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Abstract

The determination of special molecular arrangements in disordered phases such as liquids is inherently difficult due to its lack of
periodicity, in contrast to the crystalline solids. We have already settled a general method to study molecular liquids capable to
unveil the details of the molecular ordering from small molecules to systemsas big as a protein. However it would be desirable to
extract some general features of a liquid phase without going into such details. In this work we propose a method to achieve this
challenge by analyzing the probability distributions describing position and orientational molecular ordering within the framework
of information theory.
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1. Introduction

Solid crystalline phases are composed by molecules
whose centers of mass are forming a long range ordered
lattice being their relative molecular orientations fixed.
For this phase the details of molecular interactions are
important and determine the solid structure. On the con-
trary, no precise knowledge about molecular interaction
is necessary to describe the structure of gases: it is basi-
cally ruled by the shape of the molecule. Liquid struc-
ture is between these two well known phases. More-
over if a material in a liquid phase is cooled down fast
enough it can undergo through a glass transition where
at a human time scale molecules seem not to be mov-

ing. There is a lack of a universal theory that describes
liquids and how they fall out of equilibrium forming a
glass, but what seems to be sure is that liquid structure
is suspected to play an important role [1]. In any case
there is not a unique way to characterize the structure of
a liquid and many different approaches have been used
in the past [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
Among molecular liquids, carbon tetrachloride occu-
pies a special place: it was the first one to be studied
by means of an incipient X-ray diffraction technique.
A great amount of works have been published on the
relative molecular ordering ofCCl4 at distances close
to a central molecule [16, 17, 18, 19, 20, 21, 22]. All
these works have in common that the obtained structure
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respects the tetrahedral symmetry of the molecule, be-
ing the closest neighbor located either in the corners of
the tetrahedron defining the molecule [17, 19], in the
edges [21] or in front of its faces [18, 20]. Although it
is crucial to know the detailed molecular ordering in a
liquid, in this work we would like to develop a frame
to study molecular liquids without entering in its de-
tail so that we can capture its general features. We will
do that by using an information theoretic approach to
study the six-dimensional probability distribution func-
tion (PDF) describing the relative position and orienta-
tion of a molecule at a distancer from a central one
g
(

r,Ωpos,Ωor

)

, whereΩpos are the anglesθCM andφCM

describing the position of the center of mass of a neigh-
bor molecule with respect to the central one at a distance
r andΩor are the three Euler anglesθor, φor andψor de-
scribing the relative molecular orientation.

To do that, the first step would be to obtain the
molecular configurations that are describing microscop-
ically the system. Such configurations can be obtained
from Molecular Dynamics simulations using param-
eters that produce macroscopic properties compatible
with the experiment or using reverse methods such as
Reverse Montecarlo (RMC) [23] or an Empirical Poten-
tial Structure Refinement [24]. We would like to point
out that although we have chosen carbon tetrachloride
as an example to perform our analysis this method is a
general tool for describing the liquid structure.

2. The data: Molecular dynamics simulation

In order to obtain the molecular configurations nec-
essary to calculateg

(

r,Ωpos,Ωor

)

we performed an
MD simulation using the Gromacs 4.5 [25] pack-
age. The potential parameters used were for Car-
bonσ = 3.7746Å,ǫ = 0.2271kJ/mol, q= −0.696e and
for Chloride: σ = 3.4667Å, ǫ = 1.0944kJ/mol and
q = 0.174e. The simulation was made on a 216 rigid
molecules system using the NPT ensemble at the ther-
modynamics conditions of the liquid, namely T= 298K
and P= 1atm.
The chosen time step to perform the simulation was
∆t = 5fs (during 1200ps), a test run with a smaller time
step of∆t = 1fs has been done remaining the results
of this work unchanged. We used a switched cut-off

from 8Å to 14Å for Lennard-Jones interactions and 14Å
for coulomb pairs. We used the Particle Mesh Ewald
(PME) method beyond the electrostatic cut-off for the
reciprocal space sum.

