer et al.2 
proposed a concrete way of prolonging the 
lifetime of an unstable hydrogen isotope 
by preparing it in a certain initial motional 
wave packet.

In ultracold atom systems with 
artificial gauge potentials, it is possible 
to impose gauge invariance, enabling 
the measurement of gauge-dependent 
quantities3. Interestingly, one can also create 
artificial non-Abelian gauge potentials 
(Box 1) enabling the realization of a non-
Abelian Aharonov–Bohm effect4. This 

immediately raises a natural question: 
could the approach of Kaminer et al.2 also 
provide a solution for the non-Abelian 
case? This would involve multicomponent 
(multicolour or multiflavour) relativistic 
theories, such as SU(N) symmetric 
theories5. Another interesting direction 
would be to look for generalizations of this 
effect in lattices with Dirac-like dispersion6. 
Synthetic non-Abelian gauge fields lead to 
many novel phenomena and effects7. Will 
this also be the case when considering 
shape-invariant self-accelerating solutions 
of wave equations with non-Abelian 
gauge symmetry? � ❐
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When the quantum state of two 
particles cannot be described 
independently, the particles 

are said to be entangled. Entanglement is 
at the heart of quantum communication 
and computation, with photons often the 
particles of choice. Spin chains, which 
are one-dimensional magnets, offer an 
intriguing solid-state alternative for 
short-range quantum communication, 
but entangling spins over practically 
useful distances has proven challenging. 
Sven Sahling and colleagues1 have now 
demonstrated that unpaired spins separated 
by hundreds of ångströms can be entangled 
through a series of spin dimers.

Any large-scale future quantum 
computer would likely be a hybrid system 
consisting of optical and solid-state 
components — optical components for 
long-range communication and solid-
state components for connecting several 
quantum processors or gates on small scales. 
Networks or chains of spins could serve 
as solid-state-based channels for quantum 
information transfer2,3, used to either 
directly transmit a quantum state or to share 
entanglement between two separated parties.

For bulk materials made up of spin 
chains, entanglement can be probed by 
measurements of macroscopic properties 

such as magnetic susceptibility4,5 and 
heat capacity6,7 — both measures of 
connected correlation functions. These 
correlation functions capture the quantum 
correlations below a characteristic 
temperature where the system becomes 
entangled. At extremely low temperatures, 
the system is in a pure state and is maximally 
entangled. At finite temperatures, but 
below the characteristic temperature, the 
system is in a mixed state. Both magnetic 
susceptibility and heat capacity can describe 
the mixed-state entanglement. By probing 
these macroscopic properties, Sahling et al.1 
demonstrated long-range entanglement 
in a composite layered system consisting 
of alternating spin-ladder and spin-
chain layers.

To understand their results, 
one can consider a toy model of 
antiferromagnetically coupled dimerized 
Heisenberg spin-1/2 chains. In this case, 
the interaction energy between any two 
neighbouring spins — say SA and SB — is 
given by the Hamiltonian H = J(SA · SB), 
where J is the exchange interaction. For an 
antiferromagnetic interaction, the exchange 
interaction is positive and the energy is 
minimized if the two spins are oriented in 
opposite directions, say |SA↑SB↓ or |SA↓SB↑. 
However, neither of these states is an 

eigenstate of the Hamiltonian. The eigenstate 
that correctly captures the antiferromagnetic 
correlation is a superposition of these two, 
1/√2(|SA↑SB↓ – |SA↓SB↑). This state is the 
singlet state and an entangled state, as it 
cannot be written in the form of a product of 
two states.

The energy level diagram of such a typical 
dimer as a function of the applied magnetic 
field is shown in Fig. 1a. For a critical 
magnetic field strength the excited triplet 
state, |SA↑SB↑, crosses the singlet state and 
becomes a new ground state. Thus, there 
is a change in the symmetry of the ground 
state at this critical field and the system, in 
the thermodynamic limit, is said to have 
undergone a quantum phase transition — 
a zero-temperature phenomenon that is 
driven by quantum fluctuations, as opposed 
to thermal fluctuation-driven transitions in 
classical systems.

The magnetic susceptibility, 
magnetization and heat capacity data can 
all be understood in terms of this toy model 
and its energy level diagram. There are 
three types of interaction in the spin-1/2 
chain. The strongest is the antiferromagnetic 
nearest-neighbour interaction (J1 = 115 K) 
that causes the dimerization of certain 
copper spins. The next is interdimer 
coupling, which is a weaker ferromagnetic 

SPIN CHAINS

Long-distance relationship
Photons immediately spring to mind when we talk about long-distance entanglement. But the spins at the ends of 
one-dimensional magnetic chains can be entangled over large distances too — providing a solid-state alternative 
for quantum communication protocols.
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