3. Detailed determination of molecular ordering

Contrary to what happens in a solid crystalline
phase where it is necessary only to study the unit cell
to reproduce the long range structure, in liquids it
is necessary to study the whole system to get some
information about the most probable arranging of
molecules, and this must be done by using probability
distributions. Although it is not the goal of this work,
we will now shortly describe a general method to study
the details of molecular arranging in a liquid for the
sake of clarity of the later discussion. This general
method is suitable to deal with small molecules such
as Carbon Tetrachloride as well as with molecules as
large as proteins [26] (more details can be found in
our previous works [15, 27, 28]). For doing that it is
necessary to attach an axis set to each molecule. In
figure 1 we show the axis chosen in our case: Z axis
is set in the bisecting angle of two C-Cl bonds, Y axis
is set perpendicular to this axis and coplanar with a
Cl-C-Cl plane, and X axis is determined as usually
in an orthonormal axis set (X = Y × Z). We then
analyze the position and orientation of a neighbour
molecule setting each molecule as reference in all
configurations (in our case 1000), i.e. we calculate
g
(

r,Ωpos,Ωor

)

. However instead of choosingr to
characterize the distance from the central molecule we
choose the Molecular Coordination Number (MCN). In
order to calculate the MCN we have ordered neighbour
molecules by their distance to the central molecule
and then we have numbered them to calculate it. This
has two main advantages: first it eliminates trivial
effects of density when comparing a liquid at different
temperatures [28]. On the other hand, the structure of
a liquid changes fast at short distances and slower for
molecules far away from the central molecule. Choos-
ing the MCN eliminates those effects expanding the
short distance region and shrinking the long distance
region. We therefore calculateg

(

MCN,Ωpos,Ωor

)

for
MCN = 1,2, · · · ,n so that we have a five-dimensional
probability distribution describing the position and ori-
entation as function of MCN. In panel (a1) of figure 1
we show the two-dimensional PDFg (cos(θCM), φCM)
describing the molecular position. We show in the
same figure in panel (a2) how high probability regions
of g (cos(θCM), φCM) are related to the position of the
center of mass of neighboring molecules.

In order to study the molecular orientation we
must choose the highest probability regions of
g (cos(θCM), φCM), i.e. some specific molecular posi-
tions. In panels (b1) and (b2) of figure 1 we show
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Figure 1. (Color online) (a1) Probability distribution of the angles that determine molecular position cos(θCM) andφCM for the closest four
molecules to a central one. In figure (a2) we show how this probability map yield to the 3D structure of the liquid at short distances. Figures (b1)
and (b2) show the 3D orientational probability distributions of the angles determining molecular orientationθor, φor andψor for different regions
of the positional map shown in figure (a1). In panel (b3) we showthe merging of all orientational probability distributionsg (Ωor) used for the
calculations of entropy and mutual information.

the 3D probability distribution for the Euler angles de-
scribing the molecular orientation for molecules in the
highest probability positions labeled as (b1) and (b2)
in g (cos(θCM), φCM). Without entering into details (see
[22]) the obtained spirals represent a series of proba-
ble orientations that correspond to a molecule rotating
around its C-Cl axis with its face parallel to the cen-
tral molecule face. In figure (b3) we show the complete
3D probability distribution, thus not selecting a certain
molecular position. As it can readily be seen, it is im-
possible from this PDF to extract any detailed feature
concerning molecular orientations, but as we will see,
some general information can be obtained from such a
3D map about the liquid structure.

4. Information theory

Information theory is considered to be born with the
seminal paper of Claude E. Shannon in the early 50’s
[29]. This theory was aimed to quantify the amount
of information that a message carries and how can it
be transmitted through a noisy channel without a sig-
nificant loss of quality. However this theory quickly
crossed its borders and it is now applied to a vast num-
ber of fields such as message encryption [30], analysis
of seismic data to search oil [31], and to decide which
is the best strategy to follow in gambling games [32].
In the context of the present work, information theory
will be used to quantify both the amount of information
carried by a n-dimensional probability distribution and

the correlation between two or more variables that char-
acterize the short range order of a liquid. In this section
we will recall some basic notions of information theory
following the excellent paper of Matsuda et al. [33].

4.1. Entropy

Let’s assume that we have a n-dimensional PDF de-
scribed by variablesAi , i = 1, . . . ,n and that each vari-
ableAi can take the discrete valuesai being the number
of these values for each variableai equal toÑi . In this
case the entropy associated to the normalized discrete
probability distributionp(a1, . . . ,an) will be:

S(Ai) = −
∑

{ai }

p(ai) ln p(ai). (1)

The entropy so defined has an upper and a lower
bound depending on the way the PDF has been gen-
erated. To study them let’s assume that the number
of total bins of the n-dimensional distribution is N (so
that N =

∑n
i=1 Ñi). If the probability distribution is

completely flat, i.e. if all the values of probability are
p(a1, . . . ,an) = 1/N, the PDF contains no information
and in this case the associated entropy will be maximal
and equal tolnN:

S(A1 . . .An) = −
N
∑

k=1

1
N

ln
1
N
= ln N. (2)

On the other hand if we have a probability distribu-
tion with only one bin, thus with probability one, and
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all the rest with null probability, the entropy associated
to the PDF will be zero. Therefore we can also regard
the entropy as a measurement of how “peaky” the
landscape of a PDF is: smooth probability distributions
will have high entropies. This fact is used, for example,
in maximum entropy methods to find the smoothest
probability distribution able to describe a data set.

An analogous definition can be used to calculate the
entropy of any subset of variablesA1,...,m wherem < n,
just marginalizing the probability distribution by sum-
ming the variablesAm+1,...,n and defining thus the en-
tropy of this reduced ensemble as:

pa1,...,m =
∑

{am+1,...,n}

p (am+1, . . . ,n) . (3)

In this case the limits for the entropy hold, being in
this case N the number of bins of the m-dimensional
probability distribution.

4.2. Mutual information
Mutual information quantifies the correlation among

several variables whose dependence is encoded in a cer-
tain PDF. For the sake of clarity we will begin describ-
ing the two-dimensional case, then we will extend the
description to higher dimensions. For 2D probability
distributions the mutual information is defined as:

I2(A1,A2) =
∑

a1,a2

p(a1,a2) ln
p(a1,a2)

p(a1)p(a2)

= S(A1) + S(A2) − S(A1A2). (4)

If variablesA1 andA2 are independent, we can write
their joint probability asp(a1,a2) = p(a1) · p(a2) and
in this case the calculated mutual information is zero.
On the other hand, the maximum value is reached when
the variables are fully correlated, and such a value is the
smallest between the individual entropies of variables
A1 andA2, i.e:

0 ≤ I2(A1,A2) ≤ min{S(A1),S(A2)} (5)

For the three-dimensional case, the mutual informa-
tion for a probability distribution is calculated taking
into account its relationships with the entropies of the
three-dimensional PDF, and its projections in two and
one dimensions [33]:

I3(A1,A2,A3) = S(A1) + S(A2) + S(A3)

−S(A1A2) − S(A1A3) − S(A2A3)

+S (A1A2A3) . (6)

Again, the mutual information associated with
a three-dimensional probability distribution measures
how well correlated are the three variables. However, in
this case, the limits for the mutual information are very
different than those of the two-dimensional case since
the lower bound can be negative [33]:

−min{S(A1),S(A2),S(A3)}

≤ I3(A1,A2,A3) ≤

min{S(A1),S(A2),S(A3)} . (7)

A negative value of mutual information in an N-
dimensional probability distribution is associated with
the frustration of the variables describing the PDF. If the
probability distribution of the quantities describing the
orientation and position of two molecules would have
a negative value of mutual information, it would mean
(following [33]) that the variables describing the ge-
ometry of the relative position and orientation of two
molecules are frustrated. This must be understood as it
is stated in the Appendix of this work, i.e. that knowing
two variables the third remains undetermined.

Mutual information also allows us to write the en-
tropy of an n-dimensional PDF as the sum of the en-
tropies of the one-dimensional projection of the PDF
plus mutual information terms:

Stot =

n
∑

i=1

Si(Ai) −
∑

i< j

I2(Ai ,A j)

+
∑

i< j<k

I3(Ai ,A j ,Ak) + · · · (8)

This relationship allows us to calculate the entropy of
a high-dimensional PDF using lower dimensional PDFs
(being sometimeshigh-dimensionalas low asn ≥ 4).
This is interesting because the number of n-dimensional
voxels increases asNn which leads to two problems.
First, since the memory of the computer and its speed
is finite it will not be easy to handle n-dimensional ma-
trices if we want to have a reasonable number of voxels
N. On the other hand calculations of PDFs are usually
done by counting events and then normalizing by their
total amount. The number of events we must count to
have a reasonable PDF increases with its dimensional-
ity (in fact it increases asNn). If the number of events is
not high enough the PDF will consist in series of sparse
switched on voxels making any calculation of entropy
or mutual information meaningless.

In order to make clear the physical meaning of the
quantities entropy and mutual information we have in-
cluded in this work an appendix where these quantities
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Figure 2. (Color online) In panel (a) we show both the rescaled en-
tropy and the mutual information for the 2D probability distributions
describing the molecular position such as that of panel (a1) of figure 1
as a function of the molecular coordination number (MCN). The inset
shows the rescaled mutual information as a function of the rescaled
entropy for all studied distances (see text for the rescaling definition
in this case). In panel (b) we show the radial distribution function
gCC(MCN) together with its flipped version||gCC − 1||+1. The insets
show the positional mapsg (cos(θCM), φCM) for maxima and minima
of the mutual information function.

are calculated for some characteristic probability distri-
butions in two and three dimensions.

5. Liquid ordering and mutual information

So far, we have established a detailed method to de-
termine how do molecules distribute around a central
one in a liquid and a way to characterize probability
distributions. We are now interested in extracting some
general information from the 6D probability distribution
g
(

r,Ωpos,Ωor

)

. In this section we will analyze some
features of the liquid structure ofCCl4. If we restrict
ourselves only to the first three terms of equation 8 we
can define the positionalSpos, the orientationalSor and
the mixed contributionSpos or to the total entropy as fol-

lows:

Spos= S(cos(θCM))+S(φCM)−I (cos(θCM), φCM)(9)

Sor = S(cos(θor)) + S(φor) + S(Ψor)

−I (cos(θor), φor) − I (cos(θor), ψor) − I (φor, ψor)

I (cos(θor), φor, ψor) (10)

Spos or = Stot − Spos− Sor

= −Ipos1,or1 + Ipos1,or2 + Ipos2,or2 (11)

whereIpos1,or1, Ipos1,or2 and Ipos2,or1 are mutual infor-
mation terms having 1, 1 or 2 positional variables and
1, 2 or 1 orientational variables, respectively. All con-
tributions toSpos or are thus coming exclusively from
mutual information terms of order two and three. We
would like to point out that the calculated entropy from
g
(

r,Ωpos,Ωor

)

is related to the thermodynamic excess
entropy (i.e. that deviating from the gas phase) if we re-
strict ourselves to two-body molecular interactions [14].

We will first start analyzing the positional contribu-
tion to the total entropy. To do that we show in the
panel (a) of figure 2 the entropy scaled to its asymptotic
value for long distances (Spos/S∞pos), and the mutual in-
formation of the PDF related to the positional variables
cos(θCM) andφCM. As expected, for long distances mu-
tual information tends to zero and entropy to a fixed and
maximal value. From the same figure we also see that
both mutual information and entropy are correlated, so
that when one increases the other decreases.

In order to investigate this fact we show in the inset of
this figure a different rescaling for both magnitudes so
that they have a limited range variation from zero to one
(ξresc = ξ − ξmin/ξmax− ξmin, beingξ either the entropy
or the mutual information). From this figure we can
see that they are completely correlated so thatSresc =

−I resc. This is due to the small differences between the
values of entropies for short and long distances com-
ing from the 1D projections ofg(cos(θCM), φCM), i.e.
S(cos(θCM)) andS(φCM). In this case equation 9 can
be simply rewritten asSpos= ct− I (cos(θCM), φCM).

We have plotted in panel (b) of the same figure the
partial radial distribution of the carbon atoms ofCCl4,
i.e. the center of mass of the molecule. Comparing both
panels (a) and (b) we can see that for long distances
minima and maxima ofgCC(r) are correlated with max-
ima (minima) of the mutual information (entropy) from
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Figure 3. (Color online) (a) Orientation (filled circles), positional
(empty circles) and mixed term (empty squares) contributions to the
total entropy (thick line). The inset shows a zoom of the highdistance
region. In panel (b) we show the percentage of the contribution to
the total entropy of each term (see text). The upper axis concerning
distance d(Å) is for the help of the reader

the probability distribution describing the position of the
molecular centers of mass. In order to help the compari-
son we plot in the same figure‖gCC(r) − 1‖+1 to flip up
the minima ofgCC. This figures tells us two important
things about this simple molecular liquid:

• The liquid does not get monotonically more disor-
dered as the distance from a central molecule in-
creases. On the contrary in some distance intervals
the liquid does order itself.

• The regions where the liquid is more ordered
(those with a maximum in mutual information or a
minimum in entropy) are correlated with regions of
high or low density described by maxima and min-
ima of the radial distribution function of the center
of mass.

To make clear these two points we have included as
insets in figure 2 the 2D-PDF describing the position
of the centers of massg (cos(θCM), φCM) as those in fig-
ure 1 in maxima and minima of mutual information (en-
tropy). From these figures it is clear that minima (max-
ima) of mutual information (entropy) are related to re-
gions where there is not a particular ordering of the cen-
ters of mass of neighboring molecules (we get more or

less flat distributions). On the contrary around maxima
(minima) of mutual information (entropy) it is clear that
the liquid is more ordered.

We will now investigate how do the positionalSpos

orientationalSor and the mixed termSpos or contribute
to the total entropy of the system. To do that we show in
panel (a) of figure 3 the three contributions and the total
entropy rescaled to their asymptotic values for long dis-
tances. As it can be seen in the figure the orientational
contribution to the entropy fades out much faster than
the positional one, being structured only for distances
smaller than circa 6Å. If we zoom the region for dis-
tances far away from the central molecule we also see
no structure for the orientational contribution. Maybe,
the most astonishing thing from this figure is that the
crossed contribution to the entropySpos or is negative.
Therefore the contributions of mutual information from
the three-dimensional projections of the probability dis-
tribution g

(

MCNf ixed,Ωpos,Ωori

)

must be either neg-
ative or smaller than their two-dimensional counter-
parts. We will come again to this point later in this
section. In order to quantify the contribution of each
term we have calculated the percentage to the total en-
tropy of each term. However, since the contribution of
the crossed termSpos or is negative, we do not normalize
the contributions to the total entropy, but to the quantity
Spos+Sor +

∥

∥

∥Spos or

∥

∥

∥. The contributions to the total en-
tropy are, ordered by its importance, coming from the
orientational, the positional and the crossed term. This
can be rationalized by the simple fact that the dimen-
sionality of the orientational PDF is higher than that of
the positional contribution. In summary:although posi-
tional contribution to the total entropy is less important
than the orientational one, it is more structured and it
is better correlated with the partial radial distribution
function gCC(r).

As we have seen, the contribution of the crossed term
Spos or is negative, and as previously pointed out this
can be related to a negative contribution of higher or-
der mutual information terms. We have plotted in fig-
ure 4 all the three variable mutual information terms
and all of them are negative for all distances. Follow-
ing the discussion presented in last section this means
that the 3D projections of the original 5D probabil-
ity distribution g

(

MCNf ixed,Ωpos,Ωor

)

are so complex
that their projections in a 2D space do not allow to di-
rectly reconstruct the liquid structure. This can read-
ily be seen in panel (b3) of figure 1 where we plotted
g (cos(θor), φor, ψor): it is even impossible to recognize
any pattern from this figure since the 3D projections of
the complete probability distribution merges the orien-
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tation of molecules located in different positions, or in
other words, located in different regions of the 5D PDF.
We can therefore state thatthe structure of a liquid is ge-
ometrically frustrated. The idea that somehow the liq-
uid is a frustrated system is not new, and can be found,
for example in [34] associating frustration to the lack of
ability of the liquid to tessellate space or in [35] for liq-
uids in a curved space, but in our case we quantify the
frustration by means of the value of mutual information
of three variables probability distributions. In figure 4
we see that the terms containing two or three orienta-
tional variables (θor, φor or ψor) have a more important
contribution to the total entropy than those containing
only one orientation variable. Therefore the higher con-
tribution to the frustration of the liquid structure is the
one coming from the orientation in the current case.

6. Conclusions

In this work we propose a new methodology to study
the ordering of liquids up to rather long distances: the
use of information theory to study the position and
orientation of molecular liquids encoded in the six-
dimensional probability distributiong

(

r,Ωpos,Ωor

)

. We
have analyzed under this new procedure the structure of
the first studied molecular liquid, carbon tetrachloride,
arriving to two main conclusions:

• The positional structure of the studied liquid is not
simply more disordered as we go far away from a

central molecule, but it has regions where its center
of mass are more ordered, and they are correlated
with minima and maxima of the radial distribution
function of their centers of mass.

• Liquids are geometrically frustrated in the sense
that mutual information contributions calcu-
lated from the three-dimensional projections of
g
(

r,Ωpos,Ωor

)

are negative. Moreover frustration
is mainly coming from orientational degrees of
freedom.

7. Appendix

7.1. Some examples of calculations of entropy and mu-
tual information in selected probability distribu-
tions

We add in this appendix some examples of calcula-
tions of mutual information and entropies in some 2D
and 3D distribution functions to make clear their physi-
cal meaning.

7.2. The two-dimensional case

In figures 5 and 6 we show two cartoons of two-
dimensional probability distributions ordered by in-
creasing values of entropyS(A1A2) and mutual infor-
mation I (A1,A2). It should be pointed out that the val-
ues of entropy and mutual information do not determine
univocally the shape of a PDF. Thus, the figures are only
intended to show how the shape of certain simple PDFs
affects both their associated entropy and mutual infor-
mation. To keep things as simple as possible, we add
another restriction: the probability distributions will be
generated by allowing their pixels to be only switched
on or off, in other words we do not allow pixels in
“grey”. That means that the calculations of the entropies
are straightforward for both one and two-dimensional
normalized PDF’s:S(A1) = S(A2) = S(A1A2) = Non

where Non are the number of pixels switched on. If
we work only with a 2-dimensional PDF with the same
number of pixels per side N, the maximum number of
switched on pixels forp(a1,a2) will be N2 and thus
Smax(A1A2) = 2 lnN andSmax(A1) = Smax(A2) = ln N.
Therefore the maximum mutual information possible
for such a PDF is simplyImax

2 (A1,A2) = ln N.
We begin first with the simplest case where the vari-

ables of the probability distribution are not correlated,
i.e., I (A1,A2) = 0 (see figure 5). First panel (a) shows
the only PDF withS(A1A2) = I (A1,A2) = 0: a proba-
bility distribution with a unique pixel switched on. For
this case all entropies are zero, and so it is the mutual
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Figure 5. Two variable mutual information and entropy of some se-
lected two-dimensional probability distributions together with their
one dimensional projections. The distribution were chosen to keep
zero mutual information and an increasing value of entropy. Inthe
figure we include the calculations of the entropies for the 2Dprobabil-
ity distributions together with the calculations for the 1Dprojections
and the mutual information calculations for all the cases following
equation 4

information. One way to increase the entropy keeping
the mutual information equal to zero is simply to switch
on pixels keeping the squared shape of the PDF (and, in
fact, keeping any other symmetric shape) until all pixels
are on, being thus the entropy maximal.

In figure 6 we show another way to increase the en-
tropy keeping mutual information equal to zero is to
switch on pixels forming a line perpendicular to any
of the two variableA1 or A2. In this case zero mutual
information reflects the fact that the knowledge of the
value of one variable does not help at all to determine
the value of the other one. In order to increase the en-
tropy keeping the mutual information equal to zero one
can make such a line “thicker” by switching on adjacent
pixels.

On the other hand, if we want to increase the mu-
tual information by keeping the entropy constant we
can simply increase the slope of the horizontal line
of figure 6b: the number of pixels switched on does
not change and thereforeS(A1A2) remains constant and
equal to lnN. However the number of bins for the pro-
jected PDF’sA1 andA2 start to grow and so it does their
associated entropies. Maximum mutual information is
reached when the line has a slope equal to one 6c: in
that case knowingA1 completely determines the knowl-
edge ofA2. It should be pointed out that the definition
of mutual information is also capable to handle with the
case when two variables are not linearly correlated. In
this case (see the dashed line of figure 6c) mutual in-
formation keeps being maximum. Therefore in order
to discover correlations between variables it is better to
use the mutual information than the correlation function
σA1A2 =

∑

a1,a2

(ā1 − a1) · (ā2 − a2).

c)b)

I2(A1,A2)=ln NI2(A1,A2)=0
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Figure 6. Examples of two-dimensional probability maps ordered by
increasing values of entropy (ordinate) and mutual information (ab-
scissa). As in figure 5 we include both 2D probability distributions
together with their 1D projections and the calculations of their en-
tropies. The inset between panels (b) and (c) indicates a 2D aseries
of 2D distributions with increasing mutual information in thesense of
the arrow. In panel (c) we show two 2D distributions with a maximal
mutual information: one with a linear correlation between variables
(full line) and one with a non-linear correlation (dashed line).
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Figure 7. Symmetric three-dimensional probability distributions together with their two and one-dimensional projections, ordered by decreasing
values of mutual information. Figures a and b are coming from a three spin system at zero temperature in the non-frustrated andfrustrated case
respectively. Figure c is one example of the maximum frustration that can be achieved from a three-dimensional probability distribution.

7.3. The three-dimensional case

In order to clarify why the mutual information for
a three-dimensional PDF can be negative, we will use
the example proposed by Matsuda et al. of a three
spin system that can be up or down having an interac-
tion among them ruled by a Heisenberg Hamiltonian:
H = −J(x1x2 + x2x3 + x1x3), whereJ = ±1. As in that
case, we will study the case where variablesxi can take
only the values±1. For this Hamiltonian the shape of
the three-dimensional PDF will be very simple since it
is formed by eight 3D pixels, called voxels from now
on, whose state can be easily calculated using:

p (x1, x2, x3) =
e−βH

Z
(12)

whereβ = 1/KBT is related to the inverse of the tem-
perature, andZ is the partition function that, for this
case, isZ = 2e3βJ + 6e−βJ. Since we are interested in
keeping things as simple as possible, we calculate the
PDF for two extreme cases: when the temperature is in-
finity (β = 0) and when the temperature is zero (β = ∞).
For the first case (β = 0), calculation in both cases
J = ±1 is very simple since all voxels are switched on
and therefore the entropy of the systems is maximal and
the mutual information is zero.

The interesting case is when the temperature is zero
and thereforeβ = ∞. In this case we find very dif-
ferent PDF shapes for the casesJ = ±1. We show in
panel (a) of figure 7 the PDF for the caseJ = 1. For
this case parallel spins are giving the minimum energy
of the system and therefore there is a well defined zero
Kelvin state with all spins either up or down. In this
case the three body mutual information of the system
is positiveI3(X1,X2,X3) = ln2. The three-dimensional
PDF together with its projections in two and one dimen-
sions needed to calculate the mutual information are

also shown in panel (a) of figure 7. As it can readily
be seen the 3D PDF is relating the variables one by one
as in the 2D case, so that the dependency between vari-
ables is maximum. Moreover, the projections in two di-
mensions also allow us to see that there is a relationship
between variables, and in fact it fully determines their
dependence. Roughly speaking, the 3D PDF is well be-
haved and its 2D projections are giving us information
concerning the dependence between variables.

We will study now the case whereJ = −1 that favors
anti-parallel spin interaction: this is a well known case
of a geometric frustrated system. In panel (b) of figure
7 we show the three-dimensional PDF for this system
whenβ = ∞. For this case the mutual information is
negative and equal toI3(X1,X2,X3) = −0.117. As it can
readily be seen the three-dimensional PDF is not as well
behaved as in the last case: if a spin is up, i.e. if we per-
form a cut on the 3D PDF and take only the upper vox-
els, there are a lot of possibilities of arranging the other
two spins with equal probability. Moreover the projec-
tions in two dimensions do not allow us to deduce the
shape of the three-dimensional PDF. This causes that
the entropies of the two-dimensional projections of the
original 3D PDF have a high value and, since they are
subtracting terms in the definition of the three variable
mutual information of equation 6, the total value is neg-
ative.

The main point we would like to emphasise with this
very simple example is that a negative mutual informa-
tion implies a correlation between three variables that
can not be seen as the sum of a pairwise dependence
of two variables. In other words we must have a care-
ful look at the 3D probability distribution to get any
information about how variables are correlated, since
its two-dimensional projections have all the informa-
tion messed up resulting in a high entropic PDF. Fol-

9
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lowing this idea we present in panel (c) of figure 7 a
PDF with the maximum negative mutual information:
its two-dimensional projections have a maximum en-
tropy and their mutual information is zero, i.e. little
about the 3D PDF can be inferred from the 2D pro-
jections. However the PDF has a well defined shape
in three dimensions, and thus the mutual information is
negative and maximal (I3(X1,X2,X3) = − ln 2).
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liquid tetrachlorides CCl4, SiCl4, GeCl4, TiCl4, VCl4, and
SnCl4, J. Chem. Phys. 114 (2001) 8082.

[20] L.C. Pardo, N. Veglio, F.J. Bermejo, J.Ll. Tamarit, G.J. Cuello,
Experimental assessment of the extent of orientational short-
range order in liquids, Phys. Rev. B 72 (2005) 014206.

[21] R. Rey, Quantitative characterization of orientational order in
liquid carbon tetrachloride, J. Chem. Phys. 126 (2007) 164506.

[22] Sz. Pothoczki, L. Temleitner, P. Jóvári, S. Kohara, L. Pusztai,
